
A Cloud Performance Analytics Framework to Support Online
Performance Diagnosis and Monitoring Tools

Amitabha Banerjee†
 Performance Engineering

 Vmware, Inc.
3401 Hillview Ave, Palo Alto, CA

 banerjeea@vmware.com

Abhishek Srivastava
 Performance Engineering

 Vmware Software India Pvt. Ltd.
 Phase-4 JP Nagar, Bengaluru, KA, India

srivastavaab@vmware.com

ABSTRACT

Traditionally, performance analysis, debugging, triaging,
troubleshooting, and optimization are left in the hands of
performance experts. The main rationale behind this is that
performance engineering is considered a specialized domain
expertise, and therefore left to the trained hands of experts.
However, this approach requires human manpower to be put
behind every performance escalation. This is no longer future
proof in enterprise environments because of the following
reasons:

(i) Enterprise customers now expect much quicker performance
troubleshooting, particularly in cloud platforms as Software As
A Service (SaaS) offerings where the billing is subscription
based, (ii) As products grow more distributed and complex, the
number of performance metrics required to troubleshoot a
performance problem implodes, making it very time consuming
for human intervention and analysis, and (iii) Our past
experiences show that while many customers land up on similar
performance issues, the human effort to troubleshoot each of
these performance issues in a different infrastructural
environment is non-trivial. We believe that data analytics
platforms that can quickly mine through performance data and
point out potential. bottlenecks offer a good solution for non-
domain experts to debug and solve a performance issue. In this
work, we showcase a cloud based performance data analytics
framework which can be leveraged to build tools which analyze
and root-cause performance issues in enterprise systems. We
describe the architecture of this framework which consists of: (i)
A cloud service (which we term as a plugin), (ii) Supporting
libraries that may be used to interact with this plugin from end-
systems such as computer servers or appliance Virtual Machines
(VMs), and (iii) A solution to monitor and analyze the results
delivered by the plugin. We demonstrate how this platform can
be used to develop different performance analyses and

debugging tools. We provide one example of a tool that we have
built on top of this framework and released: VMware Virtual
SAN (vSAN) performance diagnostics.

We specifically discuss how collecting performance data in the
cloud from over a thousand deployments, and then analyzing to
detect performance issues, helped us write rules that can easily
detect similar performance issues. Finally, we discuss a
framework for monitoring the performance of the rules and
improving them.

CCS CONCEPTS
• Software and its engineering~Software performance

KEYWORDS
Online Performance Troubleshooting

ACM Reference format:
Amitabha Banerjee and Abhishek Srivastava. 2019. A Cloud Performance
Analytics Framework to support online performance diagnosis and
monitoring tools. In Proceedings of ACM/SPEC International Conference on
Performance Engineering (ICPE’19), April 7–11, 2019, Mumbai, India. ACM,
New York, NY, USA, 8 pages. DOI:
https://doi.org/10.1145/3297663.3309675

1 Introduction

1.1 Current state of the art

There exists a wide variety of research literature describing
techniques to detect, triage, and fix performance issues. [7] has a
comprehensive summary of the state of art of different
techniques and software packages for such efforts. However, the
main challenge is to identify the right technique to use for the
type of performance issue under investigation. Hence the art of
investigating performance issues is limited to a few individuals
who work in a highly decentralized manner to tackle the
problem at hand.
On the other hand, performing online data analysis in a
centralized environment has been explored by numerous service
portals such as Netflix[4]. However, the same approaches do not
work in enterprise data centers because of several reasons. First,
businesses such as Netflix, Facebook, and Google have the means
and the scale to perform data analytics on ten thousand of
production servers. More importantly, all these production
servers are of similar hardware and configuration, and therefore
once a technique is identified, it can be used at scale. In contrast,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ICPE '19, April 7–11, 2019, Mumbai, India
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6239-9/19/04…$15.00
https://doi.org/10.1145/3297663.3309675

