
Practices in Model Component Reuse for Efficient
Dependability Analysis

Fumio Machida
 Department of Computer Science

 University of Tsukuba
 Tsukuba, Ibaraki, Japan

 machida@cs.tsukuba.ac.jp

ABSTRACT
Model-based dependability analysis provides an effective manner
to evaluate and design the dependability of critical IT systems by
abstracting the system architecture and operations. As the size
and the complexity of systems increase, however, the process to
compose the dependability model becomes complicated and
time-consuming. Improving the efficiency of modeling process is
practically an important challenge of dependability engineering.
In this paper, we review the techniques for model component
reuse that makes dependability model composition and analysis
more efficient. In particular, component-based modeling
approaches for reliability, availability, maintainability and safety
analysis presented in the literature are summarized. In order to
effectively apply model component reuse, we advocate the
importance of asset-based dependability analysis approach that
associates the reusable model components with underlying
system development process. Finally, we discuss the necessary
extensions of these techniques toward efficient dependability
analysis for IoT systems which are significantly affecting real
world.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems and networks → Availability

KEYWORDS
Availability; Dependability; Internet of Things; Safety; Reuse.

ACM Reference format:

Fumio Machida. 2019. Practices in model component reuse for efficient
dependability analysis. In Proceedings of ACM Workshop on Education and
Practice of Performance Engineering (WEPPE’19). April 7–11, 2019,
Mumbai, India, ACM, NY, NY, USA. 6 pages.
https://doi.org/10.1145/3302541.3311525

1 Introduction
Our society is increasingly relying on digital services composed
of a number of IT system components such as hardware,
software, storages and networks. Assuring dependability of IT
systems is essential for performance engineering, as failures or
outages of digital services running on the systems degrade the
performance resulting in critical impacts on our society.
However, dependability cannot be achieved solely through a
single method or technique. Total and continuous efforts to
improve the dependability are required, since the sources of
errors and failures can reside in any system components in
almost all the phases of the system lifecycle.

To assure the dependability of IT systems consisting of
various system components across the lifecycle, model-based
approach discussed in this paper have been widely studied and
effectively used in practice. In model-based approach, to
analytically assess the dependability of a system, the system
configurations and behaviors are modeled in an abstract manner
taking into account the internal or external uncertainties such as
component failures or workload changes. The approach does not
require any system tests or experiments on a real production
system that are usually very expensive. In a system design
phase, the target system even does not exist, therefore the
model-based analysis is an essential means to dependability
evaluation from its design. The approach is also effective in the
system operation phase. When any system operation need to be
changed, the results of the change can be easily estimated by
model-based analysis without changing the current operations in
the production system. For the technical details of model-based
dependability analysis, the reader may refer to the book by
Trivedi and Bobbio [1].

A practical issue when employing the model-based analysis is
how to efficiently compose a good dependability model which
precisely represents the target system configuration and
behaviors. Even by analytic experts, composing a precise
dependability model is a hard task especially when the target
system is large and complex. It is one of the important
challenges in dependability engineering to provide efficient
modeling techniques and methodologies for assisting engineers
to deal with the models for dependability assessment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICPE '19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6286-3/19/04…$15.00
https://doi.org/10.1145/3302541.3311525

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

65

In this paper, we overview the recent studies and practices of
model component reuse for dependability analysis. The means of
model component reuse allows us to construct the whole system
model more efficiently than making it from scratch. Past
experiences and knowledge can be utilized in the form of
reusable model components. The approach can also be helpful to
reduce modeling errors caused by inherent system complexity or
insufficient skill level of engineers, and thereby it improves the
quality of dependability evaluation. First, in section 2 we review
the studies related to model reuse technique for dependability
analysis that includes reliability, availability, maintainability and
safety analysis. As an example of model-based availability
analysis, we introduce the component-based availability
modeling framework that can help constructing the analytic
model for system availability analysis from reusable model
components. The framework has been applied for availability
analysis of cloud service systems and data backup operations.
Next, in section 3 we explain the importance of dependability
modeling process that can leverage the reusable model
components and overview the asset-based dependability analysis
methodology. The methodology is associated with the software
development practices in organizations where various artifacts
created through software development projects are archived as
organizational assets in anticipation of reuse in future similar
projects. Dependability model components can also be archived
together in the project assets so that any future dependability
analysis can benefit from the asset. Finally, in section 4 we
discuss the potential extension of these approaches to apply
dependability analysis for recent IoT systems and services. IoT
systems often connect cyber spaces with real world using a
number of IoT devices such as sensors and actuators. Evaluating
the actual impacts of such cyber-physical systems on the real-
world applications becomes more important. We present some
open issues for research and practice for the future study.

