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ABSTRACT
Predicting performance-related events is an important part of proac-
tive fault management. As a result, many approaches exist for the
context of single systems. Surprisingly, despite its potential benefits,
multi-system event prediction, i.e., using data from multiple, inde-
pendent systems, has received less attention. We present ongoing
work towards an approach for multi-system event prediction that
works with limited data and can predict events for new systems. We
present initial results showing the feasibility of our approach. Our
preliminary evaluation is based on 20 days of continuous, prepro-
cessed monitoring time series data of 90 independent systems. We
created five multi-system machine learning models and compared
them to the performance of single-system machine learning models.
The results show promising prediction capabilities with accuracies
and F1-scores over 90% and false-positive-rates below 10%.
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1 INTRODUCTION
Predicting performance-related events is essential for proactive
fault management [16] and anomaly prediction [21] in software
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systems. Advance warnings about slowdowns, crashes or other ma-
jor performance degradations allow administrators to take preven-
tative actions, thereby avoiding deviations of the systems’ expected
quality properties. Many approaches exist on predicting anomalies,
failures and events, often based on machine learning (ML) tech-
niques. For example, researchers have used log files [5, 6, 14, 17, 22]
and time series monitoring data [1, 4, 15, 20, 21, 23] as input for a
variety of ML algorithms. Despite the potential insights, there is
still a lack of event prediction approaches for multi-system envi-
ronments [18, 19], i.e., utilizing and combining the data of multiple,
independent systems. First, multi-system event prediction could
mitigate the issue of insufficient data, i.e., rare events or limited dy-
namic data for training ML models. Second, it allows cross-system
event prediction for new systems, similar to the idea of cross-project
(or company) defect prediction [8, 13], where data (e.g., source code
metrics) from one set of projects is used for training, and data from
other projects is used for testing.

This work-in-progress paper thus investigates the potential ben-
efits of multi-system event prediction and presents first insights
based on an industrial data set. Specifically, we work with events
and low-level infrastructure measurements provided by an industry
partner. Our data set includes time series for CPU, memory, disk
and network metrics of multiple, independent systems. Using these
metrics, we predict service slowdown performance events, which
are often caused by effects observable in infrastructure metrics
such as high CPU loads or suspicious disk behavior. Our paper first
discusses the structure of our industrial data set. We then present
our choices for preprocessing the data from multiple systems. Af-
terwards, we present a preliminary ML approach and an evaluation,
which compares our multi-system prediction approach with two
baselines: single-system prediction and naïve multi-system predic-
tion. We conclude our paper with an outlook to future work.

2 STRUCTURE OF THE DATA SET
We briefly explain the structure of our data set, including infras-
tructure time series data and events, which are input to our multi-
system event prediction approach. All data including its structure
is provided by our industry partner.

A system (e.g., a travel booking platform) is a collection of inter-
operating hardware and software components. It is is operated by
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Figure 1: ERD of a monitored system.

a service provider and monitored at the level of components. Our
data set contains multiple systems, which are completely indepen-
dent of each other, without physical or logical interactions. The
key elements of systems are represented in the entity-relationship
diagram (ERD) shown in Figure 1. Services are abstract entities
and represent the business logic of the system. Each service is also
associated with attributes, such as its service type, indicating its
operation or task (e.g., database access, web request).

Slowdown events occur at the level of services. They are detected
by threshold-based heuristics, which determine if the average re-
sponse times of the services exceed their baselines. Services are
executed on hosts, which are physical or virtual computing entities.
Services can also be executed on multiple hosts, e.g., in case of load
balancing.

Table 1 lists all 34 metrics of our data set, which are available
in one-minute resolution. Each minute is an aggregated average
of ten-second samples. The hosts provide 11 different time series,
including CPU, memory and operating system metrics. Multiple
disks and network interfaces may be connected to each host. There
are 13 time series for disk metrics and 10 time series for network
metrics.

Hosts Disks Network Interfaces

CPU idle % Space available Bytes received
CPU system % Space used Bytes sent
CPU load % Space free % Recv. packets
CPU user % Read bytes Sent packets
CPU IO wait % Write bytes Recv. dropped
Page Faults / s Read operations Sent dropped
MEM available % Write operations Recv. errors
MEM available Read time Sent errors
MEM used Write time Recv. utilization
SWAP available Util time Sent utilization
SWAP used Queue length

Inodes available %
Inodes total

Table 1: Infrastructure metrics for entity types. Correspond-
ing units are percentages, bytes, milliseconds and counts.