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

151

most enterprise deployments and private data centers are small
silos of server deployments. Hardware configurations vary
significantly across enterprises. Therefore, there cannot be a one
algorithm or one solution that can work in all cases. Hence
troubleshooting performance issues at an enterprise deployment
becomes an exercise for a domain expert to use a variety of
performance monitoring tools to arrive at a logical conclusion.
However, in recent years, the pervasiveness of the cloud, and
connectivity of systems to it, has opened many opportunities to
improve the quality of support that enterprise companies offer to
their customers. Many enterprise companies have taken
advantage of such frameworks to provide faster resolution of
bugs such as performance issues to customers. Prime examples
of such efforts are Nimble Storage, which has developed its
product called Infosight Predictive Analytics [2] and Nutanix[3]
which delivers infrastructure analytics as part of its PULSE
product.
Our approach shares the same goals as Nimble and Nutanix, but
with the enhanced goal of being a fully cloud based solution. We
believe our solution is novel because it defines an approach to
send data from heterogenous end systems deployed at vastly
different datacenters to a centralized cloud where the data can be
processed in real time. Being completely cloud delivered buys us
three significant advantages:
(i) Big Data: We can correlate datasets coming in from a large
number of diverse product deployments at a centralized point
and thereby provide richer analysis.
(ii) Rapid Improvements: We can provide a rapid churn of
improvements in terms of the logic behind performance analysis,
independent of VMware’s product release cycle. As an example,
once we have confidence in our ability to diagnose a new
category of performance issue, we just need to update our code
and catalog of issues, both reside in the cloud.
(iii) Centralized monitoring: We provide an approach to monitor
how different rules perform on different heterogenous systems.
This ability gives us the game changing ability to design new
analytic solutions.

1.2 Our contributions

This paper is organized as follows. In Section 2, we describe the
overall architecture of the Cloud Performance Analytics
Framework. In Section 3, we deep dive into individual
components. Section 4 showcases how this framework was used
to build vSAN performance diagnostics, which is a shipped
performance debugging platform for vSAN. We specifically
discuss how having performance data made available in a central
place enabled us to write rules for triaging common performance
issues. In Section 5, we describe some of the challenges we faced
in designing this framework. Section 6 concludes the paper.

2 Architecture

Figure 1 describes how a sample performance analyser tool
(Perf*Analyzer) (drawn with blue box) works using the Cloud
Performance Analytics framework. The diagram is color coded
as follows. Two cloud services color coded in brown are used by
our solution: (i) A Key-Value datastore to store results of a
transaction (An example of which is Amazon DynamoDB[10])

and (ii) A SQL database to store detailed data and results (An
example of which is Amazon RDS[11]) for PostGreSQL. A
monitoring solution such as VMware Wavefront[12] can be used
to visualize how the Perf*Analyzer tools work in run time.

Figure 1: Overall architecture

Let us first outline the high-level steps a user must follow to use
this framework.
Develop the Perf*Analyzer tool which provides the user
interface, collects the necessary performance data, and interacts
with Cloud Performance Analytics library.
Write rules which can process the performance data. The user
may write simple rules which check for threshold violations. The
user can then combine multiple violations and define when a
performance exception is triggered.
If necessary, write a custom exception analyzer to implement
specific semantics in analyzing performance data which might
be required for this tool. The custom exception analyzer is
required when simple rules are not sufficient to describe
performance exceptions, and a more detailed analysis is
required. The plugin allows the user to write this analysis in a
programmable way in python syntax, while defining the libraries
to support defining the semantics. Refer
CustomExceptionAnalyzer in Section 3.4 under ExceptionRule.
If necessary, add a pre-trained Machine Learning (ML) Model or
linear/ logistic regression-based rule. Our library allows an easy
way to load pretrained ML models such as neural networks and
run inferences on performance data to generate performance
issues, which may not have been easily captured by threshold
based rules or programmatic rules.
If necessary, fine tune rules, such as thresholds, after monitoring
the performance exceptions generated on a monitoring solution
such as Wavefront.
Our goal of building this platform is that a developer should be
easily able to write, deploy, and release his own performance
analyzer tool, with the help of the framework that the library
provides.

3 Detailed Description

3.1 Workflow
The user endpoint of this framework is at the perf analyzer. The
user invokes the perf analyzer with some configurable input
parameters such as the duration of analysis desired. The perf

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

152

analyzer then collects the performance data for the desired
duration and feeds it to the cloud perf analytics library. The
cloud perf analytics library first marshals the data into a
common JSON format and sends it across to the Cloud along
with a transactionId, and then waits for the analysis. The Cloud
Plugin contains the meat of the analyzer logic, and processes the
data based on some defined rules or ML models. Once the
analysis is complete, the result is stored in the Key-Value
datastore for fast retrieval, while the payload is stored in a SQL
database (DB). The cloud perf analytics library now recovers the
result using the transactionId. It then un-marshals the result into
a defined syntax that the perf analyzer can understand. The perf
analyzer then does the final job of presenting the result to the
user with a great user interface.
A monitoring Virtual Machine (VM) picks up data from both the
Key-Value datastore and the DB, and then streams this data to a
monitoring solution. The data can now be visualized in a
dashboard by an administrator, who can infer if the analytics
rules are performing as desired. The data is invaluable to
improve the quality of data analysis.