2 Reuse of dependability models
Availability, reliability, safety and maintainability are

commonly known attributes of dependability [2]. Dependability
models are used for abstracting system configurations, functions,
and behaviors so as to analyze the quality or quantity of the
dependability attributes. In order to effectively compose
dependability models, various modeling formalisms and tools
have been developed. SHARPE [3], SPNP [4], and Möbius [5] are
the representative examples of such tools that are extensively
used both in research and practice. The tools can automate some
steps of modeling and analysis process with user-friendly
interfaces and effective solution techniques. After composing the
model for analysis of a particular system using the tools, a part
of the model or the knowledge gained during the process can be
reused for any future analysis. In this section, we review some
existing studies on the techniques of model component reuse for
efficiently analyzing system reliability, availability,
maintainability and safety.

For reliability analysis, models like fault tree, reliability block
diagram and their variants are used to represent logical structure
of system components. The composed models can be used to

derive the qualitative properties like a single point of failure as
well as the quantitative measures such as the probability of
system failure. The composition of these models is relatively
easy since they are composed in a combinatorial manner using
combinatorial logics that connect fundamental elements such as
basic events or reliability blocks. Since a part of the model
represents a fault event or reliability of a specific component, it
can be reused repeatedly wherever the corresponding system
component is used in systems. Component fault trees [6] aim to
reuse sub-trees of a fault tree to construct a new one efficiently.
The approach has been applied to reliability analysis of real
systems [7]. Similar concept was also presented in hierarchical
models that associate the output of different models with a
higher-level model in a hierarchical manner with combinatorial
logics. In [8], a hierarchical model was used to compose a fault
tree for blade server system that was consisted of common
system components such as CPUs, memories and disks. The
component models for such common system components can be
reused in other systems. For example, availability models for
CPU and memory subsystems are commonly used in the
different literature [8][9].

For availability and maintainability analysis, we often
require state-space models to capture the state transitions of the
system resulting from failure-recovery operation. The
composition of state-space models is more cumbersome in
comparison to non-state-space models because all the possible
states and their transitions need to be carefully investigated.
Even with domain experts, sometimes it is difficult to enumerate
all the possible state transitions especially when the system has a
number of inter-dependent components. Higher-level formalism
such as stochastic Petri nets (SPNs) [10][11] and stochastic
activity network (SAN) [12][13] give powerful solutions to
complex modeling processes by automating the generation and
analysis of state-space models. However, even with the aid of the
automated composition approach, reusing the parts of state-
space models faces another type of difficulty. For example,
stochastic reward nets (SRNs) [4][14], a variant of SPN, has the
concept of subnet that is a part of the whole model and can be
inter-connected with other subnets. Dependencies among
subnets need to be specified by the guard functions that define
the conditions to fire the associated transitions. However, it is
not always easy to specify a guard function because it requires a
clear understanding of the target system behavior and relevant
knowledge for specifying the dynamics of Petri nets by guard
functions. In some cases, places or transitions in different
subnets need to be merged or removed in a composition process
so that the behavior of the Petri net correctly capture the real
system behavior [15].

