
“What did I learn in Performance Analysis last year?”: Teaching
Queuing Theory for Long-term Retention

Varsha Apte
Computer Science and Engineering Department

Powai, Mumbai 400 076, India
varsha@cse.iitb.ac.in

ABSTRACT

This paper presents experiences over thirteen years of teach-
ing a queuing systems based performance analysis course.
We discuss how a ‘mathematics first’ approach resulted in
students not retaining the intuitive concepts of queueing the-
ory, which prompted us to redesign a course which would
emphasize the ‘common sense’ principles of queuing theory
as long-term takeaways. We present a sequence of syllabus
topics that starts with developing and arriving at a host
of queuing systems based insights and ‘formulae’ without
going into the mathematics at all. Our key insight is that
in practice, only asymptotic values - at both low and high
load - are critical to (a) understand capacities of systems
being studied and (2) basic sanity checking of performance
measurement experiments. We also present two assignments
(one measurement, and one simulation) that we now give,
that help in reinforcing the practical applicability of queuing
systems to modern server systems. While we do not have
formal studies, anecdotally, we have reason to believe that
this re-design has helped students retain for the long term,
the most essential results of queuing systems, even if they do
not study this subject further.

CCS CONCEPTS

� General and reference � Measurement; Perfor-
mance; �Mathematics of computing�Queueing the-
ory; � Social and professional topics � Model curric-
ula; � Applied computing � Education.

ACM Reference Format:
Varsha Apte. 2019. “What did I learn in Performance Analysis
last year?”: Teaching Queuing Theory for Long-term Retention.

In Tenth ACM/SPEC International Conference on Performance
Engineering Companion (ICPE ’19 Companion), April 7–11, 2019,

Mumbai, India. ACM, New York, NY, USA, 7 pages. https://doi.

org/10.1145/3302541.3311526

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6286-3/19/04. . . $15.00
https://doi.org/10.1145/3302541.3311526

CS 681 (Performance Analysis of Computer Systems

and Networks) Syllabus
Introduction to performance measures; performance mea-

surement; analytical modeling for performance; use of basic
probability for performance evaluation; Markov chains; Markov-
ian queues; non-Markovian queues; queueing networks; design,
implementation and analysis of discrete event simulation models

(confidence intervals, discarding transients); Applications
to: operating systems (paging, scheduling, multi-threading);

networks: Web servers, TCP/IP models, Wireless LAN, power
management, virtualization.

Figure 1: CS 681 Syllabus

1 INTRODUCTION

A graduate course by the name of “Performance Analysis
of Computer Systems and Networks” and course code ‘CS
681’ has been taught by this author for about fifteen years
in the Department of Computer Science and Engineering,
IIT Bombay. The official syllabus of the course is shown in
Figure 1.

The course originally followed a conventional approach
of starting with teaching the basics of probability distribu-
tions, the usual properties and metrics derived from them,
the mathematics related to functions of random variables,
culminating with stochastic processes. Then followed the use
of Markov chains to model queuing systems. The course has
always included a hands-on project component of developing
a discrete event simulation model of a system, and applying
sound statistics to analyze the results of the simulation. This
allowed students to compare the simulation modeling method
with analytical modeling.

At the Spring 2015 offering of this course we made a
major change in the teaching approach of the course. As
we taught the course, a fresh set of notes were written [2]
where this approach can be found in further detail. The
main motivation behind this change was an observation over
the years that students were not retaining the basic queu-
ing systems ‘intuition’ that this course should have fostered
in their mind. Graduate students in India, from institutes
other than IITs generally do not have a particularly rigorous
mathematical preparation, and thus the students got buried
under the mathematics, and missed the opportunity to take
away basic queuing principles that are simply ‘common sense’
and are mathematically trivial. To address this problem, we
completely turned the sequencing around to introduce basic

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

71

https://doi.org/10.1145/3302541.3311526
https://doi.org/10.1145/3302541.3311526
https://doi.org/10.1145/3302541.3311526

For each topic, examples of application of the theory to systems

and networking were continuously provided. From networking:
Aloha, TCP, IEEE 802.11, Ethernet, TDMA/FDMA. From

Systems: Multithreaded servers such as Web servers, multiple

Server back-ends, etc, power-managed systems, virtualization,
mobile phones.