3.2 Cloud Perf Analytics Library
This library provides set of APIs that the perf analyzer can use to
communicate to the Cloud Plugin which contains the crux of the
code for the performance data analysis. As part of its workflow,
the APIs provides interfaces to: (i) Take raw performance data as
an input, (ii) Convert it into a common format as expected by the
Cloud Plugin, and (iii) Send the data to the Cloud, wait for the
analyzed results to be available and then provide the same to its
calling entity. A diagram of how this library is designed is in
Figure 2.

Figure 2: Components of the Cloud Perf Analytics Library

3.2.1 API Interface
The Cloud Perf Analytics Library provides a simple set of python
APIs which can be used by any module/tool (or Perf*Analyzer)
by simply importing library and calling the appropriate
method/API as per the requirement. In response to the call, the
API returns the exceptions (if there is any abnormality in the
data as per the evaluated rules). Each exception will have the
exception name, and the component name with associated data
set (which resulted in violation of rules). The same can be
consumed by the Perf*Analyzer.

Here are the definitions for the APIs provided:
Add performance data along with a data convertor
def addPerformanceData(self, context, data, dataConvertor)

@param context: Here, context in general defines the set of
information which is important for analysis, besides the input
data. It is in the form of a dictionary containing background
information that may be necessary for performance analysis,
such as, the type of system(s), the number of machines in the
cluster, and clock frequency of machines stored as key value
pairs.
@param data: This is the input performance data which needs to
be analyzed.
@param dataConvertor: Routine to convert the performance
data into standard dataformat that cloud plugin can digest.

Invoke Cloud Plugin to analyze performance
def analyzePerformance(self, isTest=True)
After the input performance data gets ready as per the required
format and input context gets embedded into that, then data is
sent to cloud environment for analysis.
@param isTest If set to True, invokes a test environment instead
of production environment
@return dictionary with keys as performance issues and values
of supporting data

3.2.2 Format Convertor
As discussed in the above (API Interface) section, the input
performance data needs to be converted into a predefined JSON
format on the basis of which generic rules can be written, along
with context embedded into that data.
Hence, this routine is responsible for converting the input data
and context into the required standard JSON format that the
Cloud Analytics Plugin can understand. At a high level, the
standard JSON template looks like the following:
{
 <Header containing details about type of performance
analysis and context as Key Value entires. e.g.>
 “Plugin-Type”: “performance-analysis”
 “TransactionId”: “<uuid>”
 “Query Start Timestamp”: <ANSI time format>
 “Query End Timestamp”: <ANSI time format>
 }
{
 <Time Series data for an entity for which performance data is
available. e.g.,>
 “entityId”: “pcpu-xx-utilization”
 “label”: “Used %”
 “data: {
 “timestamps”: [<Times in ANSI time format>]
 “values”: [<List of floating point data>]
 }
}

3.2.3 Request Manager
The Request Manager is responsible for sending the request to
Cloud Analytics Plugin for analysis and retrieving the analyzed
response for the same. After sending the request, it validates the
sending response. It then waits for the response (for configurable
timeout duration) from Cloud Plugin by polling the key-value
store using the transactionId (which was added while sending
the request) and then returns the response to the calling entity.

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

153

3.3 Cloud Plugin

The role of the Cloud Plugin is to process the data that is sent by
the Cloud Perf Analytics library and evaluate if there are any
performance issues. At a high level, the plugin evaluates the data
for multiple rules, which are written by the user. We have
written a performance diagnostics library that can process time-
series data.