To mitigate the difficulty, the component-based availability
modeling framework Candy [16] was presented, in which SysML
models are used to specify the system configurations and they
are transformed into SRNs for availability analysis. SysML is a
semi-formal modeling language [17] inherited from UML for the
purpose of specifying system engineering processes. OpenMADS
also provides an open-source implementation version of the
framework [18]. In this framework, the difficulty of guard

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

66

function assignments among SRN subnets are automatically
resolved by the stereotyped associations defined among SysML
model elements. In other words, types of system component
dependencies are reused in SysML level models and the
associated availability models are automatically generated from
the SysML models. Although there has been many related work
proposing automated generation of SPNs from system modeling
languages such as UML, AADL and SysML [19][20][21],
reusability of model components and the way to resolve
component dependency are less discussed. Candy was applied to
compose the availability models for web application system
hosted on a cloud service infrastructure [18] and the defined
dependency resolution patterns are reused in the analysis of data
backup system [22].

For safety analysis, fault trees, failure mode and effect
analysis (FMEA), hazard and operability study (HAZOP) are
commonly adopted methodologies in practice. For fault tree
analysis, as explained in the reliability analysis case, reuse of
component fault tree enables effective composition of large-scale
fault tree. FMEA is a bottom-up approach to analyze failure
modes of system components and their consequences to the
whole system, while HAZOP is a team-based process to identify
the potential hazard situations using standardized guide words.
Either FMEA or HAZOP do not need mathematical models since
the main objective of the analysis is to find out potential hazard
situations. There are, however, some practices to reuse the
intermediate artifacts of the process that can be used for
improving the efficiency of safety analysis in the future projects
[23][24]. In [23], SysML models were used to specify the system
functions with their failure modes and they were automatically
translated into the corresponding FMEA. Similar to Candy, the
information necessary for dependability analysis are reused in
SysML level models. Whenever a common function is used in the
design of another system, the result of corresponding FMEA can
be reused so that the repeated manual FMEA process is omitted.
Although HAZOP heavily relies on team discussion where
automated generation is not an appropriate solution, it has been
presented that the previous experiences of conducting HAZOP
can be reused as knowledge for assisting other HAZOP analysis
[24]. It is based on case-based reasoning which is the method to
use previously obtained knowledge to solve new problems. The
presented technique was implemented in a prototype tool
KROSA and evaluated through three domain-specific cases with
industrial experts. The application of case-based reasoning to
HAZOP have also been studied in chemical industrial domain
[25].

Most of the above-mentioned techniques for model
component reuse in dependability analysis mainly focus on how
to make models reusable and how to synthesize them together to
an integrated model more efficiently. Nevertheless, dependability
analysis in practice cannot be separated from the associated
system development process that is a significant factor to
determine the success of reuse approach. It is important to
bridge the gap between dependability modeling techniques and
actual system engineering process. The next section discusses

the process perspectives where asset-based development process
and software product lines are presented as examples.

3 Asset-based dependability analysis
To reuse dependability model components properly in real

projects, the contextual information where each component is
built plays a very important role. Software reuse in system
development project likely to fail if any contextual information
or specification of a software component is not intelligibly
provided as it may lead to misuse of the software component.
Similarly, without any contextual information, dependability
model reuse studied in research does not work well in real
projects. To preserve contextual information of software
components to be reused, organizations can employ an asset-
based development process. In an asset-based development
project, all the artifacts created in software/system development
processes are packaged to an organizational asset that is stored
in a repository with metadata and is able to be retrieved easily
by queries. The artifacts can include requirement specifications,
design documents, source codes, test cases and associated data.
Users can figure out the contextual information by traversing
these artifacts in the repository and judge if the part of software
can be reused in a new project.

Supported by asset-based development process, asset-based
dependability analysis has been presented as a model-based
dependability analysis methodology [26]. In many system
development projects, system safety and availability analysis are
required in early stages of the project to meet the system
requirements. Under the asset-based dependability analysis,
dependability models are associated with other software artifacts
and are packaged to a project asset so that developers can
effectively reuse the models in other projects in compliance with
the usage context of the model. Dependability models may
include reliability model, availability model, safety model and
associated parameter values. Such reusable model components
are linked to other software artifacts in the same asset following
to the information scheme of the asset-repository [26].

