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ABSTRACT

Attacks on software systems are becoming more and more fre-

quent, aggressive, and sophisticated. In 2018, with the changing

threat landscape, organizations are looking at ’when’ they will be

attacked, not ’if’. An Intrusion Detection System (IDS) can help in

defending against these attacks. The systems that host IDS require

extensive computing resources as IDS tend to detect attacks under

overloaded conditions wrongfully. With the end of Moore’s law

and the growing adoption of the Internet of Things, designers of

security systems can no longer expect processing power to keep up

the pace. This limitation requires ways to increase the performance

of these systems without additional computation power. In this

work, we present two dynamic and a static approach to bypass IDS

for traic deemed benign. We provide a prototype implementation

and evaluate our solution. Our evaluation shows promising results.

Performance is increased up to the level of a system without an

IDS. Attack detection is within the margin of error from the 100%

rate. However, our indings show that dynamic approaches perform

best when using software switches. The use of a hardware switch

reduces the detection rate and performance signiicantly.

CCS CONCEPTS

· Security and privacy→ Intrusion detection systems;Virtu-

alization and security; · Networks → Network control algo-

rithms; Network performance analysis; Network security; Middle

boxes / network appliances;
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intrusion detection, software-deined networking, network function
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1 INTRODUCTION

In recent years, the number of services running in a cloud has

grown exponentially. The development of tools for the simple use

of Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and

Infrastructure-as-a-Service (IaaS) has made it easier to outsource

existing services to the cloud environment. In addition to reduc-

ing operating costs, scalability, lexibility, and availability are vital

reasons for using the cloud or hybrid cloud solutions.

Forecasts predict that the size of the hybrid cloud market will

grow from $25.28 billion in 2014 to $91.74 billion by 2021 [1]. Since

IT systems are part of the critical infrastructure for many companies

and organizations, a cloud must have essential security features. In

surveys, 90% of the interviewed companies said they had security

concerns about moving to cloud systems [15]. Of all cloud users, 58%

stated that security aspects had been a signiicant challenge when

migrating to the cloud [8]. Thus, security concerns far outweighed

any other concerns.

With the spread of the cloud and the increasingly sophisticated

attacks via the Internet, there is a need for defensive measures to

evolve. Not only are the software stack and the computers host-

ing this software stack targets of these attacks, but these attacks

also target the complete hardware infrastructure such as storage

and networks. With the further development of existing security

systems, it seems that future threats can be averted no longer. The

next logical step will be to combine security systems with emerg-

ing technologies such as Software-Deined Networking (SDN) and

the Network Function Virtualization (NFV), as they are currently

entering cloud computing centers [10].

In addition to irewalls, Intrusion Detection Systems (IDS) have

become a security standard for data centers. The constant work of

security researchers and the community ensures a regular surge

of new signatures for IDS to defend against attacks. However, the

use of IDS is proving inlexible for cloud solutions, which must

react to new requirements within the shortest possible time. As
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SDN and NFV solutions are increasingly inding their way into 
data centers, the question arises as to whether and how active 
cooperation between these systems can contribute to further gains 
in performance and security.

To evaluate the potential of SDN and NFV solutions, this work 
comprises the following contributions. We design SDN-based al-
gorithms for handling network traic including detection of attacks 
by the IDS:

Adaptive Blacklisting: Traic of speciic protocols reaches the 
IDS for a deined time interval. If the traic of a considered con-
nection triggers an alarm in this interval, it becomes permanently 
redirected via the IDS. Other traic continues without redirection.

Adaptive Whitelisting: Only whitelisted protocols pass di-
rectly to the destination. The remaining traic passes through the 
IDS. If the traic of a speciic connection does not trigger an alarm 
after a certain number of transmitted packets, the traic of  this 
connection is whitelisted.

Selective Filtering: Incoming traic of  se lected protocols is 
permanently redirected via the IDS and only then forwarded to the 
original destination. Outgoing and other incoming traic usually is 
switched to the destination without the detour via the IDS.

We implement these algorithms as an SDN-Controller App. We 
perform multiple experiments inside a testbed environment to mea-

sure the performance and security metrics throughput, delay, and 
detection rate of attacks of the IDS under consideration of the attack 
detection. We evaluate and discuss the results of the measurements 
during the experiments.