3.4 Performance Diagnostics Library

The Performance Diagnostics Library (PDL) is a framework that
allows a user to write rules to evaluate and analyze time-series
data, and then programmatically define how performance issues
may be raised when a combination of rules is violated. Our goal
is to release this library as open source in conjunction with
publication of this paper. PDL allows a user to construct rules in
the following way.
Violation Rule
A violation rule is a simple way to express if a specific data set
violates a specific threshold. We express a violation rule as a
dictionary in python, which is saved in JSON format. An
example of a violation rule is as follows:
{
 ‘name’: ‘cache-hit-check’,
 ‘entity’: ‘disk’,
 ‘metric’: ‘cacheHitRate’,
 ‘threshold’: 80,
 ‘thresholdType’: ‘lower’,
 ‘minTimesForThresh’: 5
}
This rule implies that a violation is seen anytime the
cacheHitRate (metric) of any disk (entity) is lower
(thresholdType) than 80% (threshold) at least for 5
(minTimesForThresh) consecutive intervals. When this rule is
processed against a dataset, it will flag all those disk (s) (entities)
for which the cache hit rate falls below 80% at any instance of
time. This is an example of a very simple rule; in addition, the
PDL offers the following constructs to evaluate data in more
complex ways.
Statistical operators on metrics: Instead of evaluating individual
data points for a metric, one can express an operator on all
entities for a metric. As an example, find out the (moving)
average read latency, (moving) 95 percent latency, standard
deviation of latency, etc., across all disks, and compare with
thresholds defined for these data points.
Aggregator operator on different metrics: This operator allows
one to operate on two different metrics to create a new one. As
an example, one can divide throughput with IOs per second
(IOPS) to construct IO size, and compare that against a threshold.
Aggregator operator on different entities. This operator is very
useful for distributed systems such as VMware Virtual SAN
(vSAN) which have several layers of software/hardware from
which metrics and data points are derived. As an example, one
can divide the read latency seen at the vSAN host-domclient
layer (software layer which interacts with the Virtual SCSI
(vSCSI) layer with the read latency seen at the disk layer. This
result gives the latency increase (inflation) in the vSAN stack. A
similar operand can be used to determine IO inflation in the

vSAN stack. These calculated data points can now be compared
against a threshold in the same manner as any other violation
rule.

Exception Rule
An exception rule defines the conditions during which a
performance exception is triggered. The exception rule is
triggered when one or multiple violation rules flag entities that
have violated performance expectations. An exception rule can
be defined in two different ways.

i. Mapped Exceptions: For simplicity, we defined a 1-1
mapping of an exception rule with a violation rule, that
is the violation directly triggers an exception. We
maintain this in a RuleToExMapper file. So, writing a
new rule and mapping it to corresponding new
exception is simple. Hence extending the rule-set does
not require any in-depth knowledge of framework for
any user.

ii. Custom Exception Analyzer: This allows one to

combine multiple violations (with different semantics)
and support implementation of flowcharts using them
to trigger exceptions. The custom exception analyzer
framework provides a lot more flexibility in terms of
combining various rules as per the runtime dynamics
and implementing a complete flow chart using this
support. 

PDL provides an ExceptionAnalyzer class which defines all the
standard APIs that any custom exception analyzer would need.
APIs include (i) Methods to which Violation Rules are not met
(with their names), (ii) Methods to apply logical conditions on
violated rules (e.g., performing logical AND on all rules in list. A
new custom analyzer can easily be added by extending
ExceptionAnalyzer, and this custom analyzer gets automatically
registered with the Cloud Analytics Plugin and invoked when
data of the corresponding performance analysis type is received.

Dynamic thresholds and regression:
A key limitation of the violation rule is that a threshold needs to
be defined to trigger a violation. In some cases, such as a cache
hit rate or CPU utilization, thresholds can be intuitive based on
systems knowledge and experience. In some other cases, a
threshold can be derived by gathering a lot of data points and
then applying clustering algorithms, such as the one described in
Section 4.1.3. However, in many cases, it is near impossible to
define a threshold value that uniformly applies to all kinds of
systems, hardware, and software that a generic performance
analyzer needs to work on. One of the main advantages of a
cloud framework is that performance data is centralized at one
place, and therefore readily available for many kinds of analysis
including building data driven. PDL offers two different
techniques to eliminate thresholds.

1) Dynamic thresholds: With dynamic thresholds, a system
learns the threshold by analyzing data over a period of time, and
then uses this prediction to trigger violations. In general,
dynamic threshold techniques [9] need a large amount of data
along with a human input to guide the approach in the correct

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

154

direction. PDL supports this technique where the threshold can
be defined as dynamic, instead of assigning a value to it.

2) Linear Regression Analysis: In this technique, PDL
identifies outliers of a certain metric by building a regression
model of predicting the metric’s value as a function of the values
of certain other metrics and constructing a band of acceptable
ranges depending on the prediction and standard error of
forecast of regression model. When the actual data point for the
predicted metric falls outside the band, a violation is triggered.
Our framework encapsulates a regression model in a standard
INI syntax.

