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ABSTRACT 

Traditionally, performance analysis, debugging, triaging, 
troubleshooting, and optimization are left in the hands of 
performance experts. The main rationale behind this is that 
performance engineering is considered a specialized domain 
expertise, and therefore left to the trained hands of experts. 
However, this approach requires human manpower to be put 
behind every performance escalation. This is no longer future 
proof in enterprise environments because of the following 
reasons:  

(i) Enterprise customers now expect much quicker performance 
troubleshooting, particularly in cloud platforms as Software As 
A Service (SaaS) offerings where the billing is subscription 
based, (ii) As products grow more distributed and complex, the 
number of performance metrics required to troubleshoot a 
performance problem implodes, making it very time consuming 
for human intervention and analysis, and (iii) Our past 
experiences show that while many customers land up on similar 
performance issues, the human effort to troubleshoot each of 
these performance issues in a different infrastructural 
environment is non-trivial. We believe that data analytics 
platforms that can quickly mine through performance data and 
point out potential. bottlenecks offer a good solution for non-
domain experts to debug and solve a performance issue. In this 
work, we showcase a cloud based performance data analytics 
framework which can be leveraged to build tools which analyze 
and root-cause performance issues in enterprise systems. We 
describe the architecture of this framework which consists of: (i) 
A cloud service (which we term as a plugin), (ii) Supporting 
libraries that may be used to interact with this plugin from end-
systems such as computer servers or appliance Virtual Machines 
(VMs), and (iii) A solution to monitor and analyze the results 
delivered by the plugin. We demonstrate how this platform can 
be used to develop different performance analyses and 

debugging tools. We provide one example of a tool that we have 
built on top of this framework and released: VMware Virtual 
SAN (vSAN) performance diagnostics. 

We specifically discuss how collecting performance data in the 
cloud from over a thousand deployments, and then analyzing to 
detect performance issues, helped us write rules that can easily 
detect similar performance issues. Finally, we discuss a 
framework for monitoring the performance of the rules and 
improving them. 
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1  Introduction 

1.1 Current state of the art 

There exists a wide variety of research literature describing 
techniques to detect, triage, and fix performance issues. [7] has a 
comprehensive summary of the state of art of different 
techniques and software packages for such efforts. However, the 
main challenge is to identify the right technique to use for the 
type of performance issue under investigation. Hence the art of 
investigating performance issues is limited to a few individuals 
who work in a highly decentralized manner to tackle the 
problem at hand. 
On the other hand, performing online data analysis in a 
centralized environment has been explored by numerous service 
portals such as Netflix[4]. However, the same approaches do not 
work in enterprise data centers because of several reasons. First, 
businesses such as Netflix, Facebook, and Google have the means 
and the scale to perform data analytics on ten thousand of 
production servers. More importantly, all these production 
servers are of similar hardware and configuration, and therefore 
once a technique is identified, it can be used at scale. In contrast, 
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most enterprise deployments and private data centers are small 
silos of server deployments. Hardware configurations vary 
significantly across enterprises. Therefore, there cannot be a one 
algorithm or one solution that can work in all cases. Hence 
troubleshooting performance issues at an enterprise deployment 
becomes an exercise for a domain expert to use a variety of 
performance monitoring tools to arrive at a logical conclusion.  
However, in recent years, the pervasiveness of the cloud, and 
connectivity of systems to it, has opened many opportunities to 
improve the quality of support that enterprise companies offer to 
their customers. Many enterprise companies have taken 
advantage of such frameworks to provide faster resolution of 
bugs such as performance issues to customers. Prime examples 
of such efforts are Nimble Storage, which has developed its 
product called Infosight Predictive Analytics [2] and Nutanix[3] 
which delivers infrastructure analytics as part of its PULSE 
product.  
Our approach shares the same goals as Nimble and Nutanix, but 
with the enhanced goal of being a fully cloud based solution. We 
believe our solution is novel because it defines an approach to 
send data from heterogenous end systems deployed at vastly 
different datacenters to a centralized cloud where the data can be 
processed in real time. Being completely cloud delivered buys us 
three significant advantages:  
(i) Big Data: We can correlate datasets coming in from a large 
number of diverse product deployments at a centralized point 
and thereby provide richer analysis.  
(ii) Rapid Improvements: We can provide a rapid churn of 
improvements in terms of the logic behind performance analysis, 
independent of VMware’s product release cycle. As an example, 
once we have confidence in our ability to diagnose a new 
category of performance issue, we just need to update our code 
and catalog of issues, both reside in the cloud.   
(iii) Centralized monitoring: We provide an approach to monitor 
how different rules perform on different heterogenous systems. 
This ability gives us the game changing ability to design new 
analytic solutions.  