3 DATA SELECTION AND PREPROCESSING
Our data set contains 20 days of continuous monitoring data of
about 250 independent systems and about 9,000 service slowdown
events. Because some systems have only very few events, we dis-
carded systems with fewer than 50 events, resulting in 90 systems
and 7,500 events in total, though the event distribution still differs
significantly (median: 111, mean: 166, max.: 1,125, std.: 157).

Before training our ML models, we preprocessed the data, which
included retrieving the time series values for all events over all

systems and dealing with missing data. To do so, we used the
framework presented in [18], which yields comma-separated value
(CSV) files that contain both positive feature vectors (samples where
an event occurred) and negative feature vectors (samples where no
event occurred).

In the following, we summarize our most important configura-
tion options for working with the framework:

Sampling. For each system, we created positive samples at every
event timestamp, and equally many negative samples at random
timestamps where no event occurred, yielding 15,000 samples.

Observation window. For retrieving the time series data, we de-
fined a 30-minutes observation window. At every timestamp (event
for positive samples, random for negative samples), the preceding
30 minutes of each time series metric were then collected.

Aggregation functions.We then aggregated these 30-minute ob-
servation windows (chunks of raw data) using 11 functions rep-
resenting the data entries in the final feature vectors (FVs): mini-
mum, maximum, mean, standard deviation, 25% percentile, median,
75% percentile, skewness, kurtosis, slope and Pearson correlation.

Overall, these preprocessing steps yielded a single CSV file con-
taining 15,000 observations (7,500 positive FVs and 7,500 negative
FVs) with 374 features each (34 metrics × 11 aggregation functions),
extracted from all 90 systems.

The second step involved the normalization of these FVs. We
accomplished this by a service-based scaling approach. We first
created FV groups of equal services, with respect to their unique
identifiers. For each group, the data was scaled by subtracting the
mean of the corresponding feature and dividing the result by the
standard deviation (zero mean, unit variance). This way, we ensured
that the values were equally normalized among all services, in
contrast to scaling the entire data set at once. Finally, we removed
duplicate FVs and balanced the data again to keep an equal amount
of positive and negative FVs.

4 MACHINE LEARNING APPROACH AND
PRELIMINARY RESULTS

We created five multi-system ML models and compared them with
the performance of single-system ML models. Specifically, we used
two baselines: the lower baseline given by the naïve multi-system
model, and the upper baseline defined by the single-system models.

In particular, we used the default random forest classifier of scikit
learn [12] to create the following models for our 90 systems:

(i) Single-system models were trained and tested individually for
each of the systems.

(ii) The naïve multi-system model was trained on all systems,
with a uniform number of observations per system in the training
set (balanced systems).

(iii) Clustered multi-system models were evaluated like in (ii),
after clustering data [21] into four different groups.

The four clusters for (iii) are determined by hand-crafted rules,
which were inferred from observing statistical distributions and
two-dimensional t-SNE visualizations [10] of system’s features.
t-SNE is a technique to reduce high-dimensional data to fewer
dimensions. We used the entity counts and the number of service
types as characterizing features of a system. As Figure 2 shows,
we clustered systems primarily by their number of services s and
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Figure 2: Visualization of system clusters, acquired with
t-SNE, tinted by (a) their assigned cluster, (b) number of ser-
vices and (c) number of disks per system, with blue tones
indicating low and red tones indicating high entity counts.

disks d , where Q0.5(S) and Q0.5(D) denote the median number of
services and disks, and the percentages the sizes of each cluster:

(1) entity-heavy (∼ 35%) s ≥ Q0.5(S) ∧ d ≥ Q0.5(D)
(2) service-heavy (∼ 15%) s ≥ Q0.5(S) ∧ d < Q0.5(D)
(3) disk-heavy (∼ 15%) s < Q0.5(S) ∧ d ≥ Q0.5(D)
(4) entity-light (∼ 35%) s < Q0.5(S) ∧ d < Q0.5(D)
Figure 3 shows our preliminary evaluation setup. We chose an

80:20 split for the training set (~ 12,000 observations) and test set
(~ 3,000 observations), respectively, after randomly shuffling the
observations. To ensure a uniform number of observations in all
multi-system models (ii, iii), thus avoiding over-fitting to larger
systems, we randomly discarded observations in larger systems,
until all systems had the same number of observations. Since the
event distribution among systems differs significantly, only about
25% of the training set data remained (3,000 observations).

