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ABSTRACT
When migrating a scientific application to a new HPC system, the
program code usually has to be re-tuned to achieve the best possible
performance. Auto-tuning techniques are a promising approach
to support the portability of performance. Often, a large pool of
possible implementation variants exists from which the most effi-
cient variant needs to be selected. Ideally, auto-tuning approaches
should be capable of undertaking this task in an efficient manner
for a new HPC system and new characteristics of the input data by
applying suitable analytic models and program transformations.

In this article, we discuss a performance prediction methodology
for multi-core cluster applications, which can assist this selection
process by significantly reducing the selection effort compared to
in-depth runtime tests. The methodology proposed is an extension
of an analytical performance prediction model for shared-memory
applications introduced in our previous work. Our methodology is
based on the execution-cache-memory (ECM) performance model
and estimations of intra-node and inter-node communication costs,
which we apply to numerical solution methods for ordinary dif-
ferential equations (ODEs). In particular, we investigate whether
it is possible to obtain accurate performance predictions for hy-
brid MPI/OpenMP implementation variants in order to support
the variant selection. We demonstrate that our approach is able to
reliably select a set of efficient variants for a given configuration
(ODE system, solver and hardware platform) and, thus, to narrow
down the search space for possible later empirical tuning.

KEYWORDS
performance prediction; variant selection; auto-tuning; ODE; ECM
model; MPI; distributed-memory
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1 INTRODUCTION
In order to achieve a high efficiency, scientific applications typi-
cally need to be adapted to the characteristics of a specific high-
performance computing (HPC) platform. Considering the growing
diversity and complexity of modern computer architectures, this of-
tenmeans a large programming effort for software developers, since
the performance of parallel programs strongly depends on the char-
acteristics of the target platform, such as processor design, cache
architectures, memory latency, memory and network bandwidth.
The best implementation variant selected for one HPC platform is
not necessarily the best, or even a good implementation variant,
for another platform. Hence, to obtain optimal performance, appli-
cations might need to be tuned for each specific target platform
anew. This can be a time-consuming and costly process.

A promising concept to avoid this manual tuning effort is auto-
tuning (AT). Many different approaches have been proposed to
automatically tune software. AT is based on two core concepts (i)
to generate implementation variants of an application based on
program transformation and optimization techniques such as loop
unrolling or loop tiling for the compute-intensive inner kernels, and
(ii) to select the implementation variant with the highest efficiency
on the target platform from the set of generated implementation
variants.

A big challenge in AT is to time-efficiently select a suitable im-
plementation variant from a potentially large number of possible
variants. A straightforward but time-consuming way to find this
particular implementation variant is the comparison of implemen-
tation variants by runtime experiments, which might be steered
by an exhaustive search or by more sophisticated mathematical
optimization methods, such as the Nelder-Mead method [15] or
differential evolution [6]. Alternatively, analytic performance mod-
els can be used to select the most efficient implementation variant
directly or to filter out poorly performing implementation variants
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in order to reduce the number of runtime experiments necessary.
This requires the performance prediction to be accurate enough
to clearly distinguish and rank the performance of the different
implementation variants.

The contribution of this paper is

(1) the development of a performance prediction methodology
for hybrid MPI/OpenMP implementation variants on multi-
core cluster systems,

(2) the application to a complex numerical method with compli-
cated runtime behavior: the parallel solution of initial value
problems (IVPs) of ordinary differential equations (ODEs),

(3) the validation of the accuracy of the prediction for differ-
ent settings (ODE system, inter-node communication and
hardware architecture),

(4) a discussion of its applicability in the context of AT.

The rest of the paper is organized as follows: Section 2 describes
related work. Section 3 outlines the computational structure of
the ODE solution method used as example and describes the im-
plementation variants considered. In Section 4, the performance
prediction methodology is discussed in detail. Section 5 describes
the experimental setup, the results of which are presented in Sec-
tion 6. Section 7 concludes the paper and gives an overview of
future work.

2 RELATEDWORK
In general, a distinction can be made between offline and online
AT techniques. Offline AT is performed at installation or compile
time and selects the supposedly most efficient implementation with-
out actual knowledge of the input data. Thus, these approaches
are appropriate for applications where characteristics of the input
data only have a minor impact on the selection of the best imple-
mentation, as it is the case, e.g., for dense linear algebra problems.
Examples for offline approaches from this field of application are,
i.a., ATLAS [29] and PhiPAC [2]. In other fields such as sparse linear
algebra or particle codes, however, the execution behavior is heavily
influenced by properties of the input data. Online AT takes these
influences into account by choosing the best variant at runtime
when all input is known. Active Harmony [26] and Periscope [8]
are examples for online approaches.

Several AT approaches for specific application areas have been
developed on the basis of domain-specific languages (DSL) for the
description of the processing algorithms. From these DSL descrip-
tions, a compiler can generate different code variants that can
be tested in an online or offline phase. An important application
area for these approaches are stencil computations, see PATUS [5],
Pochoir [24] and Halide [18] for approaches in this direction.

Performance modelling approaches can roughly be divided into
two categories: black box models that apply statistical methods
and machine learning techniques to observed performance data
like hardware metrics in order to describe and predict performance
behavior [23, 25] and white box models that describe the interaction
of hardware and code using simplified machine models [22, 27, 30].
Further, model generation tools are covered for numerous appli-
cation scenarios in prior work. The Empirical Roofline Toolkit

(ERT) [13] characterizes the throughput potential of a kernel ex-
ecuted on a node using the Roofline model. Kerncraft [12] can be
applied to loop kernels to obtain node-level ECMmodel predictions.

In previous work [21], we demonstrated the applicability of the
ECM performance model for the selection of the most suitable
implementation variant on shared-memory systems for a complex
algorithm from numerical analysis, explicit ODE methods. These
solution methods compute a numerical approximation for the so-
lution by performing a series of time steps [10]. Each time step
consists of the computation of a fixed number of stage vectors
which are then combined to the next approximation vector for the
unknown solution. Overall, these methods exhibit a complex loop
structure modifiable by loop transformations, yielding a large set
of implementation variants, whose performance behavior depends
on the organization of the computations and the memory accesses
within each time step, but also on the characteristics of the ODE
system to be solved. To solve IVPs of ODEs systems, various nu-
merical methods can be used. In addition to the classical explicit
and implicit Runge-Kutta (RK) and multi-step methods [10], many
specific methods aiming at exploiting parallelism, e.g., parallel iter-
ated RK (PIRK) methods [16, 28], waveform relaxation methods [3],
and peer two-step methods [20] have been proposed.