∙ Introduction to resources of contention, parameters and
metrics of performance.

∙ Basic probability review, conditional probability, Law of
total probability

∙ Random variables, expectation, variance, moments

∙ Common distributions - Special properties of Poisson,
Exponential distributions (memorylessness)

∙ Functions of random variables: order statistics, Transform

methods, Random Sums
∙ Distrete Event Simulation and its sound statistical anal-

ysis

∙ Stochastic Processes
∙ Continuous Time Markov Chains

∙ Markovian Queuing Systems and Queuing Net-
works(Open). Basic elements of an open queueing system,
Kendall notation, operational laws, Litte’s Law, Jackso-

nian Open Queueing network and its analysis.

∙ Closed Queuing Network: CTMC based analysis (example
only). Mean Value Analysis

∙ Discrete Time Markov Chains and 𝑀/𝐺/1 queue

Figure 2: Original Sequence of Syllabus Topics

principles of queuing theory before introducing probability
and stochastic processes, and introduced a ‘discovery-based’
approach for students to better understand queuing theory.

The rest of the paper describes the problems faced in the
original teaching sequence, the various teaching strategies
used to address them and concludes with a discussion of
whether our course re-design has helped students retain the
most practically applicable tools of queuing theory.

2 CHALLENGES WITH A
MATHEMATICS - FIRST
APPROACH

For the first many years, we taught this course with a belief
that introducing probability, random variables, and stochas-
tic processes was a pre-requisite to a solid understanding
of queuing systems, which is the approach taken in most
textbooks [1, 6]. The sequencing of the syllabus earlier is
shown in Figure 2. In the second half of the course, after stu-
dents were introduced to discrete event simulation, students
also did a self-proposed simulation analysis project. Students
would submit a proposal of a system (based on an existing
paper) to analyze, ask some design questions around it, and
answer those using a statistically sound simulation. They
had to code the simulator from scratch, so that they truly
understood the workings of a simulator.

Over the years, this course started looking very challeng-
ing to students. Graduate students taking this class in IIT

Bombay are usually from Universities lacking a rigourous cur-
riculum in Engineering Mathematics. Thus, the probability
and random variables background had to be taught at intro-
ductory level. This part, starting from basics to functions of
random variables, which then can be understood fully only
by learning transform methods, forms too large a syllabus
component to be done as a pre-requisite for the rest of the
course on queueing systems. With a two-weeks budget, it
still felt rushed to a majority of graduate students.

In this early form, queuing systems were taught as ‘appli-
cations’ of stochastic processes - Continuous Time Markov
Chains (CTMCs) for 𝑀/𝑀/𝑐/𝑘 queues, and Discrete Time
Markov Chains (DTMC) for the 𝑀/𝐺/1 queue. This had
another unintended impact, which is that inferences one can
draw about a queueing system, without resorting to modeling
it using a Markov Chain, were not obvious to a student. E.g.
almost all low-load and high-load asymptotes of performance
measures derived from queueing systems can be reasoned
about without using Markov chains - this was not obvious to
students.

In the recent years, the discrete event simulation project
also resulted in numerous complaints from students, and
an increasing display of complete lack of comprehension
of statistical concepts taught in class such as confidence
intervals.

Lastly, this sequence left very little time to truly under-
stand DTMCs - in the final exams, most students routinely
failed to answer the one question on DTMC modeling. Stu-
dents also found Closed Queuing Network modeling very
difficult to understand, as discussion on MVA was done at
the very end, when students were already saturated.

At the end of the course, the students were left with no
clear takeaways of what they had learnt which they could
apply easily in their day-to-day systems and networking R&D
work.

There are some alternative books that employ a signifi-
cantly less probability-and-stochastic-processes approach to
discussing queueing systems, e.g. Menasce’s book [5] offers a
fairly practical discussion on E-business application analysis.
However, this book is somewhat specific to computer applica-
tions, and capacity planning - whereas we wanted to continue
to cover methods applicable to both networks and systems,
and thus focus on the formulations and theory, rather than
the application area.