The results are promising. The dynamic approaches can remove 
a majority of the negative performance impact from the IDS. The 
detection accuracy remains high within the margin of error to 100%
in most scenarios. However, this applies only when using a software 
switch. When applying the algorithms on a hardware switch, it 
reduces the improvements in performance. Furthermore, detection 
accuracy falls to extreme values. The Selective Filtering shows that 
with little efort, a static solution can improve performance. While 
it does not reach the performance of the other approaches, the 
hardware switch has only a marginal efect on the performance of 
Selective Filtering and does not reduce detection accuracy.

The remainder of this paper is structured as follows: At irst, 
we introduce related work in Section 2 and the relevant technical 
background in Section 3. In Section 4, we present the underlying 
problem and our approach. We detail the implementation of the 
approach in Section 5 and evaluate it in Section 6. Finally, Section 7 
concludes this paper and gives an outlook on future work.

2 RELATED WORK

Related work mostly deals with either the measurement of IDS per-
formance or the inference of essential factors on the performance 
and optimized signatures.

Sen, in her report łPerformance Characterization and Improve-

ment of Snort as an IDSž [16], discussed the performance char-
acteristics of Snort as an IDS and proposed ways to improve its 
performance by introducing new data structures. She performed 
a series of experiments to investigate the efect of the changes on 
Snort’s performance. Her experiments showed that as network 
packet size increases bandwidth increases, whereas as the number

of signatures supported on Snort increases, throughput decreases.

The correlation between the number of packets and packet size

on the bandwidth of Snort was an important aspect which can be

taken from this paper to evaluate a system for Snort’s performance.

Schaelicke et al. also investigated the performance characteris-

tics of Network Intrusion Detection Systems (NIDS) in their work

in [14]. As with [16], they generated packets of varying sizes and

tested them against a varying number of rules. In their experiments,

they also diferentiated between the header and body signatures.

Their tests showed that with larger packets, more signature rules

could be present before observing a signiicant packet loss by Snort.

Moreover, it was seen that microprocessor performance was not the

only criterion for Snort’s performance. Also, the header signatures

exhibited a high processing load, limiting the packets per second.

Meng et al., in their report [9], are working towards improv-

ing NIDS by developing an Enhanced Filter Mechanism mitigating

issues such as network packet overload, expensive signature match-

ing, and high false alarms experienced in large-scale networks. The

proposed solution consists of three major components, namely (1)

a context-aware blacklist-based packet ilter, (2) an exclusive signa-

ture matching component, and (3) a KNN-based false alarm ilter.

This paper’s łContext-Aware Blacklistingž worked on blacklisting

IP addresses with the help of a look-up table, and the łExclusive

signature matching componentž that quickly identiied a mismatch

increased the signature matching process, thereby increasing NIDS

performance.

Alhomouda et al. [2] compared the Suricata and the Snort NIDS.

This paper focused on determining the packet loss at diferent

network speeds for the two NIDS. Various trials evaluated the

performance of applications hosted on diferent operating systems.

Based on the results, the authors concluded that the choice of NIDS

and the OS used should be dependent on the type of traic.

Day and Burns [6] also examined Suricata and Snort in an over-

loaded condition. In contrast to [2], this paper analyzed accuracy,

dropped packet rate, system utilization, and oline speed. This

publication identiied the metrics that were responsible for the

characterization of the performance under diferent situations.

The work of Tjhai et al. conirmed the high false negative rate

of Snort [18]. Under the division into łtruež and łfalse alarm rate,ž

they analyzed diferent frequently used signature sets to their false

positive rate. The paper concluded that the high false positive rate

was one of the future challenges for the development of NIDS.

The work of Chahal and Nagpal in [4] continued with the prob-

lem of false positive subordinate rule sets and developed a concept

of the generalization of signatures. Similar signatures were com-

bined to reduce the number of signatures to reduce false alerts. Less

and more primitive signatures reduced the false positives.

Finally, Alomari andMenascé in [3] use an autonomic computing

based approach to balance the performance and security’s QoS re-

quirements. An autonomic controller was presented that identiies

an optimal security policy which improves the security and QoS

of the system on the basis of analytical models that estimate the

performance impact for a given security policy, thereby managing

the performance and security tradeof.

While all of these works dealt with either improving or eval-

uating the performance of IDS, none of the works applied SDN
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to reduce the load, increase the throughput, or reduce the false 
positive rate of existing SDN solutions.