1.2 Our contributions  

This paper is organized as follows. In Section 2, we describe the 
overall architecture of the Cloud Performance Analytics 
Framework. In Section 3, we deep dive into individual 
components. Section 4 showcases how this framework was used 
to build vSAN performance diagnostics, which is a shipped 
performance debugging platform for vSAN. We specifically 
discuss how having performance data made available in a central 
place enabled us to write rules for triaging common performance 
issues. In Section 5, we describe some of the challenges we faced 
in designing this framework. Section 6 concludes the paper.  

2  Architecture  

Figure 1 describes how a sample performance analyser tool 
(Perf*Analyzer) (drawn with blue box) works using the Cloud 
Performance Analytics framework. The diagram is color coded 
as follows. Two cloud services color coded in brown are used by 
our solution: (i) A Key-Value datastore to store results of a 
transaction (An example of which is Amazon DynamoDB[10]) 

and (ii) A SQL database to store detailed data and results (An 
example of which is Amazon RDS[11]) for PostGreSQL. A 
monitoring solution such as VMware Wavefront[12] can be used 
to visualize how the Perf*Analyzer tools work in run time.  
 

 
  

Figure 1: Overall architecture 
 
Let us first outline the high-level steps a user must follow to use 
this framework.  
Develop the Perf*Analyzer tool which provides the user 
interface, collects the necessary performance data, and interacts 
with Cloud Performance Analytics library.   
Write rules which can process the performance data. The user 
may write simple rules which check for threshold violations. The 
user can then combine multiple violations and define when a 
performance exception is triggered.   
If necessary, write a custom exception analyzer to implement 
specific semantics in analyzing performance data which might 
be required for this tool. The custom exception analyzer is 
required when simple rules are not sufficient to describe 
performance exceptions, and a more detailed analysis is 
required. The plugin allows the user to write this analysis in a 
programmable way in python syntax, while defining the libraries 
to support defining the semantics. Refer 
CustomExceptionAnalyzer in Section 3.4 under ExceptionRule.  
If necessary, add a pre-trained Machine Learning (ML) Model or 
linear/ logistic regression-based rule. Our library allows an easy 
way to load pretrained ML models such as neural networks and 
run inferences on performance data to generate performance 
issues, which may not have been easily captured by threshold 
based rules or programmatic rules.  
If necessary, fine tune rules, such as thresholds, after monitoring 
the performance exceptions generated on a monitoring solution 
such as Wavefront.  
Our goal of building this platform is that a developer should be 
easily able to write, deploy, and release his own performance 
analyzer tool, with the help of the framework that the library 
provides.  

3   Detailed Description 

3.1 Workflow 
The user endpoint of this framework is at the perf analyzer. The 
user invokes the perf analyzer with some configurable input 
parameters such as the duration of analysis desired. The perf 
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analyzer then collects the performance data for the desired 
duration and feeds it to the cloud perf analytics library. The 
cloud perf analytics library first marshals the data into a 
common JSON format and sends it across to the Cloud along 
with a transactionId, and then waits for the analysis. The Cloud 
Plugin contains the meat of the analyzer logic, and processes the 
data based on some defined rules or ML models. Once the 
analysis is complete, the result is stored in the Key-Value 
datastore for fast retrieval, while the payload is stored in a SQL 
database (DB). The cloud perf analytics library now recovers the 
result using the transactionId. It then un-marshals the result into 
a defined syntax that the perf analyzer can understand. The perf 
analyzer then does the final job of presenting the result to the 
user with a great user interface. 
A monitoring Virtual Machine (VM) picks up data from both the 
Key-Value datastore and the DB, and then streams this data to a 
monitoring solution. The data can now be visualized in a 
dashboard by an administrator, who can infer if the analytics 
rules are performing as desired. The data is invaluable to 
improve the quality of data analysis. 
 