Mor Harchol-Balter’s book [4] is closest to what we wanted.
In her book, she infuses the theory coverage with substantial
intuition; the book starts out with design questions that force
the reader to think intuitively. Nonetheless, her book also
follows the approach of covering probability pre-requisites be-
fore presenting queuing theory, and is in fact mathematically
fairly demanding.

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

72

Table 1: Low and High Load asymptotes of Various Metrics of Queuing Systems: Arrival rate is 𝜆, service
time is 𝜏

𝐺/𝐺/1 𝐺/𝐺/𝑐 𝐺/𝐺/1/𝐾 𝐺/𝐺/𝑐/𝐾

Metric 𝜆 → 0 𝜆 → ∞ 𝜆 → 0 𝜆 → ∞ 𝜆 → 0 𝜆 → ∞ 𝜆 → 0 𝜆 → ∞
Throughput 0 𝜇 0 c 𝜇 0 𝜇 0 c 𝜇
Utilization 0 1 0 1 0 1 0 1

Queue Length 0 ∞ 0 ∞ 0 𝐾 0 𝐾
Number in System 0 ∞ 0 ∞ 0 𝐾 + 1 0 𝐾 + 𝑐

Waiting Time 0 ∞ 0 ∞ 0 𝐾𝜏 0 𝐾
𝑐
𝜏

Response Time 0 ∞ 0 ∞ 0 (𝐾 + 1)𝜏 0 (𝐾
𝑐
+ 1)𝜏

3 A COMMON - SENSE - FIRST
APPROACH TO TEACHING
QUEUING SYSTEMS

After our survey of existing books, we concluded that we
needed to propose our own sequence and approach in which
to introduce and develop queueing systems theory and its
applications. The revised sequencing of the syllabus that we
follow now since 2015, is shown in Figure 3. As can be seen,
we can cover a lot of ground in Queueing Systems and their
practical use without going into much mathematics.

The main insight here is that one can engage students in
thinking about low load asymptotes and high load asymptotes,
of queue performance metrics, or their lower or upper bounds,
in a completely intuitive manner. Table 1 shows the table
of asymptotes we get students to arrive at by themselves by
facilitating intuitive brainstorming in class.

For example, for the 𝐺/𝐺/𝑐/𝐾 queue, it is easy to get stu-
dents to think through the low load asymptote of throughput
(0) and the high load asymptote of throughput 𝑐𝜇. Similarly,
the load load and high load of queue lengths are trivial: 0 and
𝐾. To reason about, say mean response time (of accepted
requests), strictly mathematically speaking, students should
have a good understanding of memoryless properties and
conditional distribution of queue length as seen at arrival
epochs. They should also understand that in case of limited
buffer queues, when we talk about response time, we must
condition it on not having an “infinite” value. We should
also be first introducing defective distributions. But in the
approach of this course, we choose to not follow this mathe-
matically rigourous path. When only talking about conditions
where 𝜆 → ∞ it is not hard to take the student through the
following thought process

∙ As load grows, the likelihood that a request that is not
dropped, joins in the queue at the last position grows.

∙ The mean remaining time of the requests in service
may vary based on when this request has joined, but
an upper bound is 𝜏 .

∙ A request will move one position up in the queue when
any request from the queue leaves, an upper bound
for the expected time for this with one server would
have been 𝜏 ; intuition says that with 𝑐 servers it should
be 𝜏

𝑐
. Since buffer length is 𝐾 and then there is the

request’s own service time, the formula follows.

For each topic, examples of application of the theory to systems

and networking were continuously provided. From networking:
Aloha, TCP, IEEE 802.11, Ethernet, TDMA/FDMA. From

Systems: Multithreaded servers such as Web servers, multiple

Server back-ends, etc, power-managed systems, virtualization,
mobile phones.

∙ Introduction to resources of contention, parameters and
metrics of performance.

∙ Introduction to queuing systems (open): basic elements of

an open queueing system, Kendall notation, operational
laws, low load and high load asymptotes of queue per-

formance metrics, Litte’s Law. Brief intuitive mention of

Exponential distribution and memoryless property here,
and Poisson distribution and PASTA.

