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ABSTRACT
This talk summarizes some lessons from teaching a course in analyt-
ical performance modeling, specifically: (1) what can an analytical
model offer? (2) how amodel can be decomposed into submodels, so
as to decouple different forces affecting performance, and thus ana-
lyze their interaction; (3) making choices in formulating a model; (4)
the role of assumptions; (5) Average Value Approximation (AVA);
(6) when bottleneck analysis suffices; (7) reducing the parameter
space; (8) the concept of analytic validation; and (9) analysis with
an analytical model.

CCS CONCEPTS
• General and reference → Performance; • Information sys-
tems → Database performance evaluation; • Networks →
Networkperformancemodeling; • Software and its engineer-
ing → Software performance; • Computing methodologies
→ Modeling and simulation.
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1 INTRODUCTION
After teaching analytical performance modeling for some years, I
publishedmy lecture notes as a book 1. One target user of the book is
the engineer who (a) is interested in the performance of a particular
system and (b) wants to model its behavior analytically, but (c) does
not intend to become an expert in mathematical modeling. The
techniques in the book are illustrated with 40 papers chosen from
a broad range of computer systems, big and small.

1Analytical Performance Modeling for Computer Systems, 3rd Edition, Morgan & Clay-
pool, 2018
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2 LESSONS
In the following, I summarize the major lessons in the book, using
some of the papers as examples.

2.1 Why an analytical model?
Cloud providers offer their customers an attractive proposition
that the resources provided can be elastically scaled according to
demand. However, a tenant may need a tool to help determine how
much compute power, memory, etc. to acquire, but is hampered by
having very little knowledge of the cloud architecture. [Elastic-
Scaling] [3] shows how one can get around this difficulty with a
model.

Energy and latency are major issues for datacenters. [Datacen-
terAMP] [7] uses a simple queueing model to study how asym-
metric multicore processors (AMP) can help the tradeoff between
energy consumption and latency bounds. The idea is to marshal
the resources of smaller, less power-intensive cores into one large,
faster core. The technology for this is not yet ready, so a model is
necessary for exploring what is (or is not) possible in reconfiguring
cores for performance.

[GPU] [9] also uses amodel for architectural exploration. AGPU
runs multiple threads simultaneously. This speeds up the execution,
but also causes delays from competition for MSHRs (Miss Status
Handling Registers) and the DRAM bus. The paper uses a model
to analyze how changing the number of MSHRs, cache line size,
miss latency, DRAM bandwidth, etc. affect the tradeoff. There is
no practical way of doing such an exploration with real hardware.
Part of the analysis is based on using the model to generate the
CPI (cycles per instruction) stack that classifies the stall cycles into
MSHR queueing delay, DRAM access latency, L1 cache hits, etc.

The model in [SoftErrors] [13] is similarly used to determine
how various microarchitectural structures (reorder buffer, issue
queue, etc.) contribute to the soft error rate that is induced by
cosmic radiation. Again, tweaking hardware structures is infeasi-
ble, and simulating soft errors is intractable, so an analysis with a
mathematical model is essential.

One equation from the [SoftErrors] model explains why an
intuition — that a workload with a low CPI should have a low
vulnerability to soft errors — can be contradicted. Similarly, the CPI
stack breakdown by the [GPU] model explains how workload that
spends many cycles queueing for DRAM bandwidth can, counter-
intuitively, have negligible stall cycles from L2 cache misses.

To design a complicated system, an engineer needs help from
intuition that is distilled from experience. However, experience
with real systems is limited by availability and configuration history.
Although one can get around that via simulation, the overwhelming
size of the parameter space usually requires a limited exploration;
this exploration is, in turn, guided by intuition. One way of breaking
this circularity is to construct an analytical model that abstracts
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away the technical details and zooms in on the factors affecting the
central issues. We can then check our intuition with an analysis of
the model.

Intuition is improved through contradictions: they point out
limits on the old intuition, and new intuition is gained to replace
the contradictions. Again, such contradictions can be hard to find in
a large simulation space, but may be plain to see with the equations
in a mathematical model.

2.2 Decomposition and decoupling
In the [SoftErrors] equation that explains why an execution with
low CPI can have a high vulnerability to soft errors, critical path
length K and instruction latency ℓ appear in a product. K is deter-
mined by the workload and ℓ by the microarchitecture; in this way,
the model decouples the two main factors (workload and microar-
chitecture) that determine performance, so one can analyze their
impact through K and ℓ separately.