3.5 Monitoring

A big challenge in an analytics-based approach is to understand
if the rules are correctly identifying valid performance issues in
a production deployment. We leverage the power of the cloud to
provide a platform where it is possible to centrally visualize how
rules are functioning for production deployed systems in real
time. Our goal is to build a centralized data lake where we can
store all datasets generated by Perf* Analyzer tools, and
corresponding results so that we can continuously monitor and
improve rules. Please refer to Figure 1 for the design. A VM polls
the input data and corresponding results from the Key-Value
store and PostgreSQL database, processes them to collect vital
statistics, and then posts these statistics along with the raw
dataset to a commercial time-series database, such as a
Wavefront instance. For each performance issue generated by
the Perf* Analyzer tool, we generate the following statistics:
(i) The number and type of performance exceptions.
(ii) Specific data points of the input dataset such as aggregating
the IOPS, throughput, and latency.
(iii) Raw input dataset.

(i) and (ii) can be stored as entries in the time-series database.
(iii) can be stored as a JSON blob attached to the entry.
The data can be used in two ways. Wavefront provides us with a
way to visualize all the time series data in a dashboard with a
browser. Section 4.1.5 highlights on how the Wavefront
dashboard helps in improving the rules. Wavefront also has an
option to query the data using the Wavefront Query Language
[8]. In sections 4.1.3 and 4.1.4, we explore how the data can be
used in building some Machine Language (ML) models.

4 Applications

4.1 Virtual SAN (vSAN) Performance
Diagnostics

VMware Virtual SAN (vSAN) powers an industry-leading Hyper-
Converged Infrastructure (HCI) solution with a vSphere-native,
high-performance distributed storage architecture. As with any
distributed system, performance bottlenecks may occur at
multiple choke points. vSAN Performance Diagnostics provides
feedback on how to avoid these choke points and thereby how to
extract the best performance in a given vSAN cluster. vSAN
Performance Diagnostics is available as a feature in VMware
vCenter Appliance (which is VMware’s control and management
framework used for managing VMware products such as vSAN).

It consumes the performance data available via the vSAN
performance service in vSAN Health Service. The data is then
sent to VMware’s internal cloud where a Performance
Diagnostics Cloud Plugin churns through the data and identifies
performance issues. The results are sent back to vCenter and are
then displayed in the performance diagnostics UI. The UI
provides details on performance issues in the VSAN cluster
accompanied with data, analysis, and links to KB articles to
allow users to troubleshoot performance problems on their
vSAN system. An illustration of how this feature works is in
Figure 3. vSAN Performance Diagnostics is a feature available in
VMware vSAN since vSAN 6.6.1.

Figure 3: Illustration of vSAN Performance Diagnostics.
In this section, we will explore how we wrote different kinds of
rules on the cloud plugin that processes vSAN performance data
and briefly explain the utility of monitoring dashboard.

4.1.1. Benchmark oriented feedback
It is very typical of a vSAN customer to run a standard open
source or commercial storage benchmark such as FIO[6] or
HCIBench [5] to evaluate the performance of the system.
However, this is often a stumbling block, because naïve users
usually lack the competence to get the best performance of a
system from a performance benchmark. As a result, users may
associate an underperforming benchmark with a poor
impression of the system.
We have written benchmark specific rules to identify changes
that may be made in a benchmark to get a better performance
from the system. First, we supply the benchmark workload in
the context field of addPerformanceData(). Next, we write rules
specific to our understanding of how the benchmark should
optimally perform. Some examples include:
(i) Tuning the number of VMs to get a better result (Larger
number of VMs results in higher throughput, smaller number of
VMs results in lower latency), (ii) Tuning outstanding IOs issued
by the benchmark (where current value is low). In all such rules,
threshold is computed based on an understanding of how a
benchmark is expected to perform best. As an example, in the
case of HCIBench running on vSAN, we need at least one VM
disk placed on every physical disk for best performance, else the
physical disk remains unused. Therefore, this rule simply checks
if there is disk activity on every physical disk.

4.1.2 System issues identified using domain knowledge:
These rules are derived based on a system expert’s knowledge of
how a vSAN system is expected to perform. As an example,
vSAN relies on a variety kernel threads to do IO processing. If
the CPU utilization of any thread goes to close to 100%, it will

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

155

imply that the thread is running out of CPU, and in that case the
latency of an IO transaction would be higher than expected.
Similarly, if the thread ready time (The time that a thread is
waiting in queue before the scheduler can run it on a physical
CPU) crosses 5%, it indicates starvation, which can lead to higher
I/O latency. In such cases, it is easier to write a rule, because the
meaning of a threshold is clear.