∙ Closed queuing system: operational and low/high load

asymptotic analysis of single server multiple users closed
system, closed tandem queuing networks, Jacksonian

closed queuing networks: Asymptotic analysis and MVA.
∙ Motivate that now for further analysis, formal proba-

bilistc methods will be required

∙ Basic probability review, conditional probability, Law of
total probability

∙ Random variables, expectation, variance, moments

∙ Common distributions - Special properties of Poisson,
Exponential distributions (memorylessness)

∙ Distrete Event Simulation and its sound statistical anal-

ysis
∙ Functions of random variables: order statistics, Random

Sums (if time permits)
∙ Stochastic Processes

∙ Continuous Time Markov Chains: examples of modeling

systems which cannot be formulated as queueing systems
∙ Markovian Queuing Systems: Open and Closed. The

coverage here focusses now only on filling the ”holes” (i.e.

values of metrics between low and high load asymptotes).
∙ Discrete Time Markov Chains and 𝑀/𝐺/1 queue

Figure 3: Revised Sequence of Syllabus Topics Fol-
lowed

This puts students in a very good position, where we can
ask them to draw graphs where they can draw lower and
higher asymptotic values of the plots, of all the standard
queueing system metrics. After this much has been absorbed
well, only then we motivate the need to study Markov chains,

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

73

so that the exact values of the ‘middle’ portion of the graphs
can be calculated.

We also introduce closed systems very early. This allows us
to then quickly give a performance measurement assignment
in which we ask students to measure the performance of a
simple Web server running a CPU bound script by generating
both ‘open load’ and ‘closed load’ on it (Figure 7 and 8).
Students are supposed to apply simple operational laws, and
the derived asymptotes to carry out a ’sanity check’ on the
results. We have found during our vivas that most students
actually do not cross check their results by using simple
queuing systems heuristics and it is only during vivas that we
engage them in such thinking. In many submissions, we are
able to point to the students that the numbers are failing very
basic queueing theory sanity checks, which means something
is wrong with their experiment.

Based on this assignment, students submit a report which
includes graphs such as the one shown in Figure 5, which is
the Response Time (𝑅) vs Arrival rate (𝜆) graph. Based on
this graph, we ask students questions such as:

∙ Can you estimate the high load asymptotic value of
the Throughput? (A good estimate should be 𝑐

𝑅𝑚𝑖𝑛

where 𝑐 is the number of cores in the server.)
∙ Is the knee of the response time curve at the expected
point? (Should be roughly near the 𝑐

𝑅𝑚𝑖𝑛
. In some

submissions it is not, and the students are asked to
explain why. Often this led to realizing of some error
in the experiment.)

∙ What is a good estimate of the service time of the
server? (𝑅𝑚𝑖𝑛). How should this relate to the slope of

the Utilization plot? (Slope should be roughly 𝑅𝑚𝑖𝑛
𝑐

).

Thus we drive home the point that just from, say the Response
Time graph, one should be able to have a good idea of what
the throughput and utilization graphs should look like and
employ these ‘queueing theory heuristics’ as a sanity check
on the graphs.

Students also submit the response time vs number of users
graph for closed system, and are asked to relate the slope of
the curve to the service rate of the server system, explain
the low load and high load asymptotes, and verify how good
Kleinrock’s Saturation heuristic was for their experiment.

All of the above is done without any review of probability,
stochastic processes or Markov chains. Note that this also
includes teaching Mean Value Analysis of Closed Product
Form Queueing Networks. This again means that concepts
such as the Sevcik-Mitrani Arrival Theorem has to again be
discussed ‘intuitively’, and various probability distribution
assumptions stated clearly. However, in our experience, this
is do-able and again, worthwhile to be done before diving
into stochastic processes, rather than after. Once stochas-
tic processes (CTMCs and DTMCs) start, students mental
stamina is spent mostly in dealing with the newness of those
concepts. In contrast, MVA is actually quite palatable. Once
we teach MVA, we also carry out an in-class laptop based ex-
ercise where students code the MVA iteration for an example
Closed QN in a spreadsheet. Here again, we engage students

intensely in predicting and explaining the asymptotes for all
the metrics.