The primal benefit of this approach is the enhanced
efficiency of the dependability analysis by means of model
component reuse. The organized repository and structured query
interface provided by asset-based development process can
effectively support discovering relevant model components that
may be the part of the asset archived in the past projects. The
approach also brings the benefits to the quality of dependability
evaluation since the risk of misuse of model components is
reduced by checking the contextual information. Moreover, the
statistical confidence of reliability or availability estimation can
be improved if the data for parameter values of model
components is accumulated by the repetitive reuse of the asset
[26].

Despite the benefits mentioned above, whenever asset-based
dependability analysis is employed, the following aspects need to
be considered as well in practice.
 Systems thinking: The concept of model component reuse is

rooted in reduction in a sense that a system is assumed to be

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

67

composed of the combination of common components.
However, safety analysis often requires a system view as
safety is an emergent property of the system which cannot be
reduced into components’ properties [27]. Without careful
attention to the entire system behavior, asset-based safety
analysis may fail to identify important hazard conditions.

 Prospect for similar projects: Compared to single
independent project which does not necessitate to create the
asset, asset-based development process requires the additional
effort to create the asset in anticipation of the future
component reuse. Such efforts may not be necessary if the
asset is never used in the future. In terms of cost-effectiveness,
it is imperatively important to properly estimate the volume of
future similar projects which can benefit the asset reuse.

 Asset maintenance cost: In addition to asset generation cost,
it is also important to take into account the cost of asset
maintenance. All the artifacts in an asset is created in a specific
software/system development project. Whenever any changes
or updates of the project occur, the affected artifacts studied in
the repository also need to be updated accordingly. For
example, an availability model component should be revised if
the behavior or function of corresponding system component
is changed. In asset maintenance phase, it requires
maintenance cost to keep all the artifacts consistent with the
actual software system.

Although the asset-based approach requires such an initial

investment and continuous maintenance efforts as well as a view
of system thinking, when it aligns with the organizational
strategy (e.g., to build a competitiveness in a target market),
similar software products or systems are developed considerably
faster with lower cost that can build a significant competitive
advantage of the organization.

Software product line [28] is another important methodology
to support software development process which attempts to
promote software reuse. Software product line is typically
employed in the organizations who have similar projects with
specific needs of a particular market or mission area. For safety-
critical software systems such as medical devices or automotive
systems, the artifacts generated through safety-analysis can also
be incorporated with the asset defined in the software product
lines. However, since each project has some variable parts, safety
analysis assets may not be directly reused to other projects. To
address this issue, a state-based modeling approach was
introduced to capture the variations of software product line so

that safety models such as fault tree can be generated
automatically across the product line [29]. More recently, a
variability management tool is further integrated with model-
based safety analysis technique so that the safety analysis
artifacts can be reused through the software product lines [30].
These approaches also provide a systematic way to assist
dependability model reuse by resolving the contextual
dependence.

To summarize, component-based modeling techniques often
aims to reuse model components, while they are not always
beneficial in practice without adapting them to the relevant
development process. Asset-based dependability analysis and
safety-critical software product line can effectively accommodate
model component reuse in the system development process.
Table 1 summarizes the techniques and methodologies described
in Section 2 and 3. Note that this is not a comprehensive survey
result of existing literature about component-based modeling
techniques and methodologies for assisting model component
reuse.

4 Discussion and future challenges
In the final section, we discuss the future extensions of

model component reuse techniques and methodologies for
dependability analysis in the context of cyber physical systems.
Recent advances of IoT services further increase the dependence
of real-world to software systems. IoT systems monitor real
world data and make decisions to control the world using
advanced data analytics. As a result, dependability of software
systems providing IoT services severely impacts on our lives and
societies. The consequences of malfunctions or unavailability of
software systems need to be carefully assessed in view of real
world impacts.