3.2 Cloud Perf Analytics Library 
This library provides set of APIs that the perf analyzer can use to 
communicate to the Cloud Plugin which contains the crux of the 
code for the performance data analysis. As part of its workflow, 
the APIs provides interfaces to: (i) Take raw performance data as 
an input, (ii) Convert it into a common format as expected by the 
Cloud Plugin, and (iii) Send the data to the Cloud, wait for the 
analyzed results to be available and then provide the same to its 
calling entity.  A diagram of how this library is designed is in 
Figure 2. 
 

 
 
Figure 2: Components of the Cloud Perf Analytics Library 
 
3.2.1 API Interface  
The Cloud Perf Analytics Library provides a simple set of python 
APIs which can be used by any module/tool (or Perf*Analyzer) 
by simply importing library and calling the appropriate 
method/API as per the requirement. In response to the call, the 
API returns the exceptions (if there is any abnormality in the 
data as per the evaluated rules). Each exception will have the 
exception name, and the component name with associated data 
set (which resulted in violation of rules). The same can be 
consumed by the Perf*Analyzer.  

Here are the definitions for the APIs provided:  
# Add performance data along with a data convertor  
def addPerformanceData(self, context, data, dataConvertor)  

@param context: Here, context in general defines the set of 
information which is important for analysis, besides the input 
data. It is in the form of a dictionary containing background 
information that may be necessary for performance analysis, 
such as, the type of system(s), the number of machines in the 
cluster, and clock frequency of machines stored as key value 
pairs.  
@param data: This is the input performance data which needs to 
be analyzed.  
@param dataConvertor: Routine to convert the performance 
data into standard dataformat that cloud plugin can digest.   
 
# Invoke Cloud Plugin to analyze performance  
def analyzePerformance(self, isTest=True)  
After the input performance data gets ready as per the required 
format and input context gets embedded into that, then data is 
sent to cloud environment for analysis.  
@param isTest If set to True, invokes a test environment instead 
of production environment  
@return dictionary with keys as performance issues and values 
of supporting data  
 
3.2.2 Format Convertor  
As discussed in the above (API Interface) section, the input 
performance data needs to be converted into a predefined JSON 
format on the basis of which generic rules can be written, along 
with context embedded into that data.   
Hence, this routine is responsible for converting the input data 
and context into the required standard JSON format that the 
Cloud Analytics Plugin can understand. At a high level, the 
standard JSON template looks like the following:  
{  
     <Header containing details about type of performance 
analysis and context as Key Value entires. e.g.>  
     “Plugin-Type”: “performance-analysis”  
     “TransactionId”: “<uuid>”  
     “Query Start Timestamp”: <ANSI time format>  
     “Query End Timestamp”: <ANSI time format>  
 }  
{  
     <Time Series data for an entity for which performance data is 
available. e.g.,>  
     “entityId”: “pcpu-xx-utilization”  
     “label”: “Used %”  
     “data: {  
           “timestamps”: [<Times in ANSI time format>]  
           “values”: [<List of floating point data>]  
    }     
}  
 
3.2.3 Request Manager  
The Request Manager is responsible for sending the request to 
Cloud Analytics Plugin for analysis and retrieving the analyzed 
response for the same. After sending the request, it validates the 
sending response. It then waits for the response (for configurable 
timeout duration) from Cloud Plugin by polling the key-value 
store using the transactionId (which was added while sending 
the request) and then returns the response to the calling entity. 
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3.3 Cloud Plugin   

The role of the Cloud Plugin is to process the data that is sent by 
the Cloud Perf Analytics library and evaluate if there are any 
performance issues. At a high level, the plugin evaluates the data 
for multiple rules, which are written by the user. We have 
written a performance diagnostics library that can process time-
series data. 