For [ElasticScaling], the context is an in-memory transactional
data grid (e.g. a NoSQL data store). The performance is determined
by an interaction between contention among transactions for access
to data, and competition for cloud resources. The paper decomposes
this interaction into two submodels, one for data contention and
another for resource contention. The submodel for data contention
is a whitebox that explicitly models the access pattern, contention
for data locks, etc.; in contrast, the cloud architecture is largely
unknown to the tenant, so the submodel for resource contention
is a blackbox that uses machine learning to predict delays. Interac-
tion between data and resource contention is modeled by iteration
between solutions from the two submodels.

How might the two forms of contention affect one another? One
can see this in [DatabaseSerializability] [2], which considers an
application (e.g. e-commerce) that runs on a system that has a
master database and a middle-tier caching layer that is distributed.
The model is used to study how much performance one can buy
for a transaction, by letting it read data from a stale cache. There,
an increase in data contention (e.g. more concurrent transactions)
causes more transactions to wait for locks, thus reducing resource
contention; on the other hand, the increased blocking causes more
freshness violation, and thus more aborted transactions and wasted
resources. Conversely, an increase in the number of caches makes
it more likely that a transaction can access a local copy, possibly
reducing data contention; however, more caches also implies more
effort to enforce their consistency, and that may lead to higher
data contention. In contrast to [ElasticScaling], the resource con-
tention here is modeled with a whitebox, with object queues, caches,
etc.

The jobs in a system may suffer delays for various reasons. In
[MapReduce] [21], a job consists of map, shuffle and reduce tasks
that run in a distributed system. The job performance depends
not only on the queueing delays for resources (cycles, disks, etc.),
but also on the precedence constraints among the tasks. Again,
the model uses two submodels, a standard one for the resource
contention, and another one for the precedence constraint. The
precedence submodel is used to determine the number of active
tasks that compete for resources in the other submodel, thus sepa-
rating the two major factors that determine job performance.

2.3 Making choices
One precedence constraint in [MapReduce] is the synchroniza-
tion of map tasks. The model needs to estimate the average of the
maximum task times, i.e. Emax{X1, . . . ,Xn }. The authors first did
some experiments to verify that this average cannot be accurately
approximated by max{EX1, . . . ,EXn }. One usually think of experi-
ments as coming after a model is done, to generate measurements
for validation. The [MapReduce] example thus shows that experi-
ments are sometimes also needed to guide the formulation of the
model.

Results from a model can also guide the implementation of a sys-
tem, so the two could be developed with help from each other. This
is the case for [P2PVoD] [5]. The runaway success of P2P systems
like BitTorrent has prompted many proposals from academia to im-
prove such protocols. Each proposal can be viewed as a point in the
design space. This paper proposes an analytical model to represent
the entire space defined by the three dimensions of throughput,
sequentiality and robustness. The tradeoffs in choosing one point
instead of another in this space can then be analyzed via the model.

Without guidance from experiments, one may make the wrong
choices, and possibly end up with a model that is unnecessarily
complicated.

On-chip interconnects are replacing buses and point-to-point
wires. The performance, fault-tolerance, and energy issues for
such network-on-chip are inter-related. For example, errors from
crosstalk, electromagnetic interference and cosmic radiation (of
increasing importance with miniaturization) can cause packet re-
transmissions, thus increasing latency and energy consumption.
[NoC] [10] proposes a queueing model as a design tool for fast
evaluation of router designs. The model’s estimate of power con-
sumption is close to simulation measurement, but it is also roughly
linear with respect to flit injection probability. This linearity means
that some of the nonlinear expressions in the model could be sim-
plified to give a simpler model that might bring clearer insight.

Running experiments first can also prevent one from choosing a
modeling technique that is simpler than necessary. The queueing
networkmodel in [PipelineParallelism] [14] is used to study how
a parallel computation should be balanced over a pipeline of stages,
with concurrent threads per stage, so that slow execution in one
stage does not stall the other stages. Experiments show execution
time is not monotonic with respect to the number of threads; stan-
dard queueing networks do not have such nonmonotonic behavior,
so the modeling technique chosen is inadequate.