In this paper, as an enhancement of our previous work, we pro-
pose a performance predictionmethodology for hybridMPI/OpenMP
implementation variants of PIRK methods suitable for multi-core
cluster systems, which combines a white and black box model in or-
der to predict the runtime of specific implementation variants. The
ECM model (white box model) is applied to predict the node-level
performance of the PIRK implementation variants considered. To
estimate the intra-node and inter-node communication costs of the
particular variants, a black box model is used to assess the costs
of the particular communication and synchronization operations
executed.

3 PARALLEL ITERATED RUNGE-KUTTA
METHODS

We study PIRK methods as a representative example of the gen-
eral class of explicit ODE methods to evaluate the performance
prediction methodology proposed. PIRK methods perform a series
of time steps one after another until the end of the given inte-
gration interval is reached. Within each time step, PIRK methods
exhibit a four-dimensional loop structure. By applying different
loop transformations to this loop structure, a large pool of possible
implementation variants can be generated. As the performance
characteristics of these variants can potentially vary highly depend-
ing on

(a) the target hardware,
(b) the compiler used and its flags,
(c) the number of processes or threads employed,
(d) the ODE system to be solved, and
(e) the number of stages of the selected base ODE method,

an accurate performance prediction would be valuable for either
directly identifying the most efficient implementation variant or for
pre-selecting a set of candidate implementation variants for further
AT steps.
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1 for (k = 0; k < m; k++)
2 communication()
3 RHS
4 synchronization()
5 LC
6 APPROX
7 UPDATE

Listing 1: Basic abstract PIRK implementation considered.

3.1 Computational structure of PIRK methods
PIRK methods are part of the class of one-step predictor-corrector
methods, i.e, in each time step tκ a new approximation of the so-
lution is computed by an iterative process. The iteration process
is started with an initial approximation of the solution function
which we select as:

Y(0)l = yκ , l = 1, . . . , s . (1)

Next, the corrector method, an s-stage implicit RK method [11] of
order o, is applied a fixed number ofm = o − 1 times:

k = 1, . . . ,m :

Y(k )l = yκ + hκ
s∑
i=1

al iF
(k−1)
i , l = 1, . . . , s (2a)

with F(k−1)i = f(tκ + cihκ ,Y
(k−1)
i ) , (2b)

where f is the right-hand-side function (RHS) of the ODE system
solved. The coefficient matrix A = (ai j ) ∈ R

s,s , the weight vector
b = (bi ) ∈ R

s , the node vector c = (ci ) ∈ R
s , and the order o are

given by the implicit RK method used as corrector method. After
the iteration process, the new approximation yκ+1 is computed as
follows:

yκ+1 = yκ + hκ
s∑
i=1

biF
(m)

i , (3)

For efficient step size control, an error vector can be computed by:

e = hκ
s∑
i=1

bi
(
F(m)

i − F(m−1)
i

)
. (4)

Based on the difference between the norm of e and a user-defined
tolerance, time steps may be accepted or rejected, and the step size
can be increased or decreased.

3.2 Pool of PIRK implementation variants
In this section, we present the PIRK implementation variants used
in our experimental evaluation. All implementation variants con-
sidered focus on parallelism across the ODE system, i.e., the n
equations of the ODE system are partitioned among all p nodes
and their c logical cores using a blockwise distribution. Thus, each
node is assigned a block of ≈ n/p consecutive components and
each of its cores computes a block of ≈ n/(p · c) components. The
independence of the stages is exploited, however, by reducing the
number of synchronization and communication operations. The
inter-node communication is realized with MPI, the parallelization
within the nodes is done by OpenMP.

To explore the applicability of the proposed performance predic-
tion methodology, we apply it to a specific base implementation
(Listing 1). Apart from the first trivial predictor step (which is not
shown in the listing), the implementation consists of a loop over the

1 for (i = 0; i < s; i++)
2 for (j = first; j <= last; j++) {
3 for (l = 0; l < s; l++)
4 Y[l][j] += a[l][i] * F[i][j]; }
5 for (j = first; j <= last; j++)
6 for (l = 0; l < s; l++)
7 Y[l][j] = Y[l][j] * h + y[j];

Listing 2: Implementation ijl of kernel LC.

1 for (i = 0; i < s; i++) {
2 for (l = 0; l < s; l++)
3 for (j = first; j <= last; j++)
4 Y[l][j] += a[l][i] * F[i][j]; }
5 for (l = 0; l < s; l++)
6 for (j = first; j <= last; j++)
7 Y[l][j] = Y[l][j] * h + y[j];

Listing 3: Implementation ilj of kernel LC.

1 for (j = first; j <= last; j++) {
2 for (i = 0; i < s; i++) {
3 for (l = 0; l < s; l++)
4 Y[l][j] += a[l][i] * F[i][j]; }
5 for (l = 0; l < s; l++)
6 Y[l][j] = Y[l][j] * h + y[j]; }

Listing 4: Implementation jil of kernel LC.

1 for (j = first; j <= last; j++)
2 for (l = 0; l < s; l++) {
3 for (i = 1; i < s; i++)
4 Y[l][j] += a[l][i] * F[i][j];
5 Y[l][j] = Y[l][j] * h + y[j]; }

Listing 5: Implementation jli of kernel LC.

1 for (l = 0; l < s; l++)
2 for (j = 0; j <= last; j++) {
3 for (i = 0; i < s; i++)
4 Y[l][j] += a[l][i] * F[i][j];
5 Y[l][j] = Y[l][j] * h + y[j]; }

Listing 6: Implementation lij of kernel LC.

