
Performance Influence of Security Function Chain Ordering
Lukas Iffländer

University of Würzburg
Germany

lukas.ifflaender@uni-wuerzburg.de

Nicolas Fella
University of Würzburg

Germany
nicolas.fella@stud-mail.uni-wuerzburg.de

ABSTRACT
In modern days security systems often reach their performance
peak and limit the protected application. Utilizing the available
resources for security more efficiently is becoming more critical. In
this paper, we introduce the claim, that no static security function
chain is optimal in every situation. First experiments prove our
claim.

CCS CONCEPTS
•Networks→Network control algorithms;Network perfor-
mance analysis; Network security; Middle boxes / network ap-
pliances; • Security and privacy → Intrusion detection systems;
Virtualization and security;

KEYWORDS
intrusion detection, DDoS defense, firewall, network function vir-
tualization, adaptive networking
ACM Reference Format:
Lukas Iffländer and Nicolas Fella. 2019. Performance Influence of Security
Function Chain Ordering. In Tenth ACM/SPEC International Conference on
Performance Engineering Companion (ICPE ’19 Companion), April 7–11, 2019,
Mumbai, India. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3302541.3311965

1 INTRODUCTION
With the end of Moore’s Law [4] security systems face new chal-
lenges. While bot networks expand and attacks become more ag-
gressive from day to day, the systems can not keep up. The process-
ing power of a single CPU or server no longer scales as fast as the
potential threat.

Networks are vulnerable to attacks in various ways. Common
types are “HTTP Flood” or “SYN Flood.” Dedicated Security Appli-
ances (SAs) exist to defend against every type of network attack. An
Intrusion Detection System (IDS) protects against attacks targeted
at known vulnerabilities in deployed software. At the same time, a
firewall can protect against HTTP flood attacks on blocked ports.

In our previous work [3] we introduced the idea of self-aware
security function chain reordering. The basic concept is to change
the order of a Security Service Function Chain (SSFC) depending
on the incoming attacks. Since SAs drop packets deemed malicious
thereby lowering the load on subsequent SAs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6286-3/19/04.
https://doi.org/10.1145/3302541.3311965

When we presented this idea a frequent inquiry was whether
this approach is needed at all or if there might be a static solution
that works in any case. Thus, we decided to perform a performance
evaluation of the performance influence of the SSFC order. In the
following, we present some first results, that confirm the possibili-
ties from the dynamic adaptation of the order.

2 MEASUREMENT SETUP
2.1 Testbed Architecture
For the evaluation, we use a testbed with multiple servers and
SDN switches. Traffic generator, receiver, DDoS Mitigation System,
Intrusion Detection System, Firewall and SDN Controller each run
on one server. Each server connects to the management network.
Furthermore, each of these servers has two Ten Gigabit Ethernet
ports (Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network
Connection (rev 01)) to connect the servers. Four HPE 5130 24G
4SFP+ EI SDN-switches connect the servers. Each server is running
Ubuntu 18.04 Bionic Beaver.
Traffic Generator: The traffic generator is making use of both 10
Gb interfaces. HTTP-Load-Generator [5] generates benign packets.
IDS floods are generated using Cisco’s Trex1. Trex uses Intel DPDK
to create high-volume loads. DPDK binds the whole interface to
the program. Therefore, the HTTP traffic needs to be sent on a
different interface. Both interfaces connect to the same switch, so
from there on the packets will be treated equally by the network.
BoNeSi22 generates HTTP floods. BoNeSi can create high-volume
HTTP floods by emulating spoofed IP addresses.
Intrusion Detection System: The IDS host is running Snort3
in version 2.9.7. Snort is a common, open-source IDS developed
by Cisco. It is the base of Cisco’s commercial IDS solutions. One
10 Gb processes incoming and the other outgoing traffic. For the
measurements, we used the standard Snort Community signatures
extended by several rules.
Firewall: Like the IDS the Firewall used one interface for incoming
and one for outgoing traffic. A Linux bridge connects them. The
packet filtering is accomplished using netfilter/iptables rules.
Target: The target server is running a default Apache 2 installation
on port 80.
SDN Controller: Ryu4 is used as a SDN controller.

1https://trex-tgn.cisco.com/
2https://github.com/markus-go/bonesi
3https://www.snort.org
4https://osrg.github.io/ryu/

Posters and Demonstrations ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

45

https://doi.org/10.1145/3302541.3311965
https://doi.org/10.1145/3302541.3311965
https://doi.org/10.1145/3302541.3311965
https://trex-tgn.cisco.com/
https://github.com/markus-go/bonesi
https://www.snort.org
https://osrg.github.io/ryu/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

·104

0

0.2

0.4

0.6

0.8

1

1.2
·105

HTTP flood requests per second

Su
cc
es
sf
ul
lb

en
ig
n
re
qu

es
ts

IDS -> FW
FW -> IDS

Figure 1: Performance during HTTP-Flood

2.2 Measurement Methodology
HTTP-Load-Generator returns the number of successful requests.
Thus, we use this number to assert the performance of the secu-
rity appliance. The more requests the security system can handle
successfully, the more efficient it is.