For qualitative aspect, traditional safety analysis methods are
capable to analyze the impacts of faults in software systems on
its users or environments, thereby the methods can also be
applied in design for future IoT systems. Nevertheless, compared
to traditional IT systems which mainly run in cyber space, IoT
systems may have multiple and continuous interaction to real
world. In order to explore hazard situations across different
domains (i.e., IT system domain and real world application
domain), more advanced methodology might be necessary.
System theoretic process analysis (STPA) was presented as a
new methodology for safety analysis that looks into a control
structure of a system instead of investigating component failures
[27]. To explore potential hazardous situations of real world

Table 1: Techniques and methodologies for model component reuse to dependability analysis
 Reliability Availability Safety
Dependability models Fault tree, Reliability block

diagram, etc.
Markov chains, stochastic Petri
nets, etc.

Fault tree, FMEA, HAZOP, etc.

Component-based
modeling techniques

Component fault tree [6][7],
 hierarchical model [8][9].

Candy [16], OpenMADS[18],
 hierarchical model [8][9].

From SysML to FMEA [23],
KROSA [24].

Methodologies for
assisting model component
reuse

Asset-based analysis [26]. Asset-based analysis [26]. Asset-based analysis [26],
safety-critical software product
line [29][30].

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

68

applications, an analysis with control structure can be helpful.
STPA has been applied for safety and security analysis of a
power grid system as a case study of cyber-physical system [31].
How to assist such a human-intensive safety analysis process is
still an important challenge.

For quantitative aspect, since reliability and availability
analysis mainly applied to product or system level, quantitative
impacts on the social environment cannot be evaluated
adequately. To quantify such impacts, we may need more
application-level or service-specific dependability measures on
top of reliability and availability analysis. Performability [32],
service availability [33], defects per millions [34], are the
examples of such measures that have been studied in the
research of dependability analysis. In fact, there are still gaps
between the application-level dependability measures and the
measures of social impacts that will be characterized in different
time-scale and abstraction level. To bridge the gap, we will
require more higher-level consideration that can be captured by
a social system model representing dynamic interactions among
social entities in real-world. A representative example of such
dependability analysis was found in the study of safer city
solution provided by a distributed video surveillance system
[35]. In this study, system dynamics [36] are used as a social
system model in order to characterize the impacts of
performance of surveillance function on the crime risk in the
city. While system dynamics only capture the causal
relationships among the concerned variables in a rough sketch,
they are still very useful to roughly estimate the real-world
consequences of IoT services. The estimated results help IoT
service providers to have a better understanding of their value
propositions and to determine where to invest more.

One of the important challenges of system dependability
analysis in IoT era is the development of model component reuse
approach for social impact analysis. As dependability of IoT
system impacts on real-world, many IoT applications need to be
assessed its stoical impacts as a result of system dependability.
Although model-based approach is a clue to the solution, it does
not scale if social models with system dependability model needs
to be constructed manually for every project. IoT systems
sharing a common objective or common components can exploit
the component reuse approach and asset-based development
process as studied and experienced in dependability engineering.
To step forward to this direction, the followings are considered
as new challenges.
 What kind of higher-level measures in a social context need to

be quantified which were not directly addressed in system
level dependability analysis (e.g., crime risk, safety level, traffic
congestion, customer satisfaction, etc). The measures are
highly context-dependent even using the same function or
service. To clarify the context and determine the measures of
interest, we may require the communications among several
stakeholders including engineers, modeling experts, domain
experts and actual users.

 To quantify the measures of interests, how we can reuse the
part of socio-ICT models. Two or more different IT systems
may be connected with the same social system model in a part.

In contrast, there is also the case a new IoT system may have
connections to different social models. Since social model and
system model can probably be generated by different users, a
systematic way to connect those models will be required.

 To encourage model component reuse, how we should extend
the asset structure for dependable IoT system development.
For instance, information scheme for social model needs to be
defined so that it can be traversed in the asset repository by
query.

 It is also important to consider how to educate engineers to
understand the model-based approach and reuse the relevant
model components for dependability analysis in asset-based
development process. In practice, any development process
does not work well without educated users. A sort of
framework or development environment that can assist
engineers to build experiences through practices might be
required.