3.4 Performance Diagnostics Library  

The Performance Diagnostics Library (PDL) is a framework that 
allows a user to write rules to evaluate and analyze time-series 
data, and then programmatically define how performance issues 
may be raised when a combination of rules is violated. Our goal 
is to release this library as open source in conjunction with 
publication of this paper.  PDL allows a user to construct rules in 
the following way.  
Violation Rule  
A violation rule is a simple way to express if a specific data set 
violates a specific threshold. We express a violation rule as a 
dictionary in python, which is saved in JSON format. An 
example of a violation rule is as follows:  
{  
    ‘name’: ‘cache-hit-check’,  
    ‘entity’: ‘disk’,  
    ‘metric’: ‘cacheHitRate’,  
    ‘threshold’: 80,  
    ‘thresholdType’: ‘lower’,  
    ‘minTimesForThresh’: 5  
}  
This rule implies that a violation is seen anytime the 
cacheHitRate (metric) of any disk (entity) is lower 
(thresholdType) than 80% (threshold) at least for 5 
(minTimesForThresh) consecutive intervals. When this rule is 
processed against a dataset, it will flag all those disk (s) (entities) 
for which the cache hit rate falls below 80% at any instance of 
time. This is an example of a very simple rule; in addition, the 
PDL offers the following constructs to evaluate data in more 
complex ways.  
Statistical operators on metrics: Instead of evaluating individual 
data points for a metric, one can express an operator on all 
entities for a metric. As an example, find out the (moving) 
average read latency, (moving) 95 percent latency, standard 
deviation of latency, etc., across all disks, and compare with 
thresholds defined for these data points.  
Aggregator operator on different metrics: This operator allows 
one to operate on two different metrics to create a new one. As 
an example, one can divide throughput with IOs per second 
(IOPS) to construct IO size, and compare that against a threshold.  
Aggregator operator on different entities. This operator is very 
useful for distributed systems such as VMware Virtual SAN 
(vSAN) which have several layers of software/hardware from 
which metrics and data points are derived. As an example, one 
can divide the read latency seen at the vSAN host-domclient 
layer (software layer which interacts with the Virtual SCSI 
(vSCSI) layer with the read latency seen at the disk layer. This 
result gives the latency increase (inflation) in the vSAN stack. A 
similar operand can be used to determine IO inflation in the 

vSAN stack. These calculated data points can now be compared 
against a threshold in the same manner as any other violation 
rule.  

Exception Rule  
An exception rule defines the conditions during which a 
performance exception is triggered. The exception rule is 
triggered when one or multiple violation rules flag entities that 
have violated performance expectations. An exception rule can 
be defined in two different ways.  

i. Mapped Exceptions: For simplicity, we defined a 1-1 
mapping of an exception rule with a violation rule, that 
is the violation directly triggers an exception. We 
maintain this in a RuleToExMapper file. So, writing a 
new rule and mapping it to corresponding new 
exception is simple. Hence extending the rule-set does 
not require any in-depth knowledge of framework for 
any user.  

 
ii. Custom Exception Analyzer: This allows one to 

combine multiple violations (with different semantics) 
and support implementation of flowcharts using them 
to trigger exceptions. The custom exception analyzer 
framework provides a lot more flexibility in terms of 
combining various rules as per the runtime dynamics 
and implementing a complete flow chart using this 
support.  

PDL provides an ExceptionAnalyzer class which defines all the 
standard APIs that any custom exception analyzer would need. 
APIs include (i) Methods to which Violation Rules are not met 
(with their names), (ii) Methods to apply logical conditions on 
violated rules (e.g., performing logical AND on all rules in list. A 
new custom analyzer can easily be added by extending 
ExceptionAnalyzer, and this custom analyzer gets automatically 
registered with the Cloud Analytics Plugin and invoked when 
data of the corresponding performance analysis type is received.  

Dynamic thresholds and regression:  
A key limitation of the violation rule is that a threshold needs to 
be defined to trigger a violation. In some cases, such as a cache 
hit rate or CPU utilization, thresholds can be intuitive based on 
systems knowledge and experience. In some other cases, a 
threshold can be derived by gathering a lot of data points and 
then applying clustering algorithms, such as the one described in 
Section 4.1.3. However, in many cases, it is near impossible to 
define a threshold value that uniformly applies to all kinds of 
systems, hardware, and software that a generic performance 
analyzer needs to work on. One of the main advantages of a 
cloud framework is that performance data is centralized at one 
place, and therefore readily available for many kinds of analysis 
including building data driven. PDL offers two different 
techniques to eliminate thresholds.  

1) Dynamic thresholds: With dynamic thresholds, a system 
learns the threshold by analyzing data over a period of time, and 
then uses this prediction to trigger violations. In general, 
dynamic threshold techniques [9] need a large amount of data 
along with a human input to guide the approach in the correct 
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direction. PDL supports this technique where the threshold can 
be defined as dynamic, instead of assigning a value to it.  

