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ABSTRACT

This tutorial presents techniques for self-adaptive software systems
that use performance models in order to achieve desired quality-
of-service objectives. Main hindrances with the state of the art are
the assumption of a steady-state regime to be able to use analyt-
ical solutions and the explosion of the state space which occurs
when modeling software systems with stochastic processes such as
Markov chains. This makes their online use difficult because the
system under consideration may be in a transient regime, and the
typically large cost of the analysis does not permit fast tracking of
performance dynamics. We will introduce fluid models based on
nonlinear ordinary differential equations as a key enabling tech-
nique to effectively approximate large-scale stochastic processes.
This representation makes it possible to employ online optimiza-
tion methods based on model-predictive control in order to find
an assignment of the values of tunable parameters of the model
steering the system toward a given performance goal. We will also
show how, dually, the same techniques can be used for the online es-
timation of software service demands. In this tutorial we will focus
on software performance models based on queuing networks, with
applications to runtime auto-scaling in virtualized environments.
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1 INTRODUCTION

Performance is fundamental aspect of modern software systems
design since it strongly affects user satisfaction. Indeed, it is widely
recognized by researchers and practitioners alike that performance
should be seen as a new facet of software correctness [14].
Performance-driven self-adaptation consists in the idea of man-
aging runtime variability (due events such as workload fluctuation
or hardware degradation) by continuously monitoring a software
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system and, when appropriate, by triggering suitable reconfigura-
tions. Indeed, due to the uncertainties in the execution environ-
ment, an initially optimal configuration with respect to some given
quality-of-service (QoS) criterion such as throughput or mean time
to failure may suddenly become unacceptable, thus steering the
system toward a significantly different operating point.

One possible way of addressing this issue is to react to an operat-
ing condition that is deemed critical for the system’s performance.
For instance, the early auto-scaling mechanism in Amazon’s cloud
platform allows the operator to define policies for scaling up or
scaling down the number of servers based on certain observed met-
rics.! Clearly, such a reactive approach may introduce delays in
the effectiveness of the policy—one would rather prefer a proactive
method that anticipates potential drops in the QoS.

At the core of any proactive approach is the availability of a
model that can predict the system’s future behavior based on its
current state as well as under the application of potential reconfig-
urations. This introduces three main difficulties:

i) One must be able to analyze the model efficiently in order to
ensure a fast execution of the adaptation cycle.

One must devise an effective strategy for exhaustively explor-
ing the adaptation space (AS), i.e., the set of all feasible system
configurations. Indeed, it has been recognized that the typi-
cally huge size of the AS represents a major limitations for
state-of-the-art approaches to real-world scenarios [10].

One needs frequent up-to-date estimates of the model parame-
ters, to be provided in a minimally intrusive manner so as not
to affect the behavior of the running system significantly [4].

ii

=

i)

This proposal presents performance-driven self-adaptation tech-
niques for software systems using analytical models.

2 QUEUING NETWORKS

Queuing networks (QNs) are a class of well established analytic
models for software performance engineering [9, 11]. Their key
idea is to model customers being routed between different service
stations, where they compete for a pool of processing resources.
Among the benefits of QNs is the fairly immediate association be-
tween their constituent elements and the components of software
systems (e.g., a service center may be used either for abstracting a
software device or a hardware resource like CPU or disk). Typically,
designers employ such model for studying the performance of sys-
tems at design time in a “what-if" analysis fashion (i.e., combining
different workload and queuing parameters) so as to identify the
most suitable hardware/software configuration satisfying require-
ments under worst-case or average execution conditions [16].

!https://aws.amazon.com/autoscaling/
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A major limitation in the use of QN models at runtime for self-
adaptation purposes is the lack of analytical results for the evalua-
tion of performance metrics in the transient regime. Indeed most
of the literature focuses on steady-state measures only, for which a
large body of results exists [6]. But the very assumption of mod-
ifying the system parameters at runtime inevitably introduces a
transient period during which these results do not necessarily hold.

In general, an exact transient formulation of a QN involves a
system of linear ordinary differential equations (ODEs), whose size
grows exponentially with the number of jobs and stations. This is
a prohibitive cost—the well-known state space explosion problem—
that blocks any runtime use of such description.

The key enabling mathematical tool to still leverage an analytical
representation of the transient dynamics, albeit approximately, is
in the use of fluid models. We refer to [8] for a thorough review
about this topic. Here we provide the intuition behind the fluid
model for a single-class QN, where an approximate estimate of the
average queue length at each station i, denoted by x;, is governed
by a coupled system of non-linear ODE in the form:

dx;(t)
dt

= —pui () min{xi (£),5: (O} + ) pji (D) (1) minfx; (1), (1))
jes

The quantity y; (t) min{x;(t),s;(¢)} is the instantaneous throughput
at each station: when the queue length x; (t) in station i is less than
the available servers s;(t), then the x; () jobs are served in parallel,
each with rate y;(t); otherwise some of the jobs are enqueued and
only s;(t) of them are processed at once. Throughputs are weighted
by the routing probabilities p;, ;(t) because a station may receive
only a fraction of the jobs completed elsewhere.