1 for (l = 0; l < s; l++) {
2 for (i = 0; i < s; i++)
3 for (j = first; j <= last; j++)
4 Y[l][j] += a[l][i] * F[i][j];
5 for (j = first; j <= last; j++)
6 Y[l][j] = Y[l][j] * h + y[j]; }

Listing 7: Implementation lji of kernel LC.

m corrector steps, which must be processed sequentially. The im-
plementation separates a corrector step into two non-overlapping
kernels, LC and RHS. Kernel RHS calculates the function evalua-
tions of the right-hand-side functions (2b), which are needed for
the linear combinations in kernel LC (2a). At the beginning of each
corrector step, there is a communication phase which ensures that
the required components of the argument vectors from the last
iteration are available for kernel RHS at all processes. After the
computation of the corrector steps two more kernels (APPROX and
UPDATE) are executed that calculate the new approximation yκ+1
(3). The base implementation uses two s × n matrices to store F (k )

(F) and Y (k ) (Y) and two n-vectors for the input/output approxi-
mation y (y) and the difference between the input and the output
approximation yκ+1−yκ (dy). In addition, one s×s matrix and two
s-vectors are required for the coefficients A, b, c of the corrector
method. To simplify the analysis, step control is not yet considered.
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The implementation of kernel LC in (2a) leads to a nested three-
dimensional loop structure which iterates over:

(1) the argument vectors Y(k )l (l = 1, . . . , s),

(2) the summands of
∑s
i=1 al iF

(κ−1)
i (i = 1, . . . , s),

(3) the system dimension (j = 1, . . . ,n).
These loops (l-, i-, and j-loop), are independent of each other and
fully permutable, which results in six possible implementations
of kernel LC (Listing 2 to 7) and, hence, six possible implementa-
tion variants. Different loop permutations lead to implementation
variants with a high spatial locality and a high potential for SIMD
vectorization by the compiler or to implementation variants that
enable temporal reuse of argument vector components in write
operations corresponding to updates of the sum

∑s
i=1 al iF

(k−1)
i in

(2), but which also reduce the spatial locality.
If we do not make assumptions about the access pattern of kernel

RHS, we must exchange all components of the argument vector
between the processes. Thus, the communication phase must per-
form a multi-broadcast operation (MPI_Allgather). Many problems,
however, require the component functions fj (t , y) to access only a
few components of the argument vector y. If this is the case, we call
the problem sparse, otherwise dense. A special case of sparse prob-
lems are problems with limited access distance, where fj needs to
access only the components yj−d (f) to yj+d (f), where d(f) denotes
the access distance of the problem. Problems with limited access
distance allow neighborhood communication, where process pi
has to communicate with pi−1 and pi+1 exclusively and only small
messages are exchanged. In this paper, we consider three imple-
mentations of the communication phase: the first implementation
uses multi-broadcast operations, as required by dense problems,
while the second uses neighborhood communication, as enabled
by a limited access distance. For sparse problems without limited
access distance we offer a third communication option in which
the required components can be exchanged between all processes.
We refer to this communication as sparse communication.

4 PERFORMANCE PREDICTION OF ODE
SOLVERS ON MULTI-CORE CLUSTER
SYSTEMS

In this work, we introduce a performance prediction methodol-
ogy for ODE solvers executed on multi-core cluster systems. The
methodology proposed is an enhancement of an approach for
shared-memory ODE solvers we discussed in previous work [21],
where we only studied single-node performance. Our prediction
formula is capable of predicting the time required to execute a sin-
gle time step of a particular implementation variant given its base
ODE method, the size of the ODE system solved and characteristics
of the target hardware architecture(s).

Our methodology consists of two core components, (i) a node-
level runtime prediction of an implementation variant (Section 4.1),
and (ii) an estimate of the intra-node and inter-node communication
costs of the implementation variants (Section 4.2). To obtain a node-
level runtime estimate of an implementation variant, first its basic
computation kernels need to be identified. For the basic PIRK im-
plementation studied in this work (Listing 1), these are the kernels
RHS, LC, APPROX, and UPDATE. Next, ECM model predictions are

determined for each kernel using the kerncraft tool (version 0.7.0,
https://github.com/RRZE-HPC/kerncraft), and these ECM predic-
tions are again combined to a total node-level runtime prediction for
a time step of the implementation variant. The intra-node (OpenMP
barrier operations) and inter-node (MPI communication operations)
communication costs of an implementation variants, on the other
hand, are determined using a black box model which estimates the
costs depending on the message size for MPI operations and the
number of threads for barrier operations using linear regression.

A decisive feature of our prediction-based methodology is that
it is capable of re-using previously obtained individual components
(ECM predictions of a particular kernel, costs of particular commu-
nication operations, . . . ) of its total prediction when giving predic-
tions for additional implementation variants or IVPs. In the context
of an AT procedure, this is a big advantage compared to techniques
like variant sampling. While variant sampling would require to run
all newly added implementations variants or even require to re-run
all implementation variants available when adding an additional
IVP, only the new ECM predictions must be made available to our
methodology in order to give the new predictions. For example,
when switching from IVP Heat2D to IVP InverterChain, only a sin-
gle kerncraft run is necessary to obtain the ECM prediction for
InverterChain’s implementation of the RHS kernel, while sampling
would result in a re-run of all implementation variants available.
Besides, prediction reuse can also be exploited when adding fur-
ther implementation variants. For example, new implementation
variants could be derived by fusing kernels APPROX and UPDATE
(Listing 1) into a single kernel. With our methodology this again
only requires one additional kerncraft run.

Certain assumptions are included in the methodology presented:

(1) The multi-core cluster systems consist of p homogeneous
nodes pi , each with c logical cores.

(2) The inter-node communication costs are roughly the same.
(3) Homogeneous nodes imply that all nodes have identical

caches and that the number δ of data elements fitting into
one cache line (CL) of a particular cache hierarchy level is
the same on all nodes. As a simplification, we further assume
that δ is equal on all cache levels.

(4) The cores of all nodes run at the same CPU frequency f .
(5) The n components of the ODE system are distributed to

the cluster nodes and their logical cores in blockwise order.
Hence, each node pi covers a block of np ≈ n/p consecutive
components and each of its cores computes nc ≈ n/(p · c) of
these components.