2) Linear Regression Analysis: In this technique, PDL 
identifies outliers of a certain metric by building a regression 
model of predicting the metric’s value as a function of the values 
of certain other metrics and constructing a band of acceptable 
ranges depending on the prediction and standard error of 
forecast of regression model. When the actual data point for the 
predicted metric falls outside the band, a violation is triggered. 
Our framework encapsulates a regression model in a standard 
INI syntax.   

3.5   Monitoring   

A big challenge in an analytics-based approach is to understand 
if the rules are correctly identifying valid performance issues in 
a production deployment. We leverage the power of the cloud to 
provide a platform where it is possible to centrally visualize how 
rules are functioning for production deployed systems in real 
time. Our goal is to build a centralized data lake where we can 
store all datasets generated by Perf* Analyzer tools, and 
corresponding results so that we can continuously monitor and 
improve rules. Please refer to Figure 1 for the design. A VM polls 
the input data and corresponding results from the Key-Value 
store and  PostgreSQL database, processes them to collect vital 
statistics, and then posts these statistics along with the raw 
dataset to a commercial time-series database, such as a 
Wavefront instance. For each performance issue generated by 
the Perf* Analyzer tool, we generate the following statistics:    
(i) The number and type of performance exceptions.  
(ii) Specific data points of the input dataset such as aggregating 
the IOPS, throughput, and latency.   
(iii) Raw input dataset.  
 
(i) and (ii) can be stored as entries in the time-series database. 
(iii) can be stored as a JSON blob attached to the entry.  
The data can be used in two ways. Wavefront provides us with a 
way to visualize all the time series data in a dashboard with a 
browser.  Section 4.1.5 highlights on how the Wavefront 
dashboard helps in improving the rules. Wavefront also has an 
option to query the data using the Wavefront Query Language 
[8]. In sections 4.1.3 and 4.1.4, we explore how the data can be 
used in building some Machine Language (ML) models.   

4   Applications 

4.1 Virtual SAN (vSAN) Performance 
Diagnostics 

VMware Virtual SAN (vSAN) powers an industry-leading Hyper-
Converged Infrastructure (HCI) solution with a vSphere-native, 
high-performance distributed storage architecture. As with any 
distributed system, performance bottlenecks may occur at 
multiple choke points. vSAN Performance Diagnostics provides 
feedback on how to avoid these choke points and thereby how to 
extract the best performance in a given vSAN cluster. vSAN 
Performance Diagnostics is available as a feature in VMware 
vCenter Appliance (which is VMware’s control and management 
framework used for managing VMware products such as vSAN). 

It consumes the performance data available via the vSAN 
performance service in vSAN Health Service. The data is then 
sent to VMware’s internal cloud where a Performance 
Diagnostics Cloud Plugin churns through the data and identifies 
performance issues. The results are sent back to vCenter and are 
then displayed in the performance diagnostics UI. The UI 
provides details on performance issues in the VSAN cluster 
accompanied with data, analysis, and links to KB articles to 
allow users to troubleshoot performance problems on their 
vSAN system. An illustration of how this feature works is in 
Figure 3. vSAN Performance Diagnostics is a feature available in 
VMware vSAN since vSAN 6.6.1. 
 

 
Figure 3: Illustration of vSAN Performance Diagnostics. 
In this section, we will explore how we wrote different kinds of 
rules on the cloud plugin that processes vSAN performance data 
and briefly explain the utility of monitoring dashboard. 
 
4.1.1. Benchmark oriented feedback 
It is very typical of a vSAN customer to run a standard open 
source or commercial storage benchmark such as FIO[6] or 
HCIBench [5] to evaluate the performance of the system. 
However, this is often a stumbling block, because naïve users 
usually lack the competence to get the best performance of a 
system from a performance benchmark. As a result, users may 
associate an underperforming benchmark with a poor 
impression of the system. 
We have written benchmark specific rules to identify changes 
that may be made in a benchmark to get a better performance 
from the system. First, we supply the benchmark workload in 
the context field of addPerformanceData(). Next, we write rules 
specific to our understanding of how the benchmark should 
optimally perform. Some examples include:  
(i) Tuning the number of VMs to get a better result (Larger 
number of VMs results in higher throughput, smaller number of 
VMs results in lower latency), (ii) Tuning outstanding IOs issued 
by the benchmark (where current value is low). In all such rules, 
threshold is computed based on an understanding of how a 
benchmark is expected to perform best. As an example, in the 
case of HCIBench running on vSAN, we need at least one VM 
disk placed on every physical disk for best performance, else the 
physical disk remains unused. Therefore, this rule simply checks 
if there is disk activity on every physical disk. 