3 TECHNICAL BACKGROUND
This chapter provides background information about the used tech-
nologies and introduces IDS, their categorization and their signa-
tures. Our proposed solutions all rely on SDN, and we will later 
also evaluate the inluence of NFV.

3.1 Intrusion Detection Systems

Intrusion Detection and Prevention Systems (IDPS) combine 
IDS and Intrusion Prevention Systems (IPS). IDS can be used to 
detect attacks [13], and many IDS provide additional defense mech-

anisms. IPS are capable of actively defending against incoming 
attacks, and many IPS are deployable in a detection-only mode.

In this work, we focused on network-based, misused-based, non-
distributed, and real-time IDS.

Misuse-based approaches primary target singular attacks that 
are usually carried out in a single step [19], exploiting a selected 
vulnerability. Here, an IDS uses signatures containing features of 
an attack for its detection. Real-time or event-based IDS intercept 
an activity before it reaches the target system inspecting it syn-
chronously to the traic low. Non-distributed IDS are deployable 
at a singular (central) position inside the system.

3.2 Software-Deined Networking

Software-Deined Networking (SDN) takes on the challenges posed 
by the increasing number of participants in networks and the asso-
ciated exponential increase in costs due to the directly correlated 
growth in resource demands. The objective during development 
was to achieve greater scalability, lexibility, automation, and inde-
pendence from hardware manufacturers to reduce acquisition and 
operating costs.

Five principles are fundamental to SDN: The separation of con-
trol and data planes divides the switching process into the control 
plane, using routing algorithms to decide on packet forwarding 
and the data plane technically handling the packet. SDN allows 
inluencing the forwarding process from the outside via a software 
interface to communicate with the switch changing its behavior 
at runtime without having to replace the hardware components. 
The central control instance, also called controller, enables the 
coniguration and administration of the network. Through pro-
grammability, the behavior of a switch can be changed using 
software, enabling the installation from algorithms or other appli-
cations from diferent manufacturers independent of the hardware 
producer. Additionally, protocol independence allows running 
diferent network protocols. Open interfaces are a prerequisite 
for vendor independence.

SDN brings together many areas that are handled separately in 
traditional networks via various application programming inter-
faces (API). There are four essential APIs that can be implemented 
in many ways [7, 11]. The Southbound API connects the control 
and data layer. The Westbound API is used to communicate dif-
ferent control layers of diferent domains. The Northbound API 
exchanges information between the application and control layers.

The Eastbound API provides a contact surface for non-SDN com-

ponents, such as Multi-Protocol Label Switching (MPLS) or other

routing algorithms that function across domains.

OpenFlow (OF) is an open protocol for the Southbound API in

SDNs. Due to its continuous further development and extensive

hardware support, it has become the quasi-standard for SDNs. OF

can be used to conigure and evaluate the statistics of a network

device, usually a switch.

3.3 Network Function Virtualization

Network Function Virtualization (NFV) is a new paradigm for net-

works. Typically deployed on proprietary specialized hardware in

the past, these functions are replaceable by software solutions run-

ning on commodity hardware [5, 12]. The implementation of a func-

tion is usually referenced as Virtualized Network Function (VNF)

as it is commonly deployed inside a Virtual Machine (VM) to allow

for higher lexibility and scalability.

Many NFV solutions are usually implemented in conjunction

with specialized operating systems or drivers to minimize bottle-

necks. Mapping the network functions in software separates the

data and control layers. Although both NFV and SDN share this sep-

aration, both paradigms still can be distinguished and implemented

independently of each other.

4 APPROACH

In this section, we describe our approach to increasing IDS perfor-

mance, while still considering security aspects. We irst describe

why IDS performance often can become a problem. Next, we intro-

duce our two dynamic algorithms Adaptive Blacklisting and Adap-

tive Whitelisting. Finally, we present a simple static approach to the

problem as a baseline for comparison to our dynamic algorithms.