4.1 Node-level runtime prediction
The time required to execute a given task on a multi-core cluster
system is determined by the node that takes the longest time to
finish its assigned subtask(s). A task can not be completed before
all its subtasks have finished. Hence, understanding and being able
to accurately predict the performance on a node-level is vital in op-
timizing a multi-core cluster application. Further, the gained knowl-
edge could be used in an AT approach to minimize the runtime of
an application by redistributing the workloads to the individual
cluster nodes.
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In previous work, we demonstrated the applicability of a per-
formance prediction formula to shared-memory implementation
variants of explicit ODE solvers [21]. Here, we use a similar method-
ology to predict the node-level performance of the multi-core clus-
ter implementation variants considered. Compared to our previous
work, however, we do not calculate node-level predictions for the
entire ODE system, but only for the specific block of np compo-
nents computed by a particular node pi . The following is just a
brief summary of the node-level performance prediction approach.
For a detailed description, we refer to our previous work.

4.1.1 ECMmodel. Basis of our node-level prediction is the ECM
performance model [22, 27], which is an analytic performance
model capable of estimating the number of required CPU cycles
per CL to execute a given number of loop iterations on a multi- or
many-core chip. This estimation includes contributions from the
data transfer time Tdata and the in-core execution time Tcore:

T L3
data = TL1L2 +TL2L3 , (5)

Tcore = max(TOL, TnOL) , (6)

and is defined as:

T level
ECM = max(TOL, TnOL +T level

data ) . (7)

T level
data describes the time it takes to transfer all data required from
its location in the memory hierarchy to the L1 cache and back. The
contributions of the single hierarchy levels (TL1L2, TL2L3, TL3Mem)
are determined depending on the amount of transferred CLs. T level

data
is exemplary shown in (5) for data coming from the L3 cache. Tcore
is defined as the time spent executing instructions in the core un-
der the assumptions that all data are in the L1 cache and that all
instructions are scheduled independently to the ports of the units.
Therefore, the unit that takes the most cycles to execute its instruc-
tions determines Tcore. Further, the model assumes that single-core
performance scales linearly with the cores until a shared bottle-
neck is saturated and names the core count necessary to saturate
that bottleneck. This core count is called the loop’s performance
saturation point.

To obtain a prediction of the single core execution time T level
ECM

(7), the in-core execution and data transfer times are combined.
Therefore, the ECM model determines which of the runtime con-
tributions can overlap with each other. TOL is the part of the core
execution that overlaps with the data transfer time and TnOL the
part that does not (6).

4.1.2 Node-level runtime prediction θ . Using ECM model pre-
dictions, a node-level runtime prediction θϵ of an implementation
variant ϵ can be derived. In a first step, this requires to identify the
set λ, which consists of all basic computation kernels of ϵ . For each
of these kernels, kernel prediction ζλ is determined by:

ζλ =
αλβλ
δ

. (8)

ζλ yields the number of cycles necessary to execute λ, where αλ
is defined as the number of cycles required to execute one CL of
data (e.g., the ECM model prediction given by (7)). To obtain the
total number of cycles required to execute λ, αλ is multiplied by
the number of iterations executed βλ and divided by the number of
data elements δ fitting into one CL (e.g. eight doubles, each eight

bytes, per CL on our target nodes). From this kernel prediction ζλ
given in cycles, the kernel runtime prediction ϕλ in seconds can than
be derived:

ϕλ =
ζλ

f ·min(τ ,σλ)
, (9)

where f is the CPU frequency of the target node p, τ the number
of threads running on this node and σ the saturation point of λ.
Given the kernel runtime predictions ϕλ of its basic kernels λ and
an estimate of its intra-node communication costs, the node-level
runtime prediction θϵ_p of an implementation variant ϵ running on
node p is defined as:

θϵ_p =
∑
λ

ϕλ + tcom_node_p , (10)

where tcom_node_p factors in the intra-node communication costs
on node p when executing τ threads.

Remark: When a non-perfectly nested loop is split into several
kernels, a prediction error may be introduced, because the split
loop structure may have a different reuse pattern. In our previ-
ous work, we showed that this error is acceptable for this kind of
application [21].

4.2 Estimating the MPI communication costs
Since we assume that the communication costs between all nodes
are similar, the time spent on communication depends only on
the MPI operations used. The implementation variants for dense
problems use MPI_Allgather, while the implementation variants
with neighborhood communication use MPI_Isend and MPI_Irecv.
There are numerous benchmarks that identify the cost of MPI op-
erations, such as the Intel MPI Benchmark [7], SKaMPI [19] and the
OSU Micro-Benchmarks [17]. We use a modified version of the Intel
MPI Benchmark and some self-created benchmarks to study the
runtimes of the above mentioned MPI operations by benchmarking
different process numbers and message sizes and use linear interpo-
lation to estimate the communication costs for unknown message
sizes.

4.3 System-level runtime prediction
The time required to execute a given task on a multi-core cluster
system is determined by the node that takes the longest time to
finish its assigned subtask(s). To determine the system-level runtime
predictionψ , thus, we need to identify on which node pi the node-
level runtime prediction is maximal. Given a multi-core cluster
system containing homogeneous nodes pi , the time required to
execute a single time step of an ODE system of size n using an
implementation variant ϵ is defined as:

ψϵ = max θϵ + tcom_dm , (11)

where θ = (θ1,θ2, . . . ,θi , . . . ) are the node-level runtime predic-
tions of the system’s nodes pi obtained for the execution of the
node’s share of np = n/p components. Term tcom_dm takes into ac-
count the inter-node communication costs introduced when solving
an ODE system of size n.
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// Constants: N12
N12 * (y[j-N] + y[j-1] - 4 * y[j] + y[j+1] + y[j+N];

Listing 8: Kernel code fragment of IVP Heat2D.

// Constants: Uop, R, eta, Uthr, C
((Uop - y[j]) / R - (eta * ((y[j-1] - Uthr) * (y[j-1] - Uthr)

- (y[j-1] - y[j] - Uthr) * (y[j-1] - y[j] - Uthr)))) / C;

Listing 9: Kernel code fragment of IVP InverterChain.