Such approximation has been applied to software performance
models described by stochastic process algebra [15, 30] and layered
queuing networks [28]. Although it directly provides queue-length
estimates only, it is also possible to efficiently estimate other im-
portant performance metrics such as throughput, utilization, and
response times as appropriate functions of the ODE solution [29].

In the context of self-adaptation, the main benefit of fluid mod-
els of QNs is that the resulting ODE system is compact since it
requires one equation for each station. Furthermore, a result of
asymptotic convergence formally support the abundant empirical
evidence of the high quality of the approximation when the size
of the QN (intended as the population of jobs and servers) is large
enough [8]. Another important consequence is that we have turned
the description of a large-scale stochastic process into a determin-
istic dynamical system: this paves the way for the applicability
of several methods from control theory for model learning and
adaptation.

3 ON SELF-ADAPTATION FRAMEWORK

Around QN fluid models we build our proposal of performance-
based self-adaptation by putting it in the context of the well-known
MAPE-K control loop [3]. Its reference architecture considers the
monitoring of the behavior of a self-adaptive system to extract the
actual runtime parameters (monitoring phase). Parameters are used
to calibrate a model that allows an accurate analysis of the current
execution conditions at runtime (analysis phase). If problems are
detected, a set of refactoring actions is computed (planning phase)
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that, once reflected on the running system, steer it in a problem-
free state (execution phase). Finally, knowledge is used as the shared
repository (among all the different phases) to store all the infor-
mation representing the awareness of the system about itself. An
overview of our proposed approach is depicted in Figure 1 in which
we can identify the following components.

e Monitoring: we monitor the running software system us-
ing a system profiler tool, similarly to [31], with which we
periodically extract a set of parameters. More precisely, for
each service center i we wish to collect its service rates y;
and its estimated queue length x;. In addiction, in order to
completely specify the structure of the monitored system,
we extract the routing matrix P that will be used for repre-
senting the topology of the QN model. Finally, in the case of
closed networks, we estimate the number of customers in
the system N and the thinking time Z. In the case of open
networks, we identify the jobs arrival rate A. Then we use
these parameters to feed the runtime QN model built in order
to describe the performance evolution of a running system.
Analysis: the QN model is suitably translated into a pro-
gram that executes to predict the transient behavior of the
running system. The result of this step is the set of perfor-
mance metrics of interest based on the model prediction
made with the previously estimated parameters. Now, giv-
ing the computed indices and the performance constraints
model as input to the constraint analysis engine we detect the
performance violations. We envisage this last component
as a modeling and analysis tool applicable for checking the
QoS requirements against the performance evaluation of
each specific system configuration (e.g., a computer-algebra
system [22, 23] or an SMT solver [19]).

e Planning: starting from the previously computed perfor-
mance violations, an adaptation engine component is able
to compute a set of refactoring actions that represent the
plan for the current adaptation iteration. Concrete examples
of such actions can be the addition or removal of a service
center (e.g., virtual machines), the modification of the ser-
vice rates (e.g., assigning different CPU sharing quota) or the
change of the load balancing policy in a distributed system.

e Execution: the adaptation mechanism is actually imple-
mented by executing the previously defined adaptation ac-
tions on the running system.

o Estimation: goal of this phase is to use the structural in-
formation about the system and the monitored quantities
for estimating the relevant QN parameters that cannot be
directly measured, such as service demands. Then the esti-
mated information is used for feeding the QN model used
for predicting the performance dynamics of the systems.

The control loop is repeated at runtime for each system evolution
step so to reduce the influence of uncertainty at each adaptation. In
the remainder of this paper we overview techniques for planning
and estimation based on QNs.

4 MODEL PREDICTIVE CONTROL FOR QNS

The fluid QN model can be interpreted as a set of constraints (in
continuous-time) that have to be satisfied by the system’s dynamics.
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Figure 1: Performance self-adaptation framework based on queuing networks.