In this version of the course, we also changed the nature of
the Discrete Event Simulation assignment (Figure 4). Instead
of varied self-proposed systems being evaluated (which had
a very successful run earlier), we now give an assignment
where we essentially again analyze a Web server, this time
using simulation instead of measurement, and encourage
students to ask ’what-if’ questions which would be difficult in
measurement as well as in an analytical model. For example
see Figure 6 where the students compared throughput with
increasing quantum size, and then tried to explain the trend
observed. Furthemore, for extra credit we encourage students
to model the same Web Server, using MVA, and compare
the results with both measured, and simulated. We have had
students do this for extra credit and feeling very satisfied
when the results approximately matched, and were also able
to reflect on what would be the reasons behind the divergences
between the values produced by the three approaches.

Finally, we now do not teach transform methods at all,
and thus do not study topics based on distributions of sums
of random variables - which is where transform methods
would be needed. Even in case of 𝑀/𝐺/1 queue we follow
the visual method based on remaining service time (from
the book by Bertsekas and Gallagher [3]) and avoid teaching
and using transform methods completely. This reduces the
mathematical burden on students greatly.

We have not done formal studies regarding whether this
improved the intuitive understanding of queuing systems by
students. But ‘anecdotally’ we do find better answers in the
theory quizes and finals, after such hands-on experiments
relating measurement to queueing theory-based predictions,
is done, and finally also related to simulation modeling.

4 DISCUSSION AND FUTURE
OUTLOOK

In this paper, we presented the gist of the changes we had to
make, to ensure that the most practically applicable methods
of queueing theory are taught early, and reinforced through-
out the course through hands on load testing and measure-
ment assignments, and a discrete event simulation assignment.
We used the example of a multi-threaded Web server, with a
CPU-bound script, running on a multi-core machine, on a
high-speed LAN, to keep things simple and comparable to
theoretical queuing systems. This allows students to appre-
ciate the predictive power of queueing system models, and
still understand the assumptions that are required to keep
the mathematics tractable.

Our main contribution in this course re-design is to have
gleaned results from queuing systems that do not require a
rigorous stochastic process background to understand, and
bring them to the early part of the course. Most importantly,
this included low and high load asymptotes of various met-
rics. Our claim is that practically, performance engineers are
most interested only in these asymptotes (especially at high

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

74

Simulation Modeling of a Web Application

Overall Goal of the Assignment
In this assignment you will continue the study of the perfor-
mance of a Web Application, this time through a discrete event

simulation model. You will take advantage of the power of
simulation analysis and model behaviours that are difficult to
capture using theoretical queuing systems and Markov chain

models. You will write a program, and then run it to ask various
interesting questions. For all metrics you will perform proper
statistical soundness analysis.

Detailed Specifications
Write a simulation program in any general purpose, object-

oriented programming language (C++, Java or python)

System Characteristics
Your system should have the characteristics of the Web server

environment that you measured. The following is recommended,

you can add/modify.

∙ Multi-core server machine

∙ Assume thread-to-core affinity. Once a thread is “as-
signed” to a core, it will remain there

∙ Multi-threaded Web server

∙ Thread-per task model - until max is reached, after which
queuing for threads starts.

∙ Round-robin scheduling, with context-switching overhead

∙ Request time-outs
∙ Users are in a standard closed loop - issue request, wait

for response, think then issue request again.

∙ Think time should have a mode not close to zero - do
not assume exponential distribution for think time.

∙ Have options of various request execution time distribu-
tions, such as - constant, uniform, exponential.

∙ Request timeout should also have a well-chosen distribu-

tion (Have some sort of a minimum, and then a variable
component)

Performance Metrics
Metrics/graphs will be similar to what you measured for the

earlier assignment .

∙ Average Response Time vs number of users
Generate confidence intervals for this metric. Point esti-

mates (averages of estimates from independent runs) are
ok for the remaining metrics

∙ Throughput, Goodput, Badput vs Number of users

– Badput = rate of completion of requests which were
already timed out.

– Goodput = rate of completion of requests that were

not timed out
– Throughput = goodput + badput

∙ Request Drop rate vs number of users

∙ Average core utilization vs Number of users
∙ Some additional graphs representing your own curiosity

regarding system performance vs some system parameter

Ensure that the transient is determined and discarded in each

of your simulation runs. You can do this informally, or follow
Welchs procedure.