We put an SSFC consisting of two devices under stress. The
first component is the firewall as mentioned earlier and the other
the IDS. After evaluating the performance without an attack, we
perform an HTTP flood and an IDS flood. For both, we evaluate
the performance with the IDS placed at the first position and in
a second experiment with the reversed order. We perform 2 000
benign requests per second over 60 seconds.

3 EVALUATION
3.1 Baseline
At first, we test the capabilities of the target, the firewall, and the
IDS under benign load. The target shows to be able to handle up to
16 000 requests per second. The addition of the firewall does not
affect the performance. Adding the IDS lowers the performance to
around 3 000 requests served successfully.

3.2 HTTP Flood
Figure 1 shows that for the HTTP flood the firewall at first position
has a significant advantage. While at no or low attack load the
performance is similar for both orders, the performance for the IDS
at first position drops significantly with increased load.

3.3 IDS Flood
Here both systems lose performance, once an attack starts. Never-
theless, the IDS at first position reduces the loss of performance. For
example, at 1 500 Mbit/s flood throughput, the IDS at first position
still has four times as many requests handled than the firewall at
first position.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·103

0

0.2

0.4

0.6

0.8

1

1.2
·105

Mbit/s IDS flood

Su
cc
es
sf
ul
lb

en
ig
n
re
qu

es
ts

IDS -> FW
FW -> IDS

Figure 2: Performance during IDS-Flood

3.4 Summary
The results show that depending on the current attack different
orders are optimal. The order that is optimal for the HTTP-Flood
lacks performance when facing an IDS flood. Thus, there is no
optimal static order.

4 CONCLUSION AND OUTLOOK
These first results show that our claim for the need of adaptive
SSFC reordering is well-founded. In future work, we will analyze
further combinations and the effect of the order on CPU and RAM
load. Also, we will incorporate our SDN based DDoS-Defense [1]
and IDS-Optimization [2].

5 ACKNOWLEDGMENTS
This work was funded by the German Research Foundation (DFG)
under grant No. (KO 3445/16-1).

REFERENCES
[1] Lukas Iffländer, Stefan Geißler, Jürgen Walter, Lukas Beierlieb, and Samuel Kounev.

2018. Addressing Shortcomings of Existing DDoS Protection Software Using
Software-Defined Networking. In Proceedings of the 9th Symposium on Software
Performance 2018 (SSP’18).

[2] Lukas Iffländer, Jonathan Stoll, Nishant Rawtani, Veronika Lesch, Klaus-Dieter
Lange, and Samuel Kounev. 2019. Performance Oriented Dynamic By-passing for
Intrusion Detection Systems. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering (ICPE ’19). ACM, New York, NY, USA, 8.

[3] Lukas Iffländer, Jürgen Walter, Simon Eismann, and Samuel Kounev. 2018. The
Vision of Self-aware Reordering of Security Network Function Chains. In Com-
panion of the 2018 ACM/SPEC International Conference on Performance Engi-
neering - ICPE '18 (ICPE ’18). ACM Press, New York, NY, USA, 1–4. https:
//doi.org/10.1145/3185768.3186309

[4] Thomas N. Theis and H.-S. Philip Wong. 2017. The End of Moore's Law: A New
Beginning for Information Technology. Computing in Science & Engineering 19, 2
(mar 2017), 41–50. https://doi.org/10.1109/mcse.2017.29

[5] Jóakim von Kistowski, Maximilian Deffner, and Samuel Kounev. 2018. Run-Time
Prediction of Power Consumption for Component Deployments. In Proceedings of
the 15th IEEE International Conference on Autonomic Computing (ICAC 2018). IEEE.
https://doi.org/10.1109/icac.2018.00025

Posters and Demonstrations ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

46

https://doi.org/10.1145/3185768.3186309
https://doi.org/10.1145/3185768.3186309
https://doi.org/10.1109/mcse.2017.29
https://doi.org/10.1109/icac.2018.00025

	Abstract
	1 Introduction
	2 Measurement Setup
	2.1 Testbed Architecture
	2.2 Measurement Methodology

	3 Evaluation
	3.1 Baseline
	3.2 HTTP Flood
	3.3 IDS Flood
	3.4 Summary

	4 Conclusion and Outlook
	5 Acknowledgments
	References