// Constants: dz, dz2, c
// z = (j + 1) * dz; t = (dz - 1.0) * (z - 1.0) / c;
// a = 2.0 * (z - 1.0) * t / c; b = t * t;
(a * y[j+1] - y[j-1]) / (2.0 * dz)

+ (y[j-1] - 2.0 * y[j] + y[j+1] * b / dz2)
- k * y[j] * y[j+N]; // 1. PDE

- k * y[j+N] * y[j-1]; // 2. PDE

Listing 10: Kernel code fragments of IVP Medakzo.

// Constants: delta_x
-1.0 / delta_x * (-4.0 / 5.0 * (y[i - 1] - y[i + 1])

+ 1.0 / 5.0 * (y[i - 2] - y[i + 2])
- 4.0 / 105.0 * (y[i - 3] - y[i + 3])
+ 1.0 / 280.0 * (y[i - 4] - y[i + 4]));

Listing 11: Kernel code fragment of IVP Wave1D.

// Constants: K2, dx2
y[i + N]; // displacement
K2 * (y[i - 1] - 2 * y[i] + y[i + 1]) / dx2; // velocity

Listing 12: Kernel code fragment of IVP String-Row.

// Constants: K2, dx2
y[i + 1]; // displacement
K2 * (y[i - 3] - 2 * y[i-1] + y[i + 1]) / dx2; // velocity

Listing 13: Kernel code fragment of IVP String-Mix.

5 EXPERIMENTAL SETUP
In the following subsectionwe present the IVPs used for the study of
our performance predictionmethology. The IVPs considered exhibit
different characteristics regarding their execution time (compute-
bound, memory-bound, mixed behavior), their access distance (lim-
ited, unlimited) and their occupancy rate (sparse, dense), and are
therefore suitable for the investigation of our prediction method-
ology. Afterwards we describe the computer system on which we
performed the experiments and general settings that apply to all
measurements.

5.1 Characteristics of the IVPs considered.
For large ODE systems with a sparse access pattern, the RHS func-
tion evaluation in (2b) only touches a small number of components,
thus reducing the inter-node communication traffic required. Hence
the computation of the linear combination in (2a) dominates the
runtime and there is demand to auto-tune the linear combination.
These systems should be quite accurately predictable by ourmethod-
ology because they tend to have some regular access pattern. Even
if the prediction would not be as accurate for more complex sparse
ODE systems, still the majority of the runtime will be spent in the
LC, thus mitigating the less accurate prediction of the kernel RHS.

As examples, we have selected five sparse ODE systems, which
are described in detail in the following. Listings 8 to 13 show the

code used to replace the RHS function evaluation in the implemen-
tation variants considered.

• Heat2D is the 2D heat equation and describes the distribution
of heat in a given region over time. Its ODE system is de-
rived from a PDE (partial differential equation) by a second
order discretization on a N × N grid and has the dimension
n = N 2. Heat2D is memory-bound due to the growth of its
access distance d(f) = N with increasing n. In the worst case,
loading the required elements of y takes three single cache
loads (i − N , i − 1 to i + 1, i + N ).

• InverterChain is the electric circuit model of an inverter
chain [1] and describes a traversing signal through a chain
of N concatenated inverters. Its ODE system has dimen-
sion n = N and access distance d(f) = 1. InverterChain is
compute-bound due to two expensive division operations.

• Medakzo is the medical Akzo Nobel problem [14] and de-
scribes the penetration of radio-labeled antibodies into a
tissue that has been infected by a tumor. Its ODE system
is derived from two 1D PDEs by the method of lines and
has the dimension n = 2N . Its access distance is d(f) = N .
The number of cycles required to evaluate the ODE com-
ponents differs between components derived from the first
(memory-bound) and second PDE (compute-bound). The im-
plementation used first stores all N components of the first
PDE, then all N components of the second PDE, because this
storage scheme is easier to handle for the kerncraft tool (see
also discussion of String-Row and String-Mix in Sections 6.6
and 6.7).

• Wave1D is the linear convective 1D wave equation [4] and
describes the propagation of disturbances at a fixed speed
in one direction. Its ODE system is discretized on a uniform
grid and the spatial derivative is approximated by a 9 point
centered difference scheme of 8th order. The ODE system has
the dimension n = N and access distance d(f) = 4. Wave1D
is memory-bound.

• String is the 1D wave equation and describes the displace-
ment of a vibrating elastic string. Its ODE system is derived
from a 2D PDE using the method of characteristics [9] and
has the dimension n = 2N . Implementation String-Row first
stores all N components that correspond to displacements of
the string, then all N components that correspond to veloci-
ties of the string. String-Row has access distance d(f) = N .
Computing the displacements is memory-bound, while the
velocities are compute-bound. Implementation String-Mix
reduces the access distance to d(f) = 3 by an interleaved
storage of displacement and velocity components.

5.2 Testbed
We present experimental results conducted with the different IVPs
described above on a Haswell cluster described in depth in Tab. 1. Its
nodes are equipped with Intel Xeon E5-2630 v3 2.3 GHz Haswell-EP
processors and possess a shared 20 MB L3 cache. A 32 kB L1 data
cache as well as a 256 kB L2 cache are available to each of the eight
cores on a single node. For this work we had 8 cluster nodes at our
disposal.
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Table 1: Characteristics of the Haswell cluster.

Microarchitecture Haswell EP
CPU Intel Xeon E5-2630 v3
Clock (GHz) 2.3 GHz
Cores (Threads) 8 (16)

L1 cache 32 kB (data)
L2 cache 256 kB
L3 cache 20 MB (shared)
CL size 64 B

Instruction throughput per cycle
LOAD/STORE 2 / 1
ADD/MUL/FMA 1 / 2 / 2

RAM per node 32 GB
Measured bandwidth (Load only) 51 GB/s

Connection InfiniBand (56Gbit/s)
Max hops between nodes 2

All codes used in our experiments were compiled with the In-
tel C/C++ compiler and compiler flags -O3, -fno-alias and
-xHost. We ran experiments for a broad range of system dimen-
sions and used KMP_AFFINITY=granularity=fine,compact for thread
binding. As corrector method we used the 4-stage (s = 4) method
Radau II A(7) and appliedm = 6 corrector steps per time step. This
leads to a total number of 19 OpenMP barriers and 25 communica-
tion phases for all implementations considered.