Finding answers to these questions could be interesting future
research avenues.

ACKNOWLEDGMENTS
This work has been based on the practical experience in model-
based dependability analysis acquired through the previous
research projects. The author would like to thank all the
collaborators in my past projects building this experience.

REFERENCES
[1] K. S. Trivedi and A. Bobbio, Reliability and availability engineering : modeling,

analysis and applications, Cambridge University Press, 2017.
[2] A. Avizienis, J.C. Laprie, B. Randell and C. Landwehr, Basic concepts and

taxonomy of dependable and secure computing, IEEE Trans. on Dependable
and Secure Computing, vol. 1, no. 1, 2004.

[3] K. S. Trivedi and R. Sahner, SHARPE at the age of twenty two, SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, pp.52-57, 2009.

[4] G. Ciardo, J. Muppala, and K. S. Trivedi, SPNP: Stochastic Petri Net Package, In
Proc. of the Third International Workshop on Petri Nets and Performance
Models, pp. 142–151, 1989.

[5] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. G. Webster, The Möbius framework and its implementation,
IEEE Trans. on Softw. Eng., vol. 28, no. 10, pp.956-969, 2002.

[6] B. Kaiser, P. Liggesmeyer, and O. Mäckel. A new component concept for fault
trees, In Proc. of the 8th Australian workshop on Safety critical systems and
software, pp. 37-64, 2003.

[7] K. Hofig, A. Joanni, M. Zeller, F. Montrone, M. Rothfelder, R. Amarnath, P.
Munk, A. Nordmann, Model-based reliability and safety: reducing the
complexity of safety analyses using component fault trees, In Annual
Reliability and Maintainability Symposium (RAMS), pp. 1-7, 2018.

[8] W. E. Smith, K. S. Trivedi, L. Tomek, J. Ackeret, Availability analysis of
multicomponent blade server systems, IBM Systems Jornal, 2008.

[9] D. Kim, F. Machida, and K. S. Trivedi, Availability modeling and analysis of a
virtualized system, In Proc. of IEEE Int’l Symp. Pacific Rim Dependable
Computing (PRDC 2009), 2009.

[10] M. K. Molloy, Performance Analysis Using Stochastic Petri Nets, IEEE Trans.
on Computers, vol. 31, no. 9, pp. 913-917, 1982.

[11] G. Florin, and S. Natkin, Evaluation based upon stochastic Petri nets of the
maximum throughput of a full duplex protocol, Application and Theory of
Petri Nets, Springer, pp. 280-288, 1982.

[12] J. F. Meyer, A. Movaghar, and W. H. Sanders, Stochastic activity networks:
Structure, behavior, and application, In Proc. International Workshop on
Timed Petri Nets, pp. 106–115, 1985.

[13] W. H. Sanders and J. F. Meyer, Stochastic activity networks: For- mal
definitions and concepts, In Lectures on Formal Methods and Performance
Analysis, First EEF/Euro Summer School on Trends in Computer Science, ser.
LNCS, no. 2090, pp. 315–343, 2001.

[14] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, John Wiley, New York, 2001.

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

69

[15] F. Machida, D. Kim, and K. S. Trivedi, Component-based availability modeling
for cloud service management, In Supplemental Proc. of 21st International
Symposium on Software Reliability Engineering, 2010.

[16] F. Machida, E. Andrade, D. Kim, K. S. Trivedi, Candy: component-based
availability modeling framework for cloud service management using SysML,
In. Proc. of Int’l Symp. on Reliable and Distributed Systems (SRDS), pp. 209-
218, 2011.

[17] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: systems
modeling language, Morgan Kaufmann, 2014.

[18] E. Andrade, M. Alves, R. Matos, B. Silva, P. Maciel, Openmads: an open source
tool for modeling and analysis of distributed systems, In Proc. of International
Conference on computer safety, reliability, and security. pp 277–284, 2013.