4.1 Problem Statement

The current implementations of network-based IDS make use of a

technique called DPI. They inspect every network packet in detail,

thereby making them compute-intensive and a possible bottleneck

in the network infrastructure. Also, studies have shown that under

overloaded conditions, IDS can experience packet loss and network

delays, resulting in reduced network bandwidth. Additionally, over-

loaded conditions can result in a high number of false-positive

alarms, making them inefective in the network. While it is possible

to counter these issues by adding multiple IDS instances and load

balancers, this approach is (1) very expensive, and (2) increases

the attack surface (e.g., in the load balancer). Furthermore, another

attack trend is that most of the attacks from an attacking host are

launched as soon as possible so that the attacker stays in contact

with the victim machine for the least amount of time to reduce the

chances of detection. This characteristic creates an opportunity to

design adaptive algorithms that make use of such indings to dy-

namically adjust the routing of packets either to the IDS or directly

to the internal network.

4.2 Initial Situation

In the initial situation, the network consists of three segments as

shown in Figure 1. First, an external network is the source for po-

tentially malicious network packets. Next, the security portion of

Session 8: Runtime Adaptation  ICPE ’19, April 7–11, 2019, Mumbai, India

161



...

SDN Ctrl.SDN Ctrl. IDS

Figure 1: Traditional Switching: Direct routing from source

to sink. IDS inline mode possible with single SDN Flow.

our network consists of an SDN-enabled network (represented by a

switch), an SDN controller, and the IDS. Finally, the third segment is

the protected internal network. In the default coniguration, all traf-

ic is routed directly between the external network and the internal

network. Hence, the default coniguration provides no protection.

Resembling the inline deployment typical for IDS requires a single

additional low. This low forwards all packets from the external

network to the IDS. Then, it forwards the benign packets received

back from the IDS to the internal network.

4.3 Adaptive Blacklisting

Adaptive Blacklisting distinguishes between blacklisted and non-

blacklisted traic. The principle behind Adaptive Blacklisting is

that initially only those packets from applications, services, and

protocols are routed via the IDS for which the IDS has signatures

conigured. Therefore, this approach puts traic types with signa-

tures on the blacklist. Traic for other services is not routed via

the IDS and is instead forwarded directly to its destination. This

distinction eliminates the traic load on the IDS for which it does

not have any signatures.

In contrast to the existing static blacklisting approaches (e.g.,

the Selective Filtering described in Section 4.5), in Adaptive Black-

listing, connections are removed from the blacklist once they have

not triggered an alarm for a certain amount of time. When a new

connection, supported by the IDS arrives, the system requests in-

struction from the controller as seen in low (1) in Figure 2a. After

conirming that the requested connection is indeed a new connec-

tion, the controller creates two lows with diferent durations. The

irst low forwards the network traic to the IDS. The igure depicts

this low as low (2). This low has a higher priority but a shorter

lifetime (X). Many attacks occur within the irst few packets after

establishing a new connection, so that they give an administrator

the least amount of time to detect them. Therefore, once the lifetime

of low (2) times out, a second low (3), created at the same time,

forwards the traic directly to the host destination by bypassing the

IDS. This low has a lower priority but a higher lifetime. If attacks

are detected in low (2) before the lifetime (X) times out, this low is

made permanent, and all the traic from this host will pass through

the IDS without compromising the system. Additionally, we can

conigure a timeout for the lifetime of bypassing the IDS (low (3))

to be either permanent or temporary.

4.4 Adaptive Whitelisting

The fundamental concept behind Adaptive Whitelisting is that it

does not necessarily require any knowledge about the conigured

signatures in the IDS routing all the network traic except for

optional explicitly whitelisted traic types via the IDS.

For every connection, the receiving component initially queries

the SDN controller which creates a low via the IDS. If after a

preset number α of packets the IDS has raised less than β alerts,

the traic becomes whitelisted, resulting in an additional network

rule. The subsequent traic of the tested connection is no longer

routed via the IDS and instead is routed directly to its destination.

A time limit Z is conigurable after which the whitelisted traic

needs to undergo inspection again. The number of packets routed

through the IDS in order to work efectively requires empirical

studies. The system requests for instructions from the controller

upon arrival of a new connection. Figure 2b depicts that action as

low (1). Like Adaptive Blacklisting, once the controller conirms

that the requested connection is indeed a new connection, it sets

up a single low with the highest priority, passing all the network

traic through the IDS. The SDN controller now communicates

with the IDS to record the packet characteristics detected for the

newly created connection. Flow (3) in the igure represents this

communication between the SDN controller and IDS.