[WirelessCapacity] [6] presents a different choice, between
two models. The system consists of stationary wireless nodes that
are geographically distributed, and traffic between nodes may re-
quire multiple hops. The channel is shared, and senders contend
for medium access. The issue is scalability: How does the number
of nodes affect the achievable throughput per sender? The paper
presents two models, one at the physical layer, and one at the
protocol layer. They give different upper bounds on the transport
capacity, but there are no experiments in the paper to help decide
which is better.
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2.4 The role of assumptions
The absence of experimental validation in [WirelessCapacity] is
perhaps understandable: A real network is hostage to the flakiness
of wireless interference and hard to scale up, whereas simulators
make simplistic assumptions (e.g. interference and mobility pat-
terns).

Analytical models are often criticized and dismissed for their
simplifying assumptions. Indeed, one must take care that a model’s
assumptions and approximations do not introduce artifacts, nor
miss essential properties of the system.

In [SensorNet] [18], the system consists of stationary wireless
sensors, and some mobile data mules that collect their measure-
ments for delivery to access points. The basic issues are how buffer
sizes should scale and how data delivery rates would change with
the system size. The model discretizes the space into N locations,
and derives a buffer occupancy that depends on N . This result is
clearly an artifact of the model.

On the other hand, the assumptions in [PipelineParallelism]
could not model the nonmonotonicity in execution time.

[GPRS] [15] offers an example that can model nonmonotonic be-
havior. The GPRS infrastructure has multiple overlapping wireless
cells managed by base stations wired to a backbone of routers, and
this paper focuses on the timeslot allocation for downlink traffic
to mobile nodes in one bottleneck cell. For a fixed number of users
per cell and as the load increases, the model shows that throughput
first increases, then decreases.

Another example is [PerformanceAssurance] [17], which ex-
amines resource provisioning for multi-tier services at the granu-
larity of software components. It has an analytical model that uses
an MVA algorithm from queueing theory to compute performance
estimates, and these are used to decide how components are to be
replicated and distributed to satisfy service level objectives. MVA
assumes service demands do not change with queue size, but this is
not the case here, because of context switching, etc. Instead of wor-
rying about this assumption, the authors violate it by modeling the
change in service demands, and feed them to the MVA algorithm
anyway. The resulting estimates show a nonmonotonic behavior
in CPU utilization that matches experimental measurements.

The model in [DatabaseScalability] [4] also uses theMVA algo-
rithm despite violating the MVA assumptions. The paper illustrates
how a model can use the performance of a standalone database to
predict the performance of a replicated database and, in addition,
compare two alternative designs (multi-master and single-master).
The probability of aborting a transaction increases with the repli-
cation and the number of clients, thus changing the demand for
resources (at the CPU, disks, etc.) and breaking the assumptions
underlying MVA. Yet, experiments show good agreement between
model predictions and simulation measurements.

[MapReduce] similarly break the MVA assumptions in using
the precedence constraints to adjust the number of concurrent tasks
in the MVA algorithm.

In [GPU] [9], the model puts a bound on the delay computed
with the Pollaczek-Khinchin formula for an M/D/1 queue. One
might consider this as a violation of the assumptions for the formula,
but another way to see it is that the bound merely modifies an

approximation. After all, theM/D/1 queue is itself an approximate
model of DRAM bandwidth contention delay.

Some models work very hard to generalize the assumptions for
the derivations. Such efforts are unnecessary — it serves no purpose
to precisely determine the assumptions (e.g., Markov regenerative
process) that are needed to justify an equality when so much else
in the model are approximations. They only transfer the need for
justification from the equation to the assumptions. One should just
regard the equality as another approximation.

Besides, the objection against simplifying assumptions is partly
based on a confusion between sufficient and necessary conditions
for a derivation. The assumptions may suffice for the results, but
that does not mean that they are necessary. Often, the results from
the analysis are robust with respect to violations of the assump-
tions, and continue to hold even under weaker assumptions; the
simplifying assumptions are then a quick way of arriving at the
results.

One should therefore not hesitate to adopt simplifying assump-
tions, push on with the analysis, and let the experimental measure-
ments justify the derivation.

2.5 Average Value Approximation (AVA)
In line with simplifying assumptions, one technique that is often
used in performance modeling is to replace a random variable X by
its mean EX . I call this Average Value Approximation (AVA).

For example, the [SoftErrors] model estimates a critical path
C as taking ℓK cycles, where ℓ is average instruction latency and
K is the average critical path length. In other words, it adopts the
approximation EC̃ = E(ℓ̃K̃) ≈ (Eℓ̃)(EK̃), where C̃ , ℓ̃ and K̃ are
the respective random variables. A sufficient condition for this
derivation to hold is if ℓ̃ and K̃ are independent, but this may not
be true for the workloads in [SoftErrors]. The approximation is
thus an example of AVA.