6 EXPERIMENTAL RESULTS
6.1 MPI benchmarks
In this chapter we present the results of the MPI benchmarks we
ran on the Haswell cluster.

First, we benchmarked MPI_Allgather, which is required for
dense ODE systems, using vector sizes with up to about 3.5 · 107
doubles, which equals approximately 270 MB. As we can see in
Fig. 1, the curve follows an almost straight line for large enough
vector sizes. Thus, it can be expected that runtimes for even larger
vectors can be extrapolated with high enough accuracy.

Second, we created a benchmark that can measure the runtime
of the neighborhood communication that is used for ODE sys-
tems with limited access distance and which is implemented by
MPI_Isend/MPI_Irecv. The results are shown in Fig. 2. Apart from
a small number of spikes, that could be filtered out, the curve can
be assumed to be linear if the message size is large enough.

6.2 Heat2D
The first problem we address is Heat2D, the two dimensional heat
equation. We considered grid sizes from N = 4800 to 6000, which
corresponds to system sizes n of up to 36 million components. Fig. 3
shows the runtimes measured using this IVP and implementations
that use MPI_Allgather on 8 nodes with 8 threads each. The run-
times measured are in the range of approximately 1 s to 1.4 s for
the smallest system size and 1.6 s to 2 s for the largest system size
and increase proportionally to the size of the system. We see that
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Figure 1: Results of the MPI_Allgather benchmark.
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Figure 2: Results of the MPI_Isend neighborhood
communication benchmark.

implementation variant ilj is performing significantly worse than
the other implementation variants and that implementation variant
jil achieves the best runtimes across all system sizes. Furthermore,
we notice that the order of the implementation variants does not
change for the system sizes considered. Fig. 4 shows the corre-
sponding runtime predictions where we can see that the qualitative
behavior of the curves is similar. Our approach correctly predicts
that implementation variant jil is performing best and that imple-
mentation variants ilj and lij performworst. However, wemust note
that the predicted runtimes are always lower than those actually
observed. We show the percentage deviations between measured
and predicted values in Fig. 5, which are between 7 and 10% for
almost all implementation variants. As in our previous work, the
prediction for implementation variant ilj is of lower quality (more
than 20% deviation), since the special loop order of this implemen-
tation is problematic for the kerncraft tool in its current version
due to the small number of iterations of the two outer loops.

Next, we focus on the implementations that use neighborhood
communication. We recognize that the runtimes (Fig. 6) again scale
with the system size, but at the same time we notice that they
are considerably lower due to the optimized communication. The
predictions we make show that the qualitative behavior is again
similar and that the predicted runtimes (Fig. 7) are comparable to
the measured ones. The deviations shown in Fig. 8 of up to 20%
for all implementations except ilj suggest that our predictions are
noticeably worse than for the MPI_Allgather variants. However,
the high percentages are the result of the lower overall runtimes.
But even though the predictions are too pessimistic, the qualitative
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Figure 3: Measured runtimes of IVP Heat2D using multi-
broadcast communication (8 nodes - 8 threads each).
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Figure 4: Runtime predictions for IVP Heat2D using multi-
broadcast communication (8 nodes - 8 threads each).
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Figure 5: Runtime deviations for IVP Heat2D using multi-
broadcast communication (8 nodes - 8 threads each).

behavior, i.e., the ranking of the implementation variants, allows to
identify the best and worst variant again.

An important question is how well our individual estimates for
the application and communication shares are performing. To in-
vestigate this, we compare the runtime shares of the predictions
with those of a measurement made with the Intel Trace Analyzer
and Collector tool. We choose ijl as representative implementation
variant and N = 5984 as system size. Our prediction says that we
expect 0.30 s application runtime and 1.27 s of communication per
step if we use multi-broadcast operations. The times determined
by the trace analyzer are 0.35 s application runtime and 1.40 s for
MPI operations. This means we have a deviation of −15.6% for the
application and −9.29% for the communication, which puts them
both in the same order of magnitude, see Fig. 12. If we consider
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Figure 6: Measured runtimes of IVP Heat2D using neighbor-
hood communication (8 nodes - 8 threads each).
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Figure 7: Runtime predictions for IVP Heat2D using neigh-
borhood communication (8 nodes - 8 threads each).
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Figure 8: Runtime deviations for IVP Heat2D using neigh-
borhood communication (8 nodes - 8 threads each).

neighborhood communication we predict 0.05 s for communication.
A measurement with the trace analyzer yielded 0.33 s for the ap-
plication and 0.02 s of communication, see Fig. 13. The percentage
deviation of the communication is over 200%, but has only little
impact on the quality of the prediction due to the low share of the
total runtime.

Fig. 9 shows the measured runtimes for the IVP Heat2D using
now 4 nodes with neighborhood communication. The measured
runtimes are about twice as long, which shows that the implemen-
tations are highly scalable. However, we have to acknowledge that
the deviations, shown in Fig. 11 have decreased considerably with
the changed number of processes. While we have observed devia-
tions of approximately 0 - 20% for 8 processes, we see deviations
of -10 to 10% for 4 processes. This raises the question whether an
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Figure 9: Measured runtimes of IVP Heat2D using neighbor-
hood communication (4 nodes - 8 threads each).
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Figure 10: Runtime predictions for IVP Heat2D using neigh-
borhood communication (4 nodes - 8 threads each).
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Figure 11: Runtime deviations for IVP Heat2D using neigh-
borhood communication (4 nodes - 8 threads each).

additional number of processors leads to an increased prediction
error. We investigated the data for 1 and 2 processes and found that
there are no noticeable changes in the prediction error between 1,
2 and 4 processes. Unfortunately, we could not further investigate
the behavior of the prediction error depending on the number of
processes, since at the time of this work only 8 nodes were available,
but plan on doing that in the future.