4.1.2 System issues identified using domain knowledge: 
These rules are derived based on a system expert’s knowledge of 
how a vSAN system is expected to perform. As an example, 
vSAN relies on a variety kernel threads to do IO processing. If 
the CPU utilization of any thread goes to close to 100%, it will 
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imply that the thread is running out of CPU, and in that case the 
latency of an IO transaction would be higher than expected. 
Similarly, if the thread ready time (The time that a thread is 
waiting in queue before the scheduler can run it on a physical 
CPU) crosses 5%, it indicates starvation, which can lead to higher 
I/O latency. In such cases, it is easier to write a rule, because the 
meaning of a threshold is clear.  

4.1.3 Deriving thresholds for complex issues 
 For many performance issues, it is non-trivial to write a simple 
rule such as those in 4.1.1 and 4.1.2. In the case of vSAN, an 
example of a complex issue is the network dropping packets or a 
disk having checksum errors. Determining a threshold for these 
kinds of issues is challenging. As an example, a network can 
usually tolerate some degree of errors (because of TCP’s 
functionality), without affecting the application/ system 
performance. We desire to determine a threshold for the packet 
drop rate beyond which there is a high impact to system/ 
application performance.  
In such cases, the cloud based approach becomes handy. Since, 
we collect data in a central data repository (VMware Wavefront 
database in our case) for every invocation of vSAN performance 
diagnostics, over time, this data source becomes very rich and 
represents samples of thousands of vSAN production clusters 
running in our customers datacenters. We use this data offline 
for building/training ML models and then add them to 
PerfAnalytics Plugin. For example, using this data, we can learn 
how the write latency of a vSAN IO transaction changes as a 
function of the TCP retransmission rate. 
We separately analyze for the two different flavors of vSAN 
clusters: (i) The hybrid clusters where the disks are traditional 
Hard Disk Drives (HDDs), and (ii) The All-flash clusters where 
the disks are flash/ Solid State Drives (SSDs). The cumulative 
sizes of the dataset exceed 1 Million data points from over 1000 
deployments and are shown in  
Table 1. 

Type of vSAN 
Cluster 

Number of unique 
systems 

Number of 
datapoints 

Hybrid vSAN 933 1184836 
   
All Flash vSAN 215 354966 

Table 1: Characteristics of our data set 

We first normalize the data using the Z-score normalization 
technique. We then apply the K-means clustering to the 
resulting dataset. Figure 4 and Figure 5 show the result of the 
analysis for the two flavors of VSAN clusters. The clusters 
identified by the K-means clustering algorithm are color coded 
as described in Table 2. 
The clusters identified by yellow and green regions represent the 
scenario we want to detect: where the TCP retransmission rate 
actually affects vSAN I/O latency. We identified the lower TCP 
transmission threshold as that marked by the green circles. The 
values for the two types of clusters are in Table 3. We use these 
values as thresholds in our rules to detect when high TCP 
retransmission rates could be affecting system performance. 

 

Color Representation 
Black Normal region of operation 
Orange High Latency Uncorrelated with TCP Retransmit 

Rate 
Red Extreme case of issues in Orange cluster 
Yellow High Latency Correlated with TCP 

Retransmission Rate 
Green Extreme case of issues in Yellow cluster 

Table 2: Definition of color representations after 
clustering 

4.1.4 Regression to find latency outliers. 
While the ideas in 4.1.1, 4.1.2, and 4.1.3 are good, they rely on 
human systems knowledge and expertise for design of the rules. 
This has a fundamental problem, often systems behave in very 
different ways than humans imagine, therefore many 
performance issues that happen in the field go unnoticed and 
undiagnosed. In this section, we explore how a simple linear 
regression can be built to indicate issues where there is 
significant increase in latency in the vSAN stack.  
 