Figure 4: Discrete Event Simulation Assignment for
Reinforcing Queuing Theory Principles

Figure 5: Typical Response time vs Arrival Rate
graph submitted as part of assignment report, based
on which many queueing theory based deductive
questions can be asked.

Figure 6: A “what-if” analysis graph submitted by
students using Discrete Event Simulation for study-
ing performance of Web Servers

load), and an intuition to quickly predict and calculate these
asymptotes is critical for a systems researcher.

It is true that discussing some intuitive results of queuing
systems without using the rigour of mathematics ends up
being somewhat ‘hand-wavy’ and certainly is often approxi-
mate. Nonetheless this is a trade-off that, in our assessment,
was necessary to engage student attention and increase the
chance of developing the intuition required if they were to
continue systems R&D work. Unfortunately, we have not
carried out formal pedagogical studies to quantify the im-
pact of this change of teaching approach. Anecdotally, we
feel that students are better retaining some take-aways for

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

75

Performance Measurement of a Web Application

Overall Goal of the Assignment The high level goal of the assignment is for learners to “experience” and

understand the performance of an actual queuing system first-hand, by direct measurement of metrics, and experimenting

with how these metrics change with various parameters. The example we will use is of a Web Server, which was
discussed in class as a typical queuing system. The resources a Web server uses are socket connections, threads, CPU,

network, disk, memory and so on. Each resource forms a queueing system of its own and impacts overall performance. You
will try your best to understand these impacts, and relate what you are learning in class to what you observe in the experiments.

Detailed Specification
For this assignment you will need TWO machines. One one machine, you must install a Web server (e.g. apache, or any other

web server of your choice). You will also be given a php script to run on this Web server, so you must load the PHP module

and make PHP work with this Web server. On the other machine, you will install two Web load generators. Load generators
are programs which emulate users of a Web site by sending certain specified URLs to the Web server, reading the response,

and as a result noting down performance metrics such as response time, throughput, number of requests lost, timed out, etc.

The two load generators to be installed are: httperf, and Tsung. Httperf is capable of generating an “open” load - i.e. open
arrivals specified by an arrival rate, while Tsung generates a “closed load” - i.e. it creates multiple virtual users who are in a

request-response loop with the server. Both these tools will take specifications in their own formats, of which URLs are to be

sent by the tool, and the load quantifier. For httperf, you have to specify an arrival rate, and for Tsung, a number of users and
think time. In both cases, a load test duration is specified. To get sensible results, you must run a load test at each “load level”
for at least 5 minutes. Each of these tools will output “client-side” performance metrics such as response time, throughput,
requests refused, timed out, etc.

For this assignment, you are also required to measure some “server-side” performance metrics. Such metrics can be measured
using Linux utilities such as top and vmstat while the load generation is going on.
The Load Test

Your “loadtest” will generally proceed as follows:
Start the Web server. ENSURE THAT NO OTHER PROCESS IS RUNNING ON THE SAME MACHINE THAT MAY
AFFECT PERFORMANCE.

Start the load (e.g. httperf on the client machine) - here also, it is best that the client is not running other major processes.
Run the load for a few minutes. For this assignment I suggest setting the timeout to something very large (we won’t measure
timeouts).

As soon as you start load, start server side performance measurement (top, or vmstat that writes out measurement snapshot
periodically into a file). Wait for a few minutes (load generation should be going on, 4-5 mins should be enough) and then stop

the server side performance measurement

Stop the load generation.
These steps are important because you must measure the server only when a steady load of the rate that you specified is

actually coming to the server. If you start measurements before load starts, then you may get nearly zero CPU utilization. The
same problem will happen if you continue taking measurements after load generation has stopped. So it is critical that the
average CPU utilization is calculated only for the phase when the server is busy serving requests at the rate offered to it.

For generating performance curves, you must repeat the load test at various load levels.
Server side performance measurement This is essentially just for getting snapshots of CPU utilization. You should take, say,
10-second snapshots of this metric and then average the snapshots. Do NOT take “visual” snapshots. Write out the output of
top or vmstat to a file and then take the average (you may need to use your scripting skills for calculating this average - e.g.

awk or python).
You must ensure that your server side configuration is sensible. Ensure that Apache has enough threads so that threads are

never the bottleneck. It will be easiest if you run this assignment on a single-core server. If you have a multi-core server, ensure
again that number of Web server threads is enough, and remember this fact when you make plots and compare with theory
(multiple server queueing system).