By appropriately discretizing time, it can then be turned into a finite
set of constraints over a given time horizon of H steps. Indeed,
simple algebraic manipulations yield a formulation that reads:

x(k+1) = A(x(k)) + x(k),  k=0,....H

where x (k) is vector such that x; (k) is the queue lengths of station
i at step k and matrix A(x(k)) has components a; j(x(k)) given by

—pi(k)At min{x; (k),s; (k)}
pj,i(k)pj (k) At min{x;(k),s;(k)}

These manipulations enable the formulation of the performance-
driven self-adaptation problem as model predictive control, a well-
known technique based on on-line numerical optimization [13].
Here, the discretized equations represent the constraints of an op-
timization problem where the objective function encodes a target
performance metric and the decision variables are the parameters
of the system that can act as control knobs such as, for example, the
service rate p;(k) in case of a hardware architecture that allows
dynamic voltage scaling [25]. The basic idea behind MPC is to per-
form an optimization at each time step during the system evolution.
The model is initialized with the currently measured state of the
system. The optimization finds the optimal values of such knobs
that steer the system toward the desired QoS requirement over the
time horizon H [20]. Thus MPC returns an optimal value for each
control signal at each time step across that horizon. Adaptation
takes place according to the receding horizon control paradigm: only
the values for the next time step are applied, whereas all subsequent
ones are discarded [1]. When MPC is started at the next iteration
the newly measured state will readily feedback the effect of the
adaptation into the system, and become the starting point for the
optimization over the next time horizon.

Unfortunately, applying MPC is not straightforward. Its main
limitation is the typically high computational cost. Indeed, state-
of-the-art approaches report significant overheads even for small
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models and short prediction horizons [1, 32]. For QNs, the main
sources of complexity are: i) the nonlinearity of the ODE model,
as it needs to account for threshold-type service rates that depend
on the state of the system; ii) the exponential complexity of the
optimization due to the multi-dimensionality of the AS. As a con-
sequence, the solution of a single optimization problem can be
time-consuming, reducing the maximum frequency at which the
controller can operate and therefore its effectiveness.

In this tutorial we present a novel formulation which formally
translates the original nonlinear MPC problem for a single-class
ON into an equivalent mixed integer linear programming (MILP)
one, leading to a quadratic programming problem that enjoys very
efficient solution techniques [2].

The MPC approach can be extended to multi-class QN, a relevant
model for the prediction and control of multiple applications (e.g.,
multiple virtual machines) sharing the same execution environment
(i.e., the same CPUs or disks) [21]. In particular, in this tutorial we
will focus on CPU-bound systems on a virtualized environment. We
consider control knobs that can realize vertical as well as horizontal
scaling; the former varies the sharing quota on each individual ma-
chine, while the latter determines the number of virtual machines
actually employed [26].

We first present a multi-class QN model for the capped allocation
paradigm [7]. This is a CPU-sharing mechanism available in most
modern off-the-shelf hypervisors (e.g., [5, 24]), which defines the
maximum share that a VM can receive from the CPU. Starting this
model, we formulate an MPC problem which can be efficiently
solved by linear programming, in a surprisingly simpler way than
the mixed-integer optimization of the single-class QN model.

5 PARAMETER ESTIMATION

For simplicity, until now we have implicitly assumed that all system
parameters could be directly measurable in the monitoring phase.
In reality, certain parameters are inaccessible because it would



Tutorial

be expensive and/or invasive to obtain them. In this tutorial we
also present a parameter estimation approach, which has the main
objective of obtaining model parameters in a minimally intrusive
manner and without assuming that the system under control is in a
steady-state regime [17]—a necessary condition for the applicability
of any of the parameter-estimation techniques reviewed in [27].

We focus on the estimation of service demands for single-class
QNs with exponentially distributed service times and load-dependent
(i.e., multiple-server) service rates, using measurements of queue
lengths only. The key to achieving this is to interpret the previously
discussed MPC problem in a dual manner: the decision variables
are the service demands to be estimated and the objective function
to be minimized is the error between the predicted queue lengths
and the measured ones across the whole observation horizon H.
The moving horizon strategy that shifts forward the time window
at each step allows one to obtain continuously updated estimates
of the parameters.

6 CONCLUSION

This tutorial has the objective to propose a model-based approach
for the performance-driven adaption of software system, presenting
recent work by the authors and colleagues (i.e., [17-21]) in a unified
manner and in the broader context of self-adaptive systems.

The tutorial will also touch on a number of open questions. To
cite a few, a current limitation is the “flat” nature of the QN models,
which does not cover mechanisms such as simultaneous resource
possession and layered services (e.g., multi-tiered applications when
one tier needs processing from tiers below in order to complete its
job). This calls for more expressive MPC formulations based for
layered queuing networks [12]. Another key issue is that the fluid
ON model provides first-order (i.e., mean value) approximations
only. This results in the impossibility to define adaptation strategies
driven by distributional requirements, such as response-time quan-
tiles. Finally, the service-demand estimation needs to be extended
for generally distributed service demands and multi-class networks.
We hope that the tutorial can stimulate further research in this
challenging area.
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