 
Figure 4: K-means clustering result for Hybrid vSAN 
 

 
Figure 5: K-means clustering result for All-flash vSAN 
 

Type of vSAN Cluster Threshold value 
determined from K-
means clustering 

Hybrid vSAN 38 
All-Flash vSAN 49 

Table 3: Results from K-means Clustering 
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Fundamentally, if we consider a vSAN system as a blackbox, we 
can consider that latency for an I/O transaction can be described 
as a function of few metrics that describe the state of the system. 
These metrics are: (i) IOs per second (IOPS), (ii) Throughput, (iii) 
Outstanding IOs, and (iv) Congestion (A signal used by vSAN to 
throttle in incoming IO rate). In this approach, we build a 
regression model to predict the behavior of write latency as a 
function of the above variables. Concretely, this approach can be 
summarized as follows. 

(1) We first separate the data points into all-flash and hybrid 
vSAN clusters, and normalize the data using K-score 
normalization. This is identical to the technique used in Section 
4.1.3. Similar to Section 4.1.3, we focus our efforts on write IO, 
therefore the IOPS, Throughput, and OIO metrics captured are 
specific to write IOs. 

(2) Regression Equation: We define the regression equation as 
follows: 

iii. Lat = B +  W୍୓୔ୗIOPS +  W୘୮୳୲Tput +  Wେ୭୬୥Cong +

W୓୍୓OIO +  W
ඥେ୭୬୥ ඥCong + W√୓୍୓√OIO  

Where B is a bias and W’s are the weights for the respective 
variables. We solve the linear regression for minimizing the 
mean square error with a higher order regularization term. We 
solve this equation independently for the two classes of vSAN 
clusters with the Adam Optimizer available in the Tensorflow 
library. 

(3) Standard Error of Forecast: After the regression model is 
solved, we derive the standard error of forecast using standard 
statistical techniques. 

(4) Predicting latency outliers: Once the regression is solved, 
we employ it as follows. For any test dataset, we normalize the 
data using the same values for the K-score normalization defined 
in Step (1). Then, we calculate the predicted value of write 
latency using the solved equation in Step (2). We then measure 
the actual value of write latency relative to the predicted value. If 
the actual value is outside the standard error of forecast, then the 
data point is considered an outlier and an issue is flagged. 
We evaluate the accuracy of the regression model as follows. We 
divide the 355 K data points for All-Flash clusters described in 
Table 1 into three buckets: 

iv. Bucket 1: Write Latency lower than 10ms. Such points 
are definitely not abnormal as vSAN write latency is 
expected to be in this range. 

v. Bucket 2: Write Latency greater than 100ms. Such 
points are definitely outliers. 

vi. Bucket 3. All other points with IOPS > 100 (To avoid 
idle clusters). These points are hardest to classify. 

We first run the regression model on points in Buckets 1 and 2. 
Since these points are already classified, it is easy to compare 
whether regression yields a correct result. The rate of false 
positives (defined as the percentage of normal data points being 
tagged as anomalies) and false negatives (defined as percentage 
of anomaly points which were missed by the algorithm) is 
described in Table 4.  

 Bucket 1 + Bucket 2 

False Positives 0.68 % 
False Negatives 21.96 % 

Table 4: Rate of False Positives and False Negatives from 
Regression Model for All-Flash vSAN clusters. 

We then pick 200 random points in bucket 3 and manually 
classify them as normal (126 points) or abnormal (74 points). 
This is a good mix of normal and anomalous points, and 
therefore serves as a healthy sample for evaluation of the 
regression model as a classification technique. After applying the 
regression model on these 200 points, 150 were classified as 
normal, while 50 were classified as anomalies. Out of these 50 
data points, 42 were true anomalies, while 8 were false positives. 
Using these numbers, Table 5 shows the calculated precision, 
recall, and F-score of the regression model. 

