
TeaStore - A Micro-Service Reference Application for
Performance Engineers

Demonstration Paper

Jóakim v. Kistowski
University of Würzburg
Würzburg, Germany

joakim.kistowski@uni-wuerzburg.de

Simon Eismann
University of Würzburg
Würzburg, Germany

simon.eismann@uni-wuerzburg.de

Johannes Grohmann
University of Würzburg
Würzburg, Germany

johannes.grohmann@uni-wuerzburg.
de

Norbert Schmitt
University of Würzburg
Würzburg, Germany

norbert.schmitt@uni-wuerzburg.de

André Bauer
University of Würzburg
Würzburg, Germany

andre.bauer@uni-wuerzburg.de

Samuel Kounev
University of Würzburg
Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT
Performance engineering researchers propose and employ various
methods to analyze, model, optimize and manage the performance
of modern distributed applications. In order to evaluate these meth-
ods in realistic scenarios, researchers rely on reference applications.
Existing testing and benchmarking applications are usually difficult
to set up and either outdated, designed for specific testing scenarios,
or do not offer the necessary degrees of freedom.

In this paper, we present the TeaStore, a micro-service-based
reference application. The TeaStore offers multiple services with
various performance characteristics and a high degree of freedom
regarding its deployment and configuration to be used as a cloud
reference application for researchers. The TeaStore is designed for
the evaluation of performance modeling and resource management
techniques. We invite researchers to use the TeaStore and provide
it open-source, extendable, easily deployable and monitorable.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Software and its engineering → Software architectures;

KEYWORDS
Micro-service Architecture, Reference Application
ACM Reference Format:
Jóakim v. Kistowski, Simon Eismann, Johannes Grohmann, Norbert Schmitt,
André Bauer, and Samuel Kounev. 2019. TeaStore - A Micro-Service Ref-
erence Application for Performance Engineers: Demonstration Paper. In
Tenth ACM/SPEC International Conference on Performance Engineering (ICPE
’19), April 7–11, 2019, Mumbai, India. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3302541.3311966

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6286-3/19/04.
https://doi.org/10.1145/3302541.3311966

1 INTRODUCTION
Modern distributed micro-service applications have complex perfor-
mance characteristics, as the constituent services feature different
performance properties and are short-lived compared to traditional
software components. These applications are usually deployed in
container orchestration frameworks, such as Kubernetes, Docker
Swarm or cloud provider specific solutions. These frameworks add
another layer of complexity by autoscaling the service containers,
regenerating failing containers or by the introduction of monitoring
or service mesh sidecars.

Current research employs many analysis, modeling, optimiza-
tion, and management approaches that aim to tackle this challeng-
ing performance behavior. Verifying, comparing, and evaluating the
results of such research is difficult. To enable practical evaluation,
researchers need a software application that they can deploy as
reference and that offers realistic degrees of freedom. The refer-
ence application must also feature sufficient complexity regarding
performance behavior to warrant optimizing it in the first place.
Finding such an application and performing the necessary experi-
ments is often difficult. The software in question should be open
source, available for instrumentation, and should have reproducible
results, all while being indicative of how the evaluated research
would affect applications in production use.

Real-world distributed software is usually proprietary and can-
not be used for experimentation. Existing test and reference soft-
ware, on the other hand, is usually explicitly created for evaluating
a single contribution, which makes comparisons difficult. Other
existing and broadly used test software does not offer the necessary
degrees of freedom and is often manually adapted. Some of the
most widely used test and reference applications, such as RUBiS 1

or Dell DVD Store 2, are outdated and therefore not representative
of modern real-world applications. Reference applications from
industry vendors, such as the Sock Shop by WeaveWorks 3, usually
use a modern technology stack but are built to showcase a specific
software solution and do not pose the performance challenges that
current research focuses on.

1OW2 Consortium. 2008.RUBiS User’s Manual.
2https://linux.dell.com/dvdstore/
3https://github.com/microservices-demo/microservices-demo

Posters and Demonstrations ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

47

https://doi.org/10.1145/3302541.3311966
https://doi.org/10.1145/3302541.3311966
https://linux.dell.com/dvdstore/
https://github.com/microservices-demo/microservices-demo

Figure 1: TeaStore Architecture.

We present TeaStore, a micro-services-based test and reference
application that can be used as a benchmarking framework by
researchers. TeaStore consists of five different services, each fea-
turing unique performance characteristics and bottlenecks. Due to
the services’ different resource usage profiles, the TeaStore poses
interesting challenges in the area of performance modeling, au-
toscaling, and energy efficiency. It is designed to be scalable and to
support both distributed and local deployments. Additionally, its
architecture supports run-time scalability as services and service
instances can be added, removed, and replicated at run-time.