If, after α packets passed via the IDS, the SDN controller records

that β or more packets have triggered alerts (in our case β = 1, i.e.,

if even one alert occurs in the sample space of α packets), it routes

packets from that connection permanently via the IDS. Otherwise,

if less than β alerts occur, the subsequent network traic from this

connection is routed directly to the host destination by bypassing

the IDS. Like Adaptive Blacklisting, a predeined lifetime is present

until the packets for a connection are allowed to bypass the IDS.

On expiry of the lifetime, the network traic for that connection

will be passed through the IDS again to prove the connection to be

deemed as benign.

4.5 Selective Filtering

Selective Filtering is not an algorithm but rather a simple SDN-

based static solution that helps to baseline our dynamic approaches.

Such static lows, once established on the switch, do not change

during operation. The concept of Selective Filtering requires only

a few lows reducing the initial overhead of the SDN-based traic

analysis. In most production deployments, for optimal performance,

most IDS are conigured with signatures for a limited set of appli-

cations, protocols, and services. Selective iltering attempts only

to statically route traic via the IDS for which protocol or ser-

vice signatures are available. This distinction requires knowledge

about which application workload is running on which host and

protected by which IDS. For each host server and application, Se-

lective Filtering adds a low entry in the switch which redirects all

incoming traic to this combination via the IDS. The remaining net-

work traic is forwarded directly to the destination. This approach

is depicted in Figure 2c. One of the signiicant advantages of the

Selective Filtering approach is its simpliied deployment without

compromising on security, as potentially malicious traic passes

through the IDS.

5 IMPLEMENTATION

We implemented the algorithms presented in Section 4 to allow

their evaluation. Additionally, we realized a load generator. This
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1 2

3

...

SDN Ctrl.SDN Ctrl. IDS

a) Connection establishment via adaptive

Blacklisting. The switch queries new con-

nections for observed traic types with the

controller (1). The controller creates a new

low forwarding traic to the IDS (2). If no

alert is triggered, after some time the net-

work directly forwards traic to the service

host (3).

1 2

3

...

SDN Ctrl.SDN Ctrl. IDS

b) Procedure for handling a connection in

Adaptive Whitelisting. The switch queries

the controller for non-whitelisted traic (1).

The controller creates a low diverting the

traic to the IDS (2) and then queries the IDS

for the observed attacks (3). If a threshold

for recorderd attacks is not exceeded after a

ixed time, the diversion is terminated.

...

SDN Ctrl.SDN Ctrl. IDSIDS

c) Flows at selective iltering for diversion

via the IDS. This coniguration directly

forwards traic that has no signatures

conigured at the IDS to the service host.

Traic with conigured signature has to

pass through the IDS.

Figure 2: Forwarding Approaches

...

IDSIDS

Open  

vSwitch

Open  

vSwitch

Hardware 

Switch

Hardware 

Switch

SDN Ctrl.SDN Ctrl.

Figure 3: Testbed used for evaluation comprising benign

andmalicious traic generation (simulating an external net-

work), an IDS, SDN-enabled hardware and software switches

able to send traic either to the IDS or service host, an SDN

controller, and service hosts.

section gives a short overview of the employed technologies. As

SDN controller, we use Ryu1. Ryu is lightweight, supports basic

switching and REST per default, and can be extended using sim-

ple Python scripts. We realized every algorithm as a single Ryu

module. The choice for the IDS was Snort 2.9.9.0. Detected attacks

are provided by Snort using its internal database. Our experiment

controller written in Java controls the service host as well as the

client(s), generates the workloads, executes the experiments, and

records its results.

6 EVALUATION

In this section, we evaluate our approach. First, we describe the

used testbed. Next, we introduce the used metrics, coniguration

scenarios for the testbed, andworkloads. Last, we present and assess

the measured results.

6.1 Testbed

The testbed we used to evaluate the presented approach comprises

multiple servers and one Open Flow-enabled hardware switch as

depicted in Figure 3. The servers take the roles of simulated clients,

load driver, target server, software switch, IDS, and SDN controller.

1https://osrg.github.io/ryu/

We used HPE ProLiant DL360 Gen9 servers with an octa-core Intel

Xeon CPU with enabled hyperthreading and 32GB main memory.