Similarly, in [GPRS], the model uses an approximation EX̃ =

E Ũ
Q̃

≈ EŨ
EQ̃

, where X̃ is the number of time slots given to a mobile

for its packet transfer, Ũ is the number of time slots occupied by
active mobiles, and Q̃ is the number of mobiles in active transfer.
This is also an example of AVA since, strictly speaking, E X

Y =
EX
EY

may not hold even for independent random variables X and Y .
More examples of AVA can be found in [ElasticScaling], [Sen-

sorNet], and other papers described below.

2.6 Bottleneck analysis
No matter how complex a system is, estimating its performance is
usually easy at two extremes: when workload is light and no time
is wasted on queueing for resources, and when workload is heavy
and performance is determined by a bottleneck resource that is
rarely idle. These extremes determine two straightline asymptotes
that meet at a knee, and performance is a nonlinear curve around
this knee, but converges to these asymptotes for light and heavy
workloads. Sometimes, it suffices that the model locate these two
straight lines via a bottleneck analysis.

[Roofline] [22] provides an example, where the aim is to de-
termine whether memory bandwidth or processor speed is the
bottleneck for a workload. With just the two asymptotes, one can
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choose between two architectures by comparing their knees, evalu-
ate the efficacy of a software optimization by considering how it
affects the lines, and determine if an application is constrained by
memory bandwidth or processor speed.

For a larger example, consider [CloudTransactions] [11].
Cloud providers use elasticity as one selling point for their services.
These providers offer a choice of architectures, and this paper’s ob-
jective is to compare the scalability and cost of three choices: classic
(e.g. Amazon Relational Database Service), replicated (e.g. Microsoft
Azure) and partitioned (e.g. Google AppEngine). A comparison can
be done via a bottleneck analysis that examines how the asymptotes
are affected by the number of servers (web/application, database
and storage), service demands and arrival rate of transactions and
ratio of server speeds.

The conclusions in [MapReduce] are based on configurations
where the response time is mostly linear and utilization is flat with
respect to the number of map tasks, i.e. performance has hit a bot-
tleneck. That says that a simple bottleneck analysis should suffice,
without need for the difficult integration of MVA and precedence
constraints.

Similarly, the throughput and response time in [DatabaseScal-
ability] are mostly linear with respect to the number of replicas
(which determines the number of clients), so a bottleneck analysis
should suffice to draw many of the conclusions, without need for a
transaction conflict analysis.

2.7 Reducing the parameter space
A system can have many parameters of interest. One advantage that
an analytical model has over measurements with implementations
or simulations is the ability to look at the entire parameter space.
For example, the [P2PVoD] model explains a counter-intuitive
behavior and reflects a performance tradeoff as one moves from
one part of the parameter space to another.

On a related note, [DatabaseSerializability] shows how one
concurrency control has better throughput than another for one
part of the parameter space, and vice versa for another. This illus-
trates how two simulation studies can reach different conclusions
if the parameters are set differently, using some “magic” values.

A bad choice of magic values can mislead an analysis. For ex-
ample, some experiments in [PipelineParallelism] show that it
is optimal to collapse all intermediate stages of the computation
pipeline; in that case, there is no need for an analytical model to
decide how to structure the pipeline and threads. This conclusion
suggests that the analysis may be looking at some uninteresting
region of the parameter space.

Instead ofmagic values, one better way of reducing the parameter
space is to restrict the analysis to realistic scenarios. For [GPRS],
it is considered unacceptable for the probability of blocking (i.e.
a mobile that wants to start a download cannot do it because the
number of active mobiles in the cell has reached a maximum) to
exceed 2%. Yet, some experiments push the blocking probability to
levels far exceeding that. By using that 2% to restrict the parameter
space, the analysis could possibly be simplified, and yield clearer
insight.