4.1.3 Deriving thresholds for complex issues
 For many performance issues, it is non-trivial to write a simple
rule such as those in 4.1.1 and 4.1.2. In the case of vSAN, an
example of a complex issue is the network dropping packets or a
disk having checksum errors. Determining a threshold for these
kinds of issues is challenging. As an example, a network can
usually tolerate some degree of errors (because of TCP’s
functionality), without affecting the application/ system
performance. We desire to determine a threshold for the packet
drop rate beyond which there is a high impact to system/
application performance.
In such cases, the cloud based approach becomes handy. Since,
we collect data in a central data repository (VMware Wavefront
database in our case) for every invocation of vSAN performance
diagnostics, over time, this data source becomes very rich and
represents samples of thousands of vSAN production clusters
running in our customers datacenters. We use this data offline
for building/training ML models and then add them to
PerfAnalytics Plugin. For example, using this data, we can learn
how the write latency of a vSAN IO transaction changes as a
function of the TCP retransmission rate.
We separately analyze for the two different flavors of vSAN
clusters: (i) The hybrid clusters where the disks are traditional
Hard Disk Drives (HDDs), and (ii) The All-flash clusters where
the disks are flash/ Solid State Drives (SSDs). The cumulative
sizes of the dataset exceed 1 Million data points from over 1000
deployments and are shown in
Table 1.

Type of vSAN
Cluster

Number of unique
systems

Number of
datapoints

Hybrid vSAN 933 1184836

All Flash vSAN 215 354966

Table 1: Characteristics of our data set

We first normalize the data using the Z-score normalization
technique. We then apply the K-means clustering to the
resulting dataset. Figure 4 and Figure 5 show the result of the
analysis for the two flavors of VSAN clusters. The clusters
identified by the K-means clustering algorithm are color coded
as described in Table 2.
The clusters identified by yellow and green regions represent the
scenario we want to detect: where the TCP retransmission rate
actually affects vSAN I/O latency. We identified the lower TCP
transmission threshold as that marked by the green circles. The
values for the two types of clusters are in Table 3. We use these
values as thresholds in our rules to detect when high TCP
retransmission rates could be affecting system performance.

Color Representation
Black Normal region of operation
Orange High Latency Uncorrelated with TCP Retransmit

Rate
Red Extreme case of issues in Orange cluster
Yellow High Latency Correlated with TCP

Retransmission Rate
Green Extreme case of issues in Yellow cluster

Table 2: Definition of color representations after
clustering

4.1.4 Regression to find latency outliers.
While the ideas in 4.1.1, 4.1.2, and 4.1.3 are good, they rely on
human systems knowledge and expertise for design of the rules.
This has a fundamental problem, often systems behave in very
different ways than humans imagine, therefore many
performance issues that happen in the field go unnoticed and
undiagnosed. In this section, we explore how a simple linear
regression can be built to indicate issues where there is
significant increase in latency in the vSAN stack.

Figure 4: K-means clustering result for Hybrid vSAN

Figure 5: K-means clustering result for All-flash vSAN

Type of vSAN Cluster Threshold value
determined from K-
means clustering

Hybrid vSAN 38
All-Flash vSAN 49

Table 3: Results from K-means Clustering

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

156

Fundamentally, if we consider a vSAN system as a blackbox, we
can consider that latency for an I/O transaction can be described
as a function of few metrics that describe the state of the system.
These metrics are: (i) IOs per second (IOPS), (ii) Throughput, (iii)
Outstanding IOs, and (iv) Congestion (A signal used by vSAN to
throttle in incoming IO rate). In this approach, we build a
regression model to predict the behavior of write latency as a
function of the above variables. Concretely, this approach can be
summarized as follows.

(1) We first separate the data points into all-flash and hybrid
vSAN clusters, and normalize the data using K-score
normalization. This is identical to the technique used in Section
4.1.3. Similar to Section 4.1.3, we focus our efforts on write IO,
therefore the IOPS, Throughput, and OIO metrics captured are
specific to write IOs.