The choice for operating system fell on a 64-bit Linux with kernel

version 4.4.0-72 for x86-64 architectures. The selected switch is

an HPE 5130-24G-4SFP+ from the Aruba series. It supports Open

Flow 1.3 as an SDN protocol, and its hardware table can contain

up to 384 entries. For the SDN controller, we used the python-

based Ryu controller. All network connections supported a maximal

bandwidth of 1 Gbit/s. An experiment controller was connected

to all devices via a separate experiment network. This experiment

controller conigured the servers and switches, starts and stops the

measurements, monitors the experiment, and collects the metrics.

The target service runs an Apache web server application.

6.2 Metrics and Their Acquisition

To evaluate the quality of our approach, we need to measure multi-

ple metrics. These metrics comprise the throughput, the response

time, and the accuracy of the attack detection.

Network Throughput: A signiicant metric to assess the perfor-

mance of web servers and, therefore, also their protection system,

is the achieved throughput. This value measures the amount of

traic processed by the system.

We are making use of the Simple Network Management Protocol

(SNMP) to measure the throughput. This protocol is available on

many switches and Operating Systems. It allows access to many

settings and counters (so-called OIDs) of a system. These OIDs in-

clude the state and capabilities of a network interface, the CPU load,

and the memory usage. The throughput considered in our paper is

the number of incoming and outgoing bytes to the interfaces and

ports involved in an experiment at the switch.

Network Delay: In addition to throughput, the delay is another

essential metric in computer networks. The use of additional compo-

nents that a network packet needs to pass through in the network,

such as the IDS, leads to additional packet delays. A delay is the

amount of time a packet needs from the source to the destination.

For this paper, we use the time taken to establish a TCP Handshake.

Since many applications use the TCP protocol for the use of IDS,

the case is particularly interesting in which the resulting delay of an
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...

a) Scenario 1a (Unprotected Baseline): Direct connection between

source and sink. Baseline formaximum throughput and no security.

...
IDSIDS

b) Scenario 1b (Protected Baseline): IDS between source and target.

Baseline for minimum throughput and maximized security.

...

SDN Ctrl.SDN Ctrl. IDS

Hardware 

Switch

Hardware 

Switch

...

SDN Ctrl. IDS

Hardware 

Switch

c) Scenario 2: SDN-enabled network using a hardware switch.

...

SDN Ctrl.SDN Ctrl. IDS

Open  

vSwitch

d) Scenario 3: SDN-enabled network using a software switch.

Figure 4: Scenarios used for the Evaluation

entire TCP handshake becomes visible because it is the prerequisite

for a TCP connection. The observation of the time diference of

the TCP handshake also has technical reasons. The time diference

can be determined merely through two time-stamps, before and

after the call.

Atack Detection Rate: The attack detection is the number of

attacks detected by Snort during the experiment. To determine the

number, we used the barnyard2-managed MySQL database on the

IDS as the basis to count the number of attacks. Barnyard2 inserts

the attacks detected by Snort as an entry in the database. The dif-

ference between the number of database entries at the beginning

and end of the experiment repetition is the number of attacks de-

tected. This approach can be problematic if some Snort detections

enter into the database after the experiment due to excessive delay.

However, post-analysis of the database subsequently can reduce

such efects. A problem with the automated analysis of attack de-

tection is the false-positive and false-negative analysis. Although

barnyard2 writes all the packets that Snort has sent to an alarm,

the entries can contain some corrupted data. This limitation makes

it diicult to search the database for patterns. For better detection

of attacks, generated HTTP attacks contain the plain text ’attack.’

6.3 Scenarios and Workload

Scenarios 1a and 1b (Baselines): The goal of the reference sce-

narios is to baseline the setup on the two criteria of our interest,

namely performance and security.

Scenario 1a consists of only a switch as a node between the source

and the destination as can be seen from the Figure 4a. This scenario

forwards traic directly from the external network to the service

hosts and back. Hence, this scenario represents the maximum data

throughput with the lowest delay. The only limit to the network

capacity between the source and the destination is the maximum

bandwidth of the switch.

Scenario 1b consists of an inline IDS between the source and

the sink as can be seen from Figure 4b. Therefore, all the network

traic is routed and examined by the IDS. This scenario helps us

generate a reference for the performance of the network with the

highest level of security by using an IDS. Here, some of the primary

inluencing factors to the bandwidth of the network are the speed of

the Ethernet interfaces of the host system as well as the maximum

supported throughput of the IDS that can be achieved based on

scaling the IDS’s system resources such as CPU and RAM. Further

possible limitations include the I/O performance of the overall

system and the operating system used.