2 THE TEASTORE
The TeaStore is an online store for tea and tea-related utilities.
Users can browse the available products by category and look at
individual products. After logging in, the user can add items to
the shopping cart, modify the content of the shopping cart and
checkout by entering shipping and payment information. Previous
orders can be tracked on the user’s profile page. After the user
is finished, he can log out. The TeaStore displays advertisements
for other products based on the user’s previous orders, his current
shopping cart and the item/category he is currently looking at.

In addition to these regular operations, the TeaStore’s user in-
terface provides an overview of all running service instances and
the option to populate the database with an adjustable number of
categories, products per category, users, and average number of
previous orders per user. These operations should not be part of
any benchmark but simplify measurement setup.

The TeaStore consists of five distinct services and a Registry
service as shown in Figure 1. All services communicate with the
Registry. Additionally, the WebUI service issues calls to the Image-
Provider, Authentication, Persistence and Recommender services.

The Image provider and Recommender both connect to a pro-
vided interface at the Persistence service. However, this is only
necessary on startup (dashed lines). The Image provider must gen-
erate an image for each product, whereas the Recommender needs
the current order history as training data. Once running, only the
Authentication and the WebUI access, modify, and create data using
the Persistence.

All services communicate via representational state transfer
(REST) calls, as REST has established itself as the de-facto industry
standard in the micro-service domain. In order to distribute these
REST calls between the available service instances, the TeaStore
uses the client-side load balancer Netflix Ribbon. The TeaStore uses

a custom service registry, which is similar to Netflix Eureka that
supplies service instances with target instances of a specified tar-
get service type. To enable this, all running instances register and
unregister at the registry. This allows for dynamic addition and
removal of service instances during run-time. Each service also
sends heartbeats to the registry. In case a service is overloaded or
crashes and therefore fails to send the heartbeat messages, it is re-
moved from the list of available instances. Subsequently, it will not
receive further requests from other services. This mechanism en-
sures good failure recovery and minimizes the number of requests
sent to unavailable service instances.

Generally, all requests to the WebUI by a user or load generator
are handled similarly. TheWebUI always retrieves information from
the Persistence service. If all information is available, images for pre-
sentation are fetched from the Image provider and embedded into
the page. Finally, a Java Server Page (JSP) is compiled and returned.
This behavior ensures that even non-graphical browsers and simple
load generators that otherwise would not fetch images from a reg-
ular site cause image I/O in the TeaStore, ensuring comparability
regardless of the load generation method. As the TeaStore is primar-
ily a benchmarking and testing application, it is open source and
available to instrumentation using available monitoring solutions.
Pre-instrumented Docker images are available for each service that
include the Kieker monitoring probes [1] as well as a central trace
repository service- We choose Kieker, as it is a commonly used
application level monitoring solution in academia. System-level
monitoring for micro-service applications is usually managed by
container management frameworks, such as Kubernetes.

For additional information about the TeaStore and initial case
studies we refer to [2]. The TeaStore source code and detailed
documentation can be found on GitHub4, ready to deploy Docker
containers are available on DockerHub5. A short video showcasing
how to deploy and use the TeaStore in Kubernetes is available
online6.

3 CONCLUSION
We present the TeaStore, a test and reference cloud application
intended to serve as a benchmarking framework for researchers
evaluating their work. The TeaStore is designed to offer the degrees
of freedom and performance characteristics required by cloud soft-
ware management, prediction, and analysis research. Specifically,
the TeaStore facilitates research focused on model-based software
and performance engineering. Researchers may use the TeaStore
together with its pre-packaged testing tools and profiles for their
evaluation scenario.

REFERENCES
[1] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: A Frame-

work for Application Performance Monitoring and Dynamic Software Analysis.
In Proceedings of the 3rd joint ACM/SPEC International Conference on Performance
Engineering (ICPE 2012). ACM, 247–248.

[2] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research. In
Proceedings of the 26th IEEE International Symposium on the Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS ’18).

4https://github.com/DescartesResearch/TeaStore/
5https://hub.docker.com/u/descartesresearch/
6https://www.youtube.com/watch?v=6OcSNrErzGE

Posters and Demonstrations ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

48

https://github.com/DescartesResearch/TeaStore/
https://hub.docker.com/u/descartesresearch/
https://www.youtube.com/watch?v=6OcSNrErzGE

	Abstract
	1 Introduction
	2 The TeaStore
	3 Conclusion
	References