[EpidemicRouting] [23] illustrates another way of restricting
the parameter space. The system consists of wireless nodes moving

in some pattern over a restricted area. Each node is a source and a
destination for a flow of packets, has a buffer to hold packets, and
runs a protocol to route a packet from a source to its destination via
forwarding when two mobile nodes meet wirelessly. This forward-
ing is akin to infection except, being a protocol, there are multiple
variations to the infection mechanism. One objective of this paper
is to propose a uniform framework, using differential equations,
for modeling the variations. The paper avoids the difficult issue
of modeling the mobility pattern by drawing on previous work to
reduce that problem to a parameter β that represents the pairwise
node meeting rate. The analysis then proceeds with β , without
a need to consider the details of node movement. This β in fact
aggregates multiple parameters — the size of the restricted area,
the average relative speed between two nodes, etc.

[TransactionalMemory] [8] gives another example for the use
of an aggregated parameter. Single-processor techniques for coor-
dinating access to shared memory (e.g. using semaphores) do not
scale well as the number of cores increases. One possible alternative
is transactional memory, and this paper studies the performance im-
pact when it is implemented in software. The main parameters for
the model are the number of data items L, the number of concurrent
transactions N , the number of lock requests k , and the probability
that a lock request is for write access. Part of the analysis uses the
aggregated parameter kN /L to delimit their parameter space.

In [MediaStreaming] [20], the system has a set of streaming
servers and peers that are connected by a network, and a collec-
tion of files for download. The scalability of the system relies on
harnessing the bandwidth of peers, by having them upload their
downloaded files to other peers. One objective is to determine the
time k0 it takes for the peers to take over from the servers, in terms
of satisfying download demand. The model uses a transient analysis
to derive k0 = (logW )/log(1+C), whereW = λLb/N ,C = α/b and
α , λ,b, L andN are parameters for peer and server bandwidth, band-
width to stream a file, length of a streaming session and request
rate. We see here that one can easily explore the 2-dimensional
space for k0 defined by C andW , instead of a 5-dimensional space.

In fact, an aggregated parameter can encapsulate a space of un-
known dimensions. One major difficulty for [ElasticScaling] lies
in modeling the transactions’ nonuniform and unknown data access
pattern. The authors conjecture that this nonuniform access is in
fact equivalent to uniform access over a dataset of size D = 1/ACF,
where the Application Contention Factor ACF can be calibrated
(and the conjecture validated). It would take an unknown number
of parameters to exactly specify the nonuniform access pattern, so
this ACF simplifies the analysis tremendously.

2.8 Analytic validation
Analytic modeling is an art, in that we pick approximations to
trade accuracy for tractability and insight. A different choice of ap-
proximations would give different expressions for the performance
measures. Simplifying assumptions can also introduce artifacts that
are not properties of the system.

Hence, theoretical conclusions from an analytical model must be
validated to make sure that they describe properties of the system,
rather than properties of the model. I call this analytic validation.
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Instead of comparing experimental measurement and model
calculation, one can do an analytic validation by comparing ex-
perimental measurements. To give an example, recall the result
k0 = (log(λLb/N ))/log(1 + (α/b)) from the [MediaStreaming]
model. We can check if this is true of the system (and not just in the
model), as follows: Let X = k0 log(1 + (α/b)) and Y = log(λLb/N ),
measure k0 for a choice of α , b, etc., repeat this experiment r times
to get ⟨X1,Y1⟩, . . . , ⟨Xr ,Yr ⟩, and plot these r points on the X -Y
plane; if the system in fact has the property derived with the model,
then the points should cluster around the X = Y line.

For another example, recall the conjecture in [ElasticScaling]
that the nonuniform access of real transactions is equivalent to
uniform access over a dataset of size 1/ACF. The key property
to check her is whether the measured ACF is in fact constant for
a workload. Experimental results in the paper show that, in fact,
this is the case as the number of nodes in the data grid increases,
and despite a drastic change in application workload (TPC-C and
Radargun) and system architecture (private cluster and EC2).

Internet routers drop packets when their buffers are full. To
avoid this, and to accommodate the large number of flows, router
buffers have become very big. [RouterBuffer] [1] uses an ana-
lytical model to study whether flow multiplexing can make this
bufferbloat unnecessary. Among the results are expressions for
buffer occupancy EQ and Prob(Q ≥ B) that depend on the link rate
C only through link utilization ρ. These are strong claims from the
model, so they require experimental verification. Indeed, simula-
tion results in the paper show that when ρ is fixed, EQ for different
values of C are indistinguishable, and similarly for Prob(Q ≥ B).
These confirm that the “depends on C only through ρ” result is a
property of the system, and not an artifact of the model.