Scenario 2 (Hardware Switching): This scenario employs an

SDN-capable hardware switch in conjunction with an SDN con-

troller as depicted in Figure 4c. The SDN controller allows us to

manipulate the network’s low tables at runtime as for the Adap-

tive Blacklisting and Whitelisting algorithms described previously.

The controller also has a feedback from the IDS’s interface to ob-

tain information about the detected attacks. The connection from

the SDN Controller to the IDS is on a separate network to avoid

interferences.

This scenario is signiicant in various ways. Firstly, the type, size,

and performance of low tables vary signiicantly with diferent

switch models. An evaluation of how the nature of low tables

afects real applications is therefore particularly interesting. An

OpenFlow compatible switch has two types of low tables: software

and hardware. While a dedicated processor processes the entries of

the hardware table, the CPU takes over the processing for a software

table reducing the performance. Even between the hardware tables,

there are performance diferences in the priority of lows within a

table. If multiple tables are present, this fact also adds inter-table

prioritization.

Secondly, apart from a pureQoS perspective, there are three other

performance criteria for low tables during the runtime: Adding,

modifying, and deleting existing lows in a table. When managing

many lows (more than 100), adding new lows can take a longer

time than when there are only a few lows (less than 10). Addi-

tional delays can result in further problems, such as the additional

triggering of a packet-in event for bufered packets.

Scenario 3 (Sotware Switching): In the last experimental setup

a software switch, Open vSwitch, is used instead of a hardware

switch that was used in Scenario 2 as can be seen from Figure 4d.

In contrast to a hardware switch, a software switch has an entirely
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Figure 5: Performance and Security Results

diferent behavior. The low capacities and the performance of the

device are no longer dependent on the hardware speciications of

the device. Moreover, the separation between the software and

hardware tables vanishes and the complete table has consistent per-

formance. Additionally, the size of the table is no longer dependent

on the hardware. Although a more powerful host system leads to

faster performance, the ability to use commodity hardware guaran-

tees lexibility. We chose this scenario to assess the performance of

this switch VNF in comparison to the hardware switch.

Workload: In our workload, we evaluate the performance and se-

curity properties of our applications. The workload puts the system

under a constant load and focusses on evaluating the feasibility of

our algorithms. To achieve this constant load, we query the server

with HTTP requests. Exactly 170 requests are open at any time.

We have chosen this number to ensure that this load would not

exceed the hardware low table of the employed switch speciied at

384 entries. Once the client receives the completion of a request, it

starts a new one. Each request consists of an HTTP POST-Request

for a two Mebibyte ile on an Apache web server. This size orients

itself at the size of an average website [17]. Additionally, to this

benign requests, our load generator starts ive attacks every ten

seconds. Attacks are packtes that match a conigured signature. The

IDS has signatures conigured for these attacks. Every execution

takes ive minutes with 30 repetetions.

6.4 Performance and Security Results

Result Description: From two baseline scenarios, it becomes evi-

dent that Snort in inline mode results in a signiicant reduction in

throughput. Figure 5a shows that while Scenario 1a achieves the the-

oretical maximum of 940 MBit/s [12], the routing via the IDS results

in a drop to 72 MBit/s or by 92%. Scenario 2 shows that all bypassing

algorithms increase the throughput in comparison to the baseline

scenario with inline IDS. While Adaptive Blacklisting andWhitelist-

ing reach approximately the same results with 434 MBit/s (Blacklist-

ing) and 427 MBit/s (Whitelisting), the Selective Filtering reaches

573 MBit/s. In Scenario 3 this balance changes. Both dynamic ap-

proaches reach the theoretical maximum throughput while Selec-

tive Filtering gains only a minimal improvement in throughput.

Figure 5b shows the efect of the various scenarios on the net-

work delay. The addition of the IDS increases the delay from 20 ms

in Scenario 1a to 4 657 ms in Scenario 1b. In Scenario 2, we see a sig-

niicant reduction in the delay for all bypassing approaches. Unlike

the throughput, dynamic approaches achieve a smaller delay at 451

ms (Blacklisting) and 532 ms (Whitelisting) than the Selective Filter-

ing at 2 034 ms. Selective Filtering again only marginally improves

its performance upon adding the software switch in Scenario 3. At

the same time, the dynamic approaches further improve more than

halving their delay to 167 ms respectively, to 211 ms.

