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ABSTRACT
We present results of performing analytics and visualizations over
micro-architectural performance metrics collected in simulation
of high-end processor designs. These results contribute to several
use-cases: Obtain fast alerts in cases of anomalous behavior of the
design, create a global view of performance-related coverage, and
compare different versions of the hardware model as an aid to iden-
tification of root-causes of performance differences and correlations
between metrics. We show case our methods and results through
experiments on a very-high-end processor design, and discuss how
they are expected to affect the methodology of performance verifi-
cation of next-generation designs from the vendor.
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1 INTRODUCTION
In the last two decades, a thorough methodology, and vast engineer-
ing efforts, are used to verify modern high-end processors. These
extensive investments have enabled highly complex processors to
be delivered to the market with virtually no serious functional bugs.
However, pre-silicon methods for performance verification are still
sporadic and largely ad-hoc [1–3].

Pre-silicon performance verification is generally done today in
three different ways [3]. 1) Short test snippets to check specific
mechanisms. 2) Larger tests executed on the actual hardware model
or a reference model. 3) Performance sensors implemented within
the hardware design model, and large benchmarks, run to check
their measurements as compared to pre-defined minimal/maximal
expected values.

In this paper, we present a new methodology for performance
verification of high-end processors, that can be applied to the pre-
vious methods. It improves their effectiveness by adding analytics
and visualizations on data collected during the execution of the
test cases. The main enabler for this methodology is having data-
emitting sensors instrumented into the design. The emitted data is
collected, and then manipulations are applied over it. Our methods
fall into two categories. First, generic analytical methods to identify
areas that were potentially harmed during the evolution of the
design. And second, visual techniques to help the human expert
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in finding the relevant information from the large amount of data,
in order to reach meaningful conclusions. We aim to identify and
investigate unexplained changes in the behavior of the design, even
if at this stage and at the current level of testing, their effect on IPC
is minor. These changes, if unnoticed, may interact with further
changes, to significantly affect the IPC at later stages.

This application of combined techniques should result in an
earlier identification of performance issues, ultimately leading to
better-performing processors released to the market, at faster time-
lines and reduced costs to the vendor.

2 METHODOLOGY
We insert between several hundreds and a few thousand performance-
related sensors into the processor design. The sensors typically
count and accumulate measurements and emit their final value at
the end of the simulation. Sensors can be largely grouped into three
categories: latency sensors, sensors identifying hits/misses, and
utilization sensors. For latency and utilization sensors, at least
three numbers per sensor are emitted at the end of simulation,
namely the minimal, maximal, and average values the sensor mea-
sured throughout simulation. Hit/miss sensors end up emitting the
total accumulated number of hits and misses. For each sensor we
also assign a value indicating whether it is measuring a good, bad,
or unclassified property. Measuring a larger number for a good
property, or a smaller number for a bad property, indicates that
the design got better. Utilization sensors are many times of type
unclassified because higher utilization may mean on one hand that
the micro-architectural resource is indeed being utilized to do its
job, or, on the other hand, that we reached a congestion level which
can critically deteriorate performance.

Once executed, a workload can hit any of our sensors. Thus,
with around one thousand workloads and one thousand sensors,
our results provide a set of one million data points per execution,
and hundreds of millions of points collected throughout the design
cycle. Unlike existing methodologies, our main focus is not on the
end result, but rather on low-level performance characteristics. We
find that this focus can give a much richer insight into the behavior
of the design compared to observing IPC alone.

3 USE CASES AND RESULTS
In this section we describe the main use-cases we study, and present
results aimed to help verification engineers in the process of perfor-
mance verification. In what follows, we refer to those engineers as
our ‘users‘. It is important to point out at this point, that while our
approach is gaining a lot of interest among verification engineers,
our results are still preliminary. Most of the experiments were done
on previous versions of the designs. The tools we present will be
integrated in the verification work-flow, at which point we can
present more ’real-life’ results, and present bugs that they helped
prevent or solve.
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3.1 Model comparison
The first use-case we describe is model comparison, where two
design models are compared against each other. Typical instances
of this use-case are when comparing two model versions before
and after a design fix, when experimenting with a presumable
performance-beneficial change of design, or when comparing a
latest design drop to a gold standard. In all those situations, one
needs to gain a fast and holistic understanding of the overall effects
the changes between models have created in terms of the design
behavior. Our so-called A-B (A minus B) feature is designed to give
this quick and holistic view.

Figure 1: Model Comparison (A-B)

Figure 1 shows an example of this use case. The x and y axes
represent sensor and workload numbers respectively. The color
coding signifies improvements (blue) or degradation (red) of sensor
measurements over design model B compared to model A. Grey
cells indicate a missing data point in (at least) one of the models.
This generates a heatmap that is easy to inspect for fluctuations in
design performance. Here, sensor #12 to #23 show improvement in
the newmodel, while sensors #24 and #25 are suffering performance
degradation. Hovering over the cells can show detailed information
for the diffs. Users need to inspect and understand these behaviors.

Figure 2: Filtered Model Comparison

The tool also allows users to define minimum diff percentage to
show. In figure 2, diffs in the range [-50%,50%] are filtered out.

3.2 Coverage
One important aspect that is not paid enough attention when con-
ducting performance verification is that of coverage. It is true that
we would like our entire set of tests to have the best performance
possible, and in particular have the best values possible for each of
the performance sensors. However, in order to check as many as
possible real-life scenarios that the sensor might be in, we need to
have a test suite that helps us obtain coverage data over the entire
set of possible values for the sensors, both good and bad ones.

Figure 3: High Level Coverage

Figure 3 shows such a view of performance coverage. Here again,
the x-axis depicts sensor numbers. However, the y-axis depicts
percentage buckets of the measurement values for the specific
sensor (the highest value obtained for the sensor is 100% on the
y-axis). Shades of blue signify the number of times each percentage
bucket was hit in the entire test suite. Grey cells mean that the
relevant cell was not hit by any workload. In this example we see
that most of the sensors have low hit rates at their higher values,
while some have been reasonably distributed.

When a set of values was not covered by our set of workloads, it
is desirable to design new workloads to stress those areas as well.
For this and other reasons we also present coverage view of any
specific sensor. We will not show it here for space considerations.

3.3 More Use Cases
We are in the process of implementing and testing more visualiza-
tion use cases. In addition, there are some analytic methods that we
already tested and have promising results. These include: Trend
analysis - studying and analyizing performance trends in the de-
sign over time, Anomaly detection - Finding sensors that behave
in an anomalous way for some runs, and Clustering - grouping
the testcases into groups that have similar behavior on almost all
sensors (this data can serve for many purposes, including anomaly
detection). The results of all these use-cases will be presented in a
full paper once completed.

4 CONCLUSIONS
We have presented a set of analytical methods, both data- and
visualy-oriented, for analyzing performance of high-end processors
designs before cast in silicon. The combination of massive gath-
ering of data, deep analytical methods, expert inputs, and human
perception of pictures, is the winning path for making good sense
of what goes on in the hardware designs we are investigating. Our
methods allow for fast detection of performance bugs, even before
they have any observable effect on IPC.
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