Figure 4 shows the boxplots of three commonly used evaluation
metrics [11]: accuracy, false-positive-rate (FPR) and F1-score. Each
boxplot represents the 90 results we got for the systems in the
test set data. Single-system models performed best, followed by
our four clustered models and the naïve multi-system model. This
result confirms our expectations. Single-system models generally
perform best, as their training and test data is drawn from a very
similar distribution. Still, the naïve multi-system model, which

system features labels
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Figure 3: Multi- and single-systemmodels evaluation setup.
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Figure 4: Test set accuracy, FPR and F1-score boxplots for
single-system and naïve multi-system models, (1) entity-
heavy, (2) service-heavy, (3) disk-heavy and (4) entity-light
multi-system models.

has to generalize more, doesn’t perform too bad with a median
accuracy of 84% and a median FPR of 7%, though, with significant
outliers. Promisingly, the median accuracy is between 86% and
92% and the FPR is between 11% and near 0% in the clustered
models, indicating that multi-system event prediction can benefit
from appropriate clustering. As expected, the clustered models
place themselves below the single-system models, but above the
naïve multi-system model. The difference of cluster (4) to the single-
system models is quite small, even for the preliminary approach.
Further improvements can be expected with a better clustering
approach, making multi-system prediction a promising option.

5 RELATEDWORK
While we are not aware on other research on multi-system event
prediction, the area of single systems is already well researched.
For anomaly, failure and event prediction, researchers focused on
two main approaches based on dynamic system data: using log data
and using monitoring data.

Log-data-based approaches. Fronza et al. [6], for example, parsed
the performed operation, their severity (e.g., info, warning, error)
and their timestamps from log files and used support vector ma-
chines for classification. In [14], the authors processed event logs
with manual labels provided by a system administrator and then
used sequences of logmessages as input to check for patterns. Given
a specified prediction window, they tested various ML models and
achieved a high classification quality. Salfner and Tschirpke [17]
also inspected event logs and extracted event sequences. They im-
proved their prediction results by focusing on grouping and filtering.
Yu et al. [22] gathered log data from an HPC (high performance
computing) system, where they tested an event-driven approach for
short-term (minutes) prediction and a period-based approach for
long-term prediction (hours/days). They extracted several features
(error code, severity, event time, etc.) from the logs and trained a
Bayesian-based predictor. Das et al. [5] investigated different classes
of failures also in HPC. They collected raw log data and performed
a three-phase learning scheme (extract chains of events, augment
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chains with expected lead times to failure, predict lead times) with
a long short-term memory neural network.

Monitoring-data-based approaches. Alonso et al. [1] tested a va-
riety of ML algorithms to predict system states based on feature
vectors from a set of system metrics, such as CPU workload or disk
used. Bodik et al. [4] predicted performance crises of data center
servers based on so-called fingerprints. Fingerprints are aggrega-
tions of the collected performance metrics and can be interpreted
as states of a data center. Pitakrat et al. [15] additionally considered
the system architecture for failure prediction, where they define
failures as violations of certain quality-of-service properties (e.g., re-
sponse time below threshold). Using metrics such as CPU, memory
and others at component level, they combine component failure pre-
dictors with a failure Bayesian-based propagation model for better
results than monolithic approaches. In [20], the authors investi-
gated the detection of problems in cloud environments, where they
collected virtual machine metrics (page faults, context switches,
latency, throughput, etc.) as well as host metrics (CPU, memory,
cache). Zhang et al. [23] used fine-grained metrics such as pro-
cess IDs or CPU consumption of threads to detect performance
anomalies. In combination with anomaly detection, Tan et al. [21]
used between 20 and 66 metrics to create alerts to signal upcoming
performance anomalies. Using decision trees, they trained clusters
of common execution contexts to improve prediction results.

Software reliability prediction. Long-term prediction of failures,
is also an interesting area of research [2, 3, 7, 9]. Instead of dynamic
system data, previous instances and recordings of failures are used
for prediction. It would be worth investigating whether long-term
reliability prediction is also possible in a multi-system scenario.

6 CONCLUSION
In this paper, we presented first steps towards an approach for multi-
system event prediction that operates on infrastructure metrics to
predict performance-related events. We preprocessed 20 days of
monitoring data of 90 independent systems and trained various
ML models to predict service slowdowns in each of them. In our
evaluation, we compared a naïve multi-systemmodel, which simply
uses all systems for training, to four multi-system models that
cluster systems based on their disk and service counts, as well
as single-system models. Results show that multi-system models
achieve high accuracies, F1-scores and low FPRs, especially when
finding appropriate clusters.

Our preliminary results are encouraging, and there are interest-
ing opportunities for future work. The reasons for the differences in
our clustered results need to be investigated, and we will also work
on an improved clustering approach that takes additional system
characteristics (e.g., service metadata) into account. We plan to im-
prove our approach by considering further preprocessing options
and additional ML algorithms to get even better results. We will also
address the problem of changing systems, which requires online
model retraining. Moreover, we are eager to determine prediction
performance for systems with limited data and yet unseen systems.
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