Score Bucket 3 

Precision 84% 

Recall 57% 

F-Score 68% 
Table 5: Precision, Recall, and F-Scores for Regression 

We were impressed by the low rate of false positives for Bucket 
1 +. Bucket 2. Similarly, in Bucket 3 where the hardest challenge 
lies, the precision stands at 84%. This gives us confidence that 
when an issue is raised for anomalous behavior, it is indeed an 
issue. At the same time the rate of false negatives for Bucket 1 + 
Bucket 2, and the lower recall score for Bucket 3 implies that 
there is room to improve, since there are many performance 
issues that go undetected.  
The regression model also gave us new intuitions on the way 
vSAN systems behave. As an example, for hybrid vSAN, the 
dominant weight turns out to be congestion. On the other hand, 
for an all-flash vSAN, the dominant weight is Outstanding IOs. 
This can be explained from a systems point of view as follows. 
vSAN is a two-tiered storage architecture, where writes IOs are 
first written to a cache tier. Thereafter, a background thread 
known as the elevator, moves the data from the cache tier to the 
capacity tier and makes it persistent over there. This process is 
formally defined as de-staging. In a hybrid vSAN, the rate of de-
staging is much lower (because the capacity disks are spinning 
magnetic disks). Therefore, the vSAN system raises congestion 
when subjected to heavy load, to throttle the incoming IO Rate. 
This throttling mechanism leads to latency buildup due to 
queuing at the upper layers. Hence congestion is the dominant 
contributor to latency in a hybrid vSAN. However, in an all-flash 
vSAN, the de-staging rate is much faster owing to SSDs in the 
capacity tier. Therefore, congestion is hardly raised, instead the 
dominant factor to latency becomes the number of outstanding 
requests, which raise the possibility of longer wait times on 
queues before the IO is formally processed. 
Deploying vSAN Performance Diagnostics also gave us insights 
to hidden bugs in our software. VMware products such as vSAN 
are deployed on a very large range of hardware and mix of 
compute, memory, and storage specifications. Hence, there is a 
potential of software bugs causing performance issues in some 
systems, on which the software has not been internally tested 
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yet. Over a period of a year, we identified five such bugs, and 
have been able to quickly fix them in the next version of our 
product.  

4.1.5 Monitoring withWavefront 
In Section 3.5, we described how the input data and results are 
posted to Wavefront. Figure 6 shows a small snapshot of the 
Wavefront dashboard. Each dot on the dashboard shows a 
specific performance issue generated, color code by the uuid of 
the environment it is generated on. The Y-axis shows the 
number of instances of performance issues.  This dashboard can 
be useful to an administrator in many ways. As an example, if a 
specific exception is occurring in almost all deployments in 
quick successions, the rule may be yielding high false negatives, 
and we may need to modify such rules with different thresholds. 
It also helps us in understanding importance of a rule, by using 
some simple analysis we can plot a histogram of the distribution 
of exceptions under different feature categories.  For example, 
we detected that benchmarking specific rules are frequently 
triggered, which led us to spend more energy on some of the 
benchmark specific rules. 
 

 
 

Figure 6: Wavefront Dashboard View 

5   Challenges 

While sending performance and systems data to the cloud brings 
a lot of advantages, it also exposes its own challenges. We 
document some of these challenges in this section: 
(1) Connectivity to the Cloud: In many cases, data centers 

are behind a firewall with no connectivity to the Internet, 
mainly for security reasons. In such a case, the Cloud 
Request Manager will not work. The solution is to deploy a 
private cloud within the customer’s private data center 
where the Cloud Plugin can work; and ship the rules to the 
Cloud Plugin in an offline mode. This is a work in progress 
for us and is not available yet.  

(2) Privacy: In many cases, a customer is not comfortable to 
send systems data to a cloud because of privacy issues. As 
an example, in certain cases, the names of systems may be 
needed to be confidential. This is not a big problem for our 

framework, because we need time series data for different 
entities and metrics. Anything else can be obfuscated.  

In VMware, we have an agreement known as CEIP [8], 
which defines what information VMware can collect from 
its customers and what not. It is an opt-in agreement, 
customers are encouraged to opt-in, but this is not enforced. 
vSAN Performance Diagnostics respects CEIP; however, if 
CEIP is disabled, the vSAN Performance Diagnostics would 
simply not work. 

(3) Cost: While the volume of zipped performance data is small 
(of the order for a few Mbytes), we recognize that in certain 
cases (as an example when the time duration requested for 
performance analysis is very long), the volume of the data 
can be of the order of 100’s of MBytes. In such a case, there 
is a cost to send this volume of data over the network. As 
an example, the volume of traffic may hinder another 
critical network traffic. As per our opinion, this is a 
necessary and reasonable cost to pay for such tools and 
should not be an impediment. 

6 Conclusion 

In this paper, we document a framework of supporting cloud-
based performance analysis and debugging tools. We 
demonstrate how these tools can be developed and show some 
interesting use cases where they have shown promise. 
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