[19] S. Distefano, M. Scarpa, and A. Puliafito, From UML to Petri nets: the PCM-
based methodology, IEEE Trans. on Soft. Eng., vol. 37, no. 1, pp. 65-79, 2010.

[20] A. E. Rugina, K. Kanoun, and M. Kaâniche, A system dependabiliy modeling
framework using AADL and GSPNs, Architecting Dependable Systems IV, vol.
4615, LNCS, R. de Lemos, C. Gacek, and A. Romanovsky, Eds.: Springer-
Verlag, pp. 14-38, 2007.

[21] E. Andrade, P. Maciel, G. Callou and B. Nogueira, A methodology for mapping
sysML activity diagram to time Petri net for requirement validation of
embedded real-time systems with energy constraints, In Proc. of the Third
International Conference on Digital Society, pp. 266-271, 2009.

[22] R. Xia, X. Yin, J. Alonso, F. Machida and K. S. Trivedi, Performance and
Availability Modeling of IT Systems with Data Backup and Restore, IEEE
Trans. on Dependable and Secure Computing, vol. 11, no. 4, pp. 375-389, 2014.

[23] P. David, V. Idasiak, F. Kratz, Reliability study of complex physical systems
using SysML, Reliability Engineering and System Safety, vol. 95, pp. 431 – 450,
2010.

[24] O. Daramola, T. Stalhane, G. Sindre and I. Omoronyia, Enabling hazard
identification from requirements and reuse-oriented HAZOP analysis, In Proc.
of 4th Int'l Workshop on Managing Requirements Knowledge (MARK), pp. 3-
11, 2011.

[25] J. Zhao, L. Cui, L. Zhao, T. Qui, and B. Chen, Learning HAZOP expert system
by case-based reasoning and ontology, Computer and Chemical Engineering,
vol. 33, no. 1, pp. 371-378, 2009.

[26] F. Machida, J. Xiang, K. Tadano, and S. Hosono, An asset-based development
approach for availability and safety analysis on a flood alert system, In
International Workshop on Recent Advances in the DependabIlity AssessmeNt
of Complex systEms (RADIANCE), pp. 51-56, 2015.

[27] N. G. Leveson, Engineering a safer world: Systems Thinking Applied to Safety,
MIT Press, 2012.

[28] P. Clements and L. Northrop, Software product lines: practices and patterns,
SEI series in software engineering, Addison–Wesley, 2001.

[29] J. Liu, J. Dehlinger, and R. Lutz, Safety analysis of software product lines using
state-based modeling, Journal of Systems and Software, vol. 80, no. 11, pp.
1879–1892, 2007.

[30] A. L. Oliveira, R. Braga, P. C. Masiero, Y. Papadopoulos, I. Habli, T. Kelly,
Model-based safety analysis of software product lines, International Journal of
Embedded Systems, vol. 8 no. 5/6, 2016.

[31] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty, and S. Sezer. STPA-SafeSec:
Safety and security analysis for cyber-physical systems. Journal of Information
Security and Applications, vol. 34, part 2, pp. 183-196, 2016.

[32] J. F. Meyer, On evaluating the performability of degradable computing
systems, IEEE Transactions on Computers, vol. 29, no. 8, pp. 720-731, Aug,
1980.

[33] D. Wang, and K. Trivedi, Modeling user-perceived service availability, In Proc.
of International Service Availability Symposium, pp.107-122, 2005.

[34] S. Mondal, X. Yin, J. Muppala, J. Alonso Lopez, and K. Trivedi, Defects per
million computation in service-oriented environments, IEEE Transactions on
Services Computing, vol. 8, no. 1, pp. 32–46, 2015.

[35] F. Machida, M. Fujiwaka, S. Koizumi, and D. Kimura, Optimizing resiliency of
distributed video surveillance system for safer city, In Supplemental Proc. of
International Symposium on Software Reliability Engineering (ISSRE), pp. 17-
20, 2015.

[36] J. D. Sterman, Business Dynamics: Systems thinking and modeling for a
complex world, New York: McGraw, 2000.

WEPPE Workshop ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

70