(2) Regression Equation: We define the regression equation as
follows:

iii. Lat = B + W୍ୗIOPS + W୮୳୲Tput + Wେ୭୬Cong +

W୍OIO + W
ඥେ୭୬ ඥCong + W√୍√OIO

Where B is a bias and W’s are the weights for the respective
variables. We solve the linear regression for minimizing the
mean square error with a higher order regularization term. We
solve this equation independently for the two classes of vSAN
clusters with the Adam Optimizer available in the Tensorflow
library.

(3) Standard Error of Forecast: After the regression model is
solved, we derive the standard error of forecast using standard
statistical techniques.

(4) Predicting latency outliers: Once the regression is solved,
we employ it as follows. For any test dataset, we normalize the
data using the same values for the K-score normalization defined
in Step (1). Then, we calculate the predicted value of write
latency using the solved equation in Step (2). We then measure
the actual value of write latency relative to the predicted value. If
the actual value is outside the standard error of forecast, then the
data point is considered an outlier and an issue is flagged.
We evaluate the accuracy of the regression model as follows. We
divide the 355 K data points for All-Flash clusters described in
Table 1 into three buckets:

iv. Bucket 1: Write Latency lower than 10ms. Such points
are definitely not abnormal as vSAN write latency is
expected to be in this range.

v. Bucket 2: Write Latency greater than 100ms. Such
points are definitely outliers.

vi. Bucket 3. All other points with IOPS > 100 (To avoid
idle clusters). These points are hardest to classify.

We first run the regression model on points in Buckets 1 and 2.
Since these points are already classified, it is easy to compare
whether regression yields a correct result. The rate of false
positives (defined as the percentage of normal data points being
tagged as anomalies) and false negatives (defined as percentage
of anomaly points which were missed by the algorithm) is
described in Table 4.

 Bucket 1 + Bucket 2

False Positives 0.68 %
False Negatives 21.96 %

Table 4: Rate of False Positives and False Negatives from
Regression Model for All-Flash vSAN clusters.

We then pick 200 random points in bucket 3 and manually
classify them as normal (126 points) or abnormal (74 points).
This is a good mix of normal and anomalous points, and
therefore serves as a healthy sample for evaluation of the
regression model as a classification technique. After applying the
regression model on these 200 points, 150 were classified as
normal, while 50 were classified as anomalies. Out of these 50
data points, 42 were true anomalies, while 8 were false positives.
Using these numbers, Table 5 shows the calculated precision,
recall, and F-score of the regression model.

Score Bucket 3

Precision 84%

Recall 57%

F-Score 68%
Table 5: Precision, Recall, and F-Scores for Regression

We were impressed by the low rate of false positives for Bucket
1 +. Bucket 2. Similarly, in Bucket 3 where the hardest challenge
lies, the precision stands at 84%. This gives us confidence that
when an issue is raised for anomalous behavior, it is indeed an
issue. At the same time the rate of false negatives for Bucket 1 +
Bucket 2, and the lower recall score for Bucket 3 implies that
there is room to improve, since there are many performance
issues that go undetected.
The regression model also gave us new intuitions on the way
vSAN systems behave. As an example, for hybrid vSAN, the
dominant weight turns out to be congestion. On the other hand,
for an all-flash vSAN, the dominant weight is Outstanding IOs.
This can be explained from a systems point of view as follows.
vSAN is a two-tiered storage architecture, where writes IOs are
first written to a cache tier. Thereafter, a background thread
known as the elevator, moves the data from the cache tier to the
capacity tier and makes it persistent over there. This process is
formally defined as de-staging. In a hybrid vSAN, the rate of de-
staging is much lower (because the capacity disks are spinning
magnetic disks). Therefore, the vSAN system raises congestion
when subjected to heavy load, to throttle the incoming IO Rate.
This throttling mechanism leads to latency buildup due to
queuing at the upper layers. Hence congestion is the dominant
contributor to latency in a hybrid vSAN. However, in an all-flash
vSAN, the de-staging rate is much faster owing to SSDs in the
capacity tier. Therefore, congestion is hardly raised, instead the
dominant factor to latency becomes the number of outstanding
requests, which raise the possibility of longer wait times on
queues before the IO is formally processed.
Deploying vSAN Performance Diagnostics also gave us insights
to hidden bugs in our software. VMware products such as vSAN
are deployed on a very large range of hardware and mix of
compute, memory, and storage specifications. Hence, there is a
potential of software bugs causing performance issues in some
systems, on which the software has not been internally tested

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

157

yet. Over a period of a year, we identified five such bugs, and
have been able to quickly fix them in the next version of our
product.