To summarize the results for Heat2D, using the approach pro-
posed it was possible to create reasonable runtime predictions of
the different implementation variants and to predict the impact of
different communication patterns for this IVP. In particular, poorly
performing implementation variants could be identified success-
fully and, thus, could be separated from good implementation vari-
ants, which can help in AT approaches as a pre-selection step.

Table 2:Measured runtimes and runtime predictions for IVP
InverterChain, n=35,808,256, 8 nodes, 8 threads.

Variant Prediction [s] Measured [s] Deviation [%]

Multi-broadcast communication

ijl 1.60 1.66 -3.6
ilj 1.68 2.00 -1.6
jil 1.45 1.49 -2.7
jli 1.45 1.49 -2.7
lij 1.68 1.72 -2.3
lji 1.53 1.57 -2.5

Neighborhood communication

ijl 0.387 0.360 7.5
ilj 0.461 0.695 -33.6
jil 0.232 0.192 20.8
jli 0.234 0.189 23.8
lij 0.461 0.403 14.4
lji 0.311 0.267 16.5

6.3 InverterChain
Similar to Heat2D, for all IVPs considered the runtime of a time
step increases linearly with the system size. For this reason, we will
only consider selected representative system sizes in the following
subsections. In this subsection we study the problem InverterChain
with a system size of n = 35,808,256, which we will use for all
upcoming experiments, if not stated otherwise. As in the previous
experiments, all following measurements were performed on 8
nodes with 8 threads each. Table 2 compares the predicted rutimes
with the runtimes measured and shows the percentage deviations
of the implementation variants using multi-broadcast operations
and neighborhood communication, respectively. The predictions
are very close to the measured runtimes and our approach was
again able to distinguish well performing from poorly performing
implementation variants. As before, we can measure and predict
the impact of the communication used.

6.4 Medakzo
The medical Akzo Nobel problem differs from the IVPs considered
so far in that no neighborhood communication is possible. Each
process pi requires a component from its immediate neighbors and
all components of process pi+ p2 if i < N or pi− p

2
if i > N . This prob-

lem can be considered sparse, but the storage order considered has
no limited access distance, which is why we use the communication
sparse. The communication pattern of Medakzo is nevertheless sim-
ilar to neighborhood communication. Therefore, we estimate the
communication costs with the neighborhood benchmark, assuming
a message size of np . In Tab. 3 we can see that this assessment leads
to reasonable runtime predictions. With regard to a possible auto-
tuning, we can state that with the exception of the implementation
ilj, the order of the variants is correct both for the multi-broadcast
implementations and for the sparse implementations.
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Figure 12: Detailed comparison of prediction and measure-
ment for Heat2D, N=5984, implementation variant ijl, 8
nodes, 8 threads, multi-broadcast communication.
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Figure 13: Detailed comparison of prediction and measure-
ment for Heat2D, N=5984, implementation variant ijl, 8
nodes, 8 threads, neighborhood communication.

Table 3:Measured runtimes and runtime predictions for IVP
Medakzo, n=35,808,256, 8 nodes, 8 threads.

Variant Prediction [s] Measured [s] Deviation [%]

Multi-broadcast communication

ijl 1.58 1.67 -5.4
ilj 1.65 1.99 -17.1
jil 1.43 1.49 -4.0
jli 1.43 1.49 -4.0
lij 1.66 1.72 -3.5
lji 1.51 1.58 -4.4

Sparse communication

ijl 0.855 0.967 -11.5
ilj 0.928 0.875 6.1
jil 0.700 0.797 -12.2
jli 0.701 0.813 -13.8
lij 0.928 1.020 -9.0
lji 0.778 0.892 -12.8

6.5 Wave1D
Characteristic for this problem, which is derived from a one dimen-
sional PDE, is the discretization using central differences of order
8, which leads to a stencil with an access distance of 4. Looking at
Tab. 4, we can observe that the runtimes do not differ significantly
from those of the IVP InverterChain. The communication costs are
determined by MPI_Allgather in the case of multi-broadcast imple-
mentations and by the MPI latency in the case of neighborhood
communication. Also for this problem, our approach was able to
identify both the best and the worst implementation variants.

6.6 String-Row
The String problem describes the displacement of a vibrating elastic
string via a one dimensional wave equation. Its discretization yields
a system of ODEs with two different components (displacements
and velocities) that have to be stored in a one dimensional array.

Table 4:Measured runtimes and runtime predictions for IVP
Wave1D, n=35,808,256, 8 nodes, 8 threads.

Variant Prediction [s] Measured [s] Deviation [%]

Multi-broadcast communication

ijl 1.56 1.64 -4.9
ilj 1.64 1.96 -16.3
jil 1.41 1.47 -4.1
jli 1.41 1.46 -3.4
lij 1.64 1.70 -3.5
lji 1.49 1.55 -3.9

Neighborhood communication

ijl 0.348 0.336 3.6
ilj 0.421 0.669 -37.1
jil 0.192 0.163 17.8
jli 0.194 0.165 17.6
lij 0.421 0.375 12.3
lji 0.271 0.241 12.4

The String-Row implementation first stores all displacements and
then all velocities. The runtimes of the multi-broadcast implemen-
tation variants are dominated by the communication costs, so the
predictions depend largely on the MPI_Allgather benchmark. Since
this benchmark gives good predictions, we can only detect minor
deviations from the measured runtimes, see Tab. 5. The String-Row
implementation is not able to use neighborhood communication so
we use the sparse communication. Since the communication pattern
is similar to neighborhood communication we try to estimate the
runtimes using the neighborhood benchmark. Also in Tab. 5 we
can see that the deviations for the sparse communication are a bit
higher than previously observed.

6.7 String-Mix
String-Mix is another implementation of the forementioned 1D
wave equation. In contrast to String-Row, this implementation stores
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Table 5:Measured runtimes and runtime predictions for IVP
String-Row, n=35,808,256, 8 nodes, 8 threads.