. . . (Continued)

Figure 7: Performance Measurement Assignment for Reinforcing Queuing Theory Principles

the long-term, especially if they take up jobs in “systems”
companies.

Going forward, the main evolution of Performance Mod-
eling courses will need to be in the direction of how these
approaches fit in with new machine learning based empirical
models. Students are increasingly resistant to trying to under-
stand a system deeply, which is a pre-requisite for modeling
it well, since the impression is that system behaviour need

not be ‘understood’ to model it - modern statistical models
can ‘learn’ anything. Thus, future courses like this one, will
need to trade off the teaching of some conventional topics
in stochastic models, against covering statistical learning
models.

REFERENCES
[1] H. Akimaru and K. Kawashima. Teletraffic: theory and ap-

plications. Telecommunication networks and computer systems.

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

76

...Performance Measurement of a Web Application (Contd)

Plots of performance metrics We will study the behaviour of performance metrics by mainly varying the request
arrival rate for open load, and the number of users, for closed load.
For generating sensible plots, you should generate “points” corresponding to a very low CPU utilization (5%) and
go smoothly up to 100% system utilization. At least 10 points evenly spaced points should be generated. This means
you have to do at least ten “runs” with varying load (request arrival rate or number of users). Ensure that the points
are evenly spaced out - one hint is that your throughput curve should be such that it increases and then you can see
it flattening out (or starts dropping). Most of the graph should have points before it flattens out, but there should
be enough points for us to see throughput flattening/dropping.
Open Load
Collect data to plot the following curves. In each of the following curves the metric (the first quantity) should be on
Y and the second quantity should be on X
∙ Response time vs request arrival rate ∙ Throughput vs request arrival rate ∙ Server CPU utilization vs request
arrival rate ∙ Fraction of requests dropped (basically, unsuccessful) vs request arrival rate
Based on the plots, make the following observations and calculations

∙ For each plot comment on its “nature” (Increasing? Decreasing? Linear? Sub-linear? Exponential? What is
the min? Is it flattening out? Increasing then dropping? Etc...).

∙ Explain intuitively why you see this type of plot (E.g. why is it increasing?). The explanation in most cases
will be obvious and can be brief. In some cases if you have no explanation simply state so.

∙ What is the maximum load in terms of request rate supported by this server?
∙ Is your utilization graph roughly linear? Use it (with Utilization Law) to estimate the service time of the
request on the Web server CPU. Remember to account for multiple CPUs.

∙ Does your response time vs load curve have a shape in which there is graceful increase initially, and then
a sharp increase? At what point approximately does this sharp increase occur? Find this point in terms of
request rate and utilization.

∙ Use Little’s Law to estimate the average number of requests at the server. (For bonus points, explore whether
there is a way to verify this number by direct measurement)

Figure 8: ...(Contd)Performance Measurement Assignment for Reinforcing Queuing Theory Principles

Springer-Verlag, 1993.
[2] V. Apte. Performance analysis of computer systems and networks.

Lecture Notes for CS 681, CSE Department, IIT Bombay.
[3] D. Bertsekas and R. Gallager. Data Networks (2Nd Ed.). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1992.
[4] M. Harchol-Balter. Performance Modeling and Design of Com-

puter Systems: Queueing Theory in Action. Cambridge University

Press, New York, NY, USA, 1st edition, 2013.
[5] D. A. Menasce, V. A. Almeida, L. W. Dowdy, and L. D owdy.

Performance by design: computer capacity planning by example.
Prentice Hall Professional, 2004.

[6] K. S. Trivedi. Probability & Statistics with reliability, queuing
and computer scienc e applications. John Wiley & Sons, 2008.

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

77

	Abstract
	1 Introduction
	2 Challenges with a mathematics - first approach
	3 A Common - Sense - First approach to teaching Queuing Systems
	4 Discussion and Future Outlook
	References