Figure 5c shows the ratio between the number of detected at-

tacks and the number of executed attacks. Apparently, without an

IDS, Scenario 1a detected no attacks. Scenario 1b adds the IDS and

already shows around 149% detection rate. So, more attacks are

detected than are executed. Scenario 3 shows a signiicant drop in

detection rate for the dynamic approaches. Adaptive Blacklisting

achieves only 23% detection rate, and Whitelisting is only slightly

better at 26%. The selective Filtering achieves a detection rate of

99% which is within the margin of error to the ideal 100% rate.

Using the software switch in Scenario 5 increases the ratio to 96%

for both dynamic approaches and 101% for Selective Filtering. All

three approaches are within the margin of error of 100%. When

examining the attacks in Snort’s database, they all contain the se-

quences that should trigger the signatures. Thus, the attacks appear

to be correctly detected.

Discussion: The comparison between Scenario 1a and 1b conirms

the motivation for this paper. Adding an inline IDS reduces the

throughput and increases the latency drastically. Furthermore, an

inline IDS under high load triggers more alerts than actual attacks

occurred.

As expected, bypassing the IDS increases the performance. How-

ever, the dynamic approaches behave diferently than Selective

Filtering. While in Scenario 2 they increase the performance rel-

ative to the inline IDS, they decrease the rate of detected attacks

to about a fourth of the actual attacks which is an unacceptable

security characteristic.

When replacing the hardware switch with a software switch in

Scenario 3, the performance of the adaptive approaches increases

even further to the theoretical throughput maximum and a latency

acceptable for a web server. The attack detection ratio increases

as well, and the detection of all executed attacks is within the

margin of error. On further investigation, it appears that in some
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conditions the hardware switch starts using the software table. 
This behavior is unexpected since we chose the number of active 
connections below the hardware table capacity. The switch becomes 
signiicantly slower and frequently does not react to requests from 
the controller when using the software table. When the rerouting 
lows are not installed or incorrectly installed, traic could either be 
sent permanently via the IDS (reduced performance) or directly to 
the service host (no attack detection). The results for the Selective 
Filtering show that the bypassing with simple rules can yield an 
increased performance compared to inline mode.

In summary, the bypassing algorithms show promising results. 
They can improve performance up to an extent where the intro-
duction of the IDS has no impact on performance. Attack detection 
is within the margin of error to 100% under typical load for both 
algorithms. The algorithms proit f rom the use of the software 
switch.

Limitations: The main limitation of our measurement approach 
is that it counts only the number of detected attacks. Therefore, it is 
not yet possible to assert which attacks are detected and account for 
false-positives and false negatives. The approach can be extended 
to collect this type of information as well.

Also, our framework at the moment allows no direct tracking of 
what happens at the hardware switch when it becomes unrespon-
sive in Scenario 2. Any assertion which lows get redirected and 
those that do not will require this functionality.

7 CONCLUSION

We introduced the problem that the performance of security devices 
is crucial to the success of cloud systems. After looking at related 
work and the technical background, we presented three algorithms 
- two dynamic ones, (1) Adaptive Blacklisting and (2) Adaptive 
Whitelisting, and a static one, (3) Selective Filtering, to improve 
the performance of network intrusion detection systems by selec-
tively bypassing them. We evaluated these approaches using four 
scenarios realized in a testbed environment. The results show that 
our approch improves the performance using bypassing while up-
holding a high level of detection accuracy. The dynamic algorithms 
have severe problems when using a hardware switch. Performance, 
as well as detection accuracy, drops. The static approach behaves 
similarly for software and hardware switches and gives a decent 
increase in performance. Thus, this work conirms the potential of 
bypassing algorithms to improve intrusion detection performance.

In future work, we will extend our testbed environment to sup-
port 1:1 accounting for the attacks carried out. This addition will 
allow the automatic detection of false positives and false negatives, 
as well as duplicate detection. Furthermore, we plan to track all 
network traic. With this additional information, we will analyze 
the efect of the hardware switch in detail. Additional data also 
allows improving our algorithms further to ensure better detection 
ratios. Also we will investigate further IDS including IDS capable 
of parallel processing as well as various attack/signature combina-

tions.
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