In wireless networking, WiFi technology is based on the IEEE
802.11 protocol that controls packet exchange between the base
station and mobiles in the cell. Simultaneous transmissions from
different mobiles can cause packet collisions and induce retransmis-
sions and backoff, so maximum possible throughput can be lower
than the channel bandwidth. The model in [802.11] [19] examines
how this saturation throughput depends on the protocol parameters,
and on the tradeoff between collision and backoff. One of the claim
from the model says that the probability p of a collision depends on
the protocol’s minimum window sizeW and the number of mobiles
n only through the gap д =W /(n − 1). Simulations show that ⟨д,p⟩
for different configurations do in fact lie on the same curve. The
model also claims that bandwidth wasted by collisions exceeds idle
bandwidth caused by backoffs if and only if r > 1/T , where r is
the transmission rate and T is the transmission time (including
headers); this was also analytically validated by the experiments.

2.9 Analysis with an analytical model
To answer the question “Why an analytical model?”, we had ear-
lier looked at specific examples of what such a model can offer,
in the case of [ElasticScaling], [DatacenterAMP], [GPU] and
[SoftErrors]. But there is another answer, from the perspective of
Computer Science.

A common argument for an analytical model is that solving
it is faster than simulations and, in fact, many papers use their
models as replacement for simulators: They are used to generate

numerical results that are plotted to show the relationship between
performance measures and input parameters, and conclusions are
drawn from looking at the plots. I call this analytic simulation.

If conclusions are to be drawn from looking at plots, then one
may be better off taking the time to generate those plots with
a simulator, since the model’s assumptions and approximations
may introduce misleading inaccuracies. The power in an analytical
model lies not in its role as a fast substitute for a simulator, but in
the analysis that one can bring to bear on its equations. Such an
analysis can yield insights that cannot be obtained by eyeballing
any number of plots (without knowing what you are looking for),
and provide conclusions that no simulator can offer.

There is a related argument that an analytical model can be used
as a tool to help system design (e.g. [NoC], [DatabaseScalabil-
ity]) or resource provisioning (e.g. [GPRS], [PerformanceAssur-
ance]). However, a model can offer more than that.

The transport protocol TCP is a software that controls much
of current Internet traffic. Most TCP versions use packet loss and
timeout as signals for controlling the transmission rate, so a natural
question is: how do they affect the connection throughput? The
protocol has intricate details, and runs over a distributed mess of
hardware, yet the model in [TCP] [16] is able to capture the essence
of TCP behavior. Its key equation expresses TCP throughput in
terms of loss probability p and round trip time RTT. Clearly, for any
nontrivial Internet path, p and RTT can only be measured, not pre-
dicted, so what is the point of having that equation? Its significance
lies not in predicting throughput, but in characterizing its relation-
ship with p and RTT. Such a characterization led to the concept of
TCP-friendliness, and the design of equation-based protocols. The
model thus advances the science of network communication.

For a topical example, consider the spread of fake news and
memes, etc. over the Web, driven by user interest, modulated by
daily and weekly cycles, and dampened over time. To adequately
capture this behavior, [InformationDiffusion] [12] modifies the
classical epidemic model. However, there is no way of integrating
the resulting differential equation, so it is solved numerically. The
parameters can then be calibrated by fitting measured data points.
Since measurements are needed for calibration, the model has lim-
ited predictive power. Nonetheless, the parametric values serve
to succinctly characterize the diffusion, and provide some insight
into its origin. This example illustrates the point that, although the
pieces of a system are designed, engineered and artificial, they can
exhibit a hard-to-understand, organic behavior when put together.
An analytical model is thus a tool for developing the science of
such organisms.

There are other examples of how an analytical model can con-
tribute to the scientific analysis of a computer system: the trade-
off between collision and backoff in [802.11], the reduction of
nonuniform access to uniform access in [ElasticScaling], and the
decoupling of workload and hardware in [SoftErrors], resource
contention and precedence constraint in [MapReduce], data and
resource contention in [DatabaseSerializability].

3 CONCLUSION
The book provides an introduction to the techniques that are used
to construct the models mentioned above. Although the computer
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systems that are analyzed are complicated, the mathematical tech-
niques often do not require more than an undergraduate education
in calculus, probability and statistics.

Crafting an analytical model is therefore within reach of a perfor-
mance engineer. I hope the lessons described here can encourage
them to build such models for their systems, and thus help de-
velop the science and push the envelope for engineering computer
systems.
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