4.1.5 Monitoring withWavefront
In Section 3.5, we described how the input data and results are
posted to Wavefront. Figure 6 shows a small snapshot of the
Wavefront dashboard. Each dot on the dashboard shows a
specific performance issue generated, color code by the uuid of
the environment it is generated on. The Y-axis shows the
number of instances of performance issues. This dashboard can
be useful to an administrator in many ways. As an example, if a
specific exception is occurring in almost all deployments in
quick successions, the rule may be yielding high false negatives,
and we may need to modify such rules with different thresholds.
It also helps us in understanding importance of a rule, by using
some simple analysis we can plot a histogram of the distribution
of exceptions under different feature categories. For example,
we detected that benchmarking specific rules are frequently
triggered, which led us to spend more energy on some of the
benchmark specific rules.

Figure 6: Wavefront Dashboard View

5 Challenges

While sending performance and systems data to the cloud brings
a lot of advantages, it also exposes its own challenges. We
document some of these challenges in this section:
(1) Connectivity to the Cloud: In many cases, data centers

are behind a firewall with no connectivity to the Internet,
mainly for security reasons. In such a case, the Cloud
Request Manager will not work. The solution is to deploy a
private cloud within the customer’s private data center
where the Cloud Plugin can work; and ship the rules to the
Cloud Plugin in an offline mode. This is a work in progress
for us and is not available yet.

(2) Privacy: In many cases, a customer is not comfortable to
send systems data to a cloud because of privacy issues. As
an example, in certain cases, the names of systems may be
needed to be confidential. This is not a big problem for our

framework, because we need time series data for different
entities and metrics. Anything else can be obfuscated.

In VMware, we have an agreement known as CEIP [8],
which defines what information VMware can collect from
its customers and what not. It is an opt-in agreement,
customers are encouraged to opt-in, but this is not enforced.
vSAN Performance Diagnostics respects CEIP; however, if
CEIP is disabled, the vSAN Performance Diagnostics would
simply not work.

(3) Cost: While the volume of zipped performance data is small
(of the order for a few Mbytes), we recognize that in certain
cases (as an example when the time duration requested for
performance analysis is very long), the volume of the data
can be of the order of 100’s of MBytes. In such a case, there
is a cost to send this volume of data over the network. As
an example, the volume of traffic may hinder another
critical network traffic. As per our opinion, this is a
necessary and reasonable cost to pay for such tools and
should not be an impediment.

6 Conclusion

In this paper, we document a framework of supporting cloud-
based performance analysis and debugging tools. We
demonstrate how these tools can be developed and show some
interesting use cases where they have shown promise.

REFERENCES
 [1] VSAN Performance Diagnostics Knowledge Base at

https://kb.vmware.com/s/article/2148770

[2] Nimble Storage Infosight Predictive Analytics:
https://www.adn.de/fileadmin/user_upload/Hersteller/Nimble/Datenblaetter/n
imblestorage-ds-infosight.pdf

[3] Nutanix: Improving customer experience with Analytics:
https://www.nutanix.com/2017/04/20/improving-nutanix-customer-
experience-analytics/

[4] “Tracking down the Villains: Outlier Detection at Netflix”, at
https://medium.com/netflix-techblog/tracking-down-the-villains-outlier-
detection-at-netflix-40360b31732

[5] HCIBench at https://labs.vmware.com/flings/hcibench

[6] Flexible I/O Tester by Jen Axboe at https://github.com/axboe/fio

[7] Wang, C., Kavulya, S.P., Tan, J., Hu, L., Kutare, M., Kasick, M., Schwan, K.,
Narasimhan, P. and Gandhi, R., “ Performance troubleshooting in data centers:
an annotated bibliography?” ACM SIGOPS Operating Systems Review, 47(3),
pp.50-62.

[8] Wavefront Query Language (WQL) at
https://docs.wavefront.com/query_language_reference.html

[9] Marvasti, M.A., Poghosyan, A.V., Harutyunyan, A.N. and Grigoryan, N., 2014.
An Enterprise Dynamic Thresholding System. In ICAC (pp. 129-135)

[10] Sivasubramanian, S., 2012, May. Amazon dynamoDB: a seamlessly scalable
non-relational database service. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data (pp. 729-730). ACM.

[11] Amazon Relational Database Service (RDS) at https://aws.amazon.com/rds/

Session 7: Cloud Computing II ICPE ’19, April 7–11, 2019, Mumbai, India

158