Variant Prediction [s] Measured [s] Deviation [%]

Multi-broadcast communication

ijl 1.56 1.66 -6.0
ilj 1.64 1.99 -17.6
jil 1.41 1.49 -5.4
jli 1.41 1.49 -5.4
lij 1.64 1.72 -4.7
lji 1.49 1.57 -5.1

Sparse communication

ijl 0.731 0.959 -23.8
ilj 0.804 1.290 -37.7
jil 0.576 7.98 -27.8
jli 0.578 0.797 -27.5
lij 0.804 1.010 -20.4
lji 0.655 0.873 -25.0

velocity and displacement components in alternation. Thus, the cor-
responding RHS kernel contains a loop with a stride of two, which
makes this problem stand out. The behavior of the implementa-
tions using MPI_Allgather is similar to String-Row. In the variants
with neighborhood communication, however, the runtime of the
application has a larger share of the total runtime. In Tab. 6 we can
see that the predictions generally deviate less than 15% from the
measured runtimes. Consequently, we can conclude that kerncraft
was able to handle the loop with a stride of two reasonably well.

Further, by comparing the predictions obtained for the sparse
communication implementations of String-Row and String-Mix, it
can be observed that our methodology correctly predicts String-
Mix as the more efficient implementation of the RHS kernel. In the
context of an AT procedure, such an observation could be used to
pre-select the most efficient RHS kernel and, thus, to narrow down
the search by one dimension.

6.8 Assessment of the proposed performance
prediction methodology as a pre-selection
tool in an AT approach

If reliable, a performance prediction methodology can be an ex-
cellent instrument inside an AT procedure to support the variant
selection process. Implementation variants could be ranked by their
performance and slow implementation variants filtered out during
the offline phase based on the predictions obtained without actu-
ally executing them first. In contrast, an unreliable ranking might,
have the opposite effect and lead to the dismissal of performant
implementation variants or the time-consuming execution of poorly
performing implementation variants during the online phase.

The previous experimental results (Tab. 2 to Tab. 6) indicate that
our prediction approach is capable of pre-selecting suitable imple-
mentation variants for the system size studied. Nevertheless, it was
found that our approach is sensitive to errors in the node-level pre-
diction or the communication benchmarks. The runtime predictions

Table 6:Measured runtimes and runtime predictions for IVP
String-Mix, n=35,808,256, 8 nodes, 8 threads.

Variant Prediction [s] Measured [s] Deviation [%]

Multi-broadcast communication

ijl 1.63 1.62 0.6
ilj 1.70 1.95 -14.7
jil 1.47 1.45 1.4
jli 1.47 1.45 1.4
lij 1.70 1.68 1.2
lji 1.55 1.53 1.3

Neighborhood communication

ijl 0.446 0.530 -15.8
ilj 0.519 1.130 -54.0
jil 0.270 0.290 -6.9
jli 0.272 0.287 -5.2
lij 0.489 0.572 -14.5
lji 0.369 0.423 -12.8
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Figure 14: Percentaged performance loss comparing the per-
formance of the predicted best variant versus the experi-
mentally evaluated best variant for IVP Heat2D, 8 nodes, 8
threads, neighborhood communication.

differ from the actual runtimes by varying degrees, which means
that we do not always identify the best implementation variant,
but might sustain a performance loss. We study this phenomenon
using the data from the heat equation for grid sizes from N = 4800
to 6000, which correspond to system sizes n of up to 36 million com-
ponents. Fig. 14 depicts the percentaged performance loss sustained
by executing the predicted best implementation variant instead of
the experimentally evaluated best implementation variant.

Ideally, the performance loss is 0, i.e., our methodology selected
the proper variant. It can be observed, that the sustained perfor-
mance losses for IVP Heat2D are marginal (about 0.95% maximum).
The runtimes and predictions of the two best implementation vari-
ants for Heat2D are fairly close (compare Fig. 6 to 7). Hence, minor
measurement inaccuracies in the runtimes measured can already
lead to the selection of another than the best implementation vari-
ant, e.g., the second or third best variant. These performances losses
are, however, insignificant since the selected implementation vari-
ants are practically equally performant as the best one.
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7 CONCLUSION AND FUTUREWORK
In this paper, we have considered performance prediction for scien-
tific applications on cluster systems where MPI is used to commu-
nicate between the nodes and OpenMP is used for synchronization
within the nodes. To achieve this goal, the methodology developed
in [21], which considered node-level predictions on shared-memory
systems, was extended to support cluster systems consisting of mul-
tiple nodes. This extended performance predictionmethodology has
been applied successfully to a representative class of explicit ODE
methods. Moreover, we have demonstrated that our methodology is
capable of deriving a reliable performance ranking of implementa-
tion variants for this kind of methods on multi-core cluster systems.

In particular, we have combined our ECM model based node-
level prediction approach with cost estimates of the intra-node and
inter-node communication costs of the implementation variants
and defined a model which predicts the time required to execute
a single time step for a particular combination of implementation
variant, ODE system and target system. Node-level predictions
were determined for different implementation variants of PIRK
methods for different ODE systems. Cost estimation models for the
communication operations required were deduced from benchmark
results. Using the predicted runtimes, we have been able to establish
a performance ranking of the implementation variants for each
particular combination of target platform and ODE system. Finally,
we have validated our predictions by comparing our ranking with
actual runtimes measured on the target platform.

Our future work includes expanding our methodology to big-
ger HPC systems with more nodes and heterogeneous multi-core
cluster systems. Hence, we intend to validate our predictions on
additional target platforms (Intel IvyBridge, Intel Skylake, AMD
Zen) and on heterogeneous systems containing multiple of these
different platforms. Further, we plan to study in detail the usability
of our prediction methodology for optimizing the load distribu-
tion in heterogeneous multi-core cluster systems. In particular, we
want to investigate whether our methodology can be exploited
for finding the optimal workload distribution on a heterogeneous
multi-core cluster system during the offline phase of an AT proce-
dure. Further, we intend to apply our methodology to more complex
implementation variants using loop tiling and pipeline-like loop
structures with stepsize control and plan to study the accuracy of
our predictions for more complex ODE systems.
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