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ABSTRACT
Open source Big Data frameworks such as Spark have been evolving
quite rapidly. Many of the changes have addressed improvement in
performance mainly focusing on the performance of the entire job
executing on a distributed system. Past studies have reported micro-
architectural performance characteristics of benchmarks based on
these Big Data frameworks. Given the rapid changes to these frame-
works, it is expected that some of these code changes will also have a
micro-architectural impact. In this paper, we present a comparative
study of performance of Apache Spark across two major revisions
and demonstrate that there are micro-architectural differences in
the way the applications use the hardware.
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1 INTRODUCTION
Apache Spark[5] is a popular Big Data processing framework that
distributes its computation over a large cluster of nodes. A number
of workloads addressing Big Data applications have been intro-
duced, notably BigDataBench[4], CloudSuite[2] and HiBench[3].
The factors that affect program behaviour include both the size of
the data being processed and the features of the application. Wang
et al [4] have demonstrated that with increasing datasize of these
workloads the CPI(Cycles per instruction) decreases due to the in-
creasing L3 cache misses while Dimitrov et al[1] have shown that
operating with or without compression has a significant impact on
CPI.

Our main contribution in this paper is to study how two major
versions of Apache Spark behave on a modern multi-core processor.
We demonstrate through an experimental approach, that there can
be significant performance differences in the micro-architectural
characteristics based on turning on or off certain features in the
applications.
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Weuse an experimental approach bymeasuringmicro-architectural
counters when executing workloads under different versions of
Apache Spark to measure the impact of individual features within
Apache Spark that affect the performance.

2 EXPERIMENTAL METHODOLOGY
Quantifying the performance impact when Big Data applications
requires detailed analysis of the processor for different versions of
big data software and its components. We selected two different
versions of Apache Spark- V1.3.0 and V2.2.0 for our comparison
experiment. Additions to Spark V2.2 compared to V1.3 are the
Tungsten Engine, Memory Manager, DAG Scheduler and some im-
provements in Error Recovery. We selected benchmarks from the
BigDataBench suite and measured their performance while execut-
ing on a 2 Socket Intel Xeon Broadwell based machine with 32 cores
and 64GB of DDR3 memory. We chose a set of 33metrics have been
chosen to account for hardware performance counters across these
versions. Some of the metrics chosen were include Elapsed Time,
Clock-ticks, Instructions Retired, CPI Rate, ICache Misses, Memory
Bound, L1 Bound, Memory Bandwidth and Memory Latency as
reported by Intel VTune.

2.1 Experiments Performed
2.1.1 Machine Setup. Performance metrics of an Intel Broadwell
machine with Xeon CPU E5-2620 v4 have been collected keeping
the max CPU frequency at 2.10GHz. The machine has 16 phys-
ical/32 logical split across 2 NUMA nodes, but the experiments
were conducted on 8 logical cores on the same NUMA node. The
machine has an L1 Cache of 512KB, an L2 Cache of2048 KB and
the last level cache (LLC) size is 20MB. All other configurations
like Scala version(2.11) JDK version (8) remain same for both the
versions as the performance gap can be directly accounted due to
software version change.

2.1.2 Environment Setup. We isolated the cores that will run the
workload from the cores that will run the other processes on the
system my affinitizing the existing processes to small set of cores.
Changing the Core-Affinity of every process that is running, helps
us to reserve a set physical core for experimenting and reduce
variability across runs and isolate the application being measured.
The ACPI driver is activated to use the user-space power governor
as it allows setting of discreet CPU frequencies which do not change
dynamically, instead of Intel’s modern pstate driver; this further
ensures that the variations across runs is minimized. Further, we
disabled Hyper Threading to map all the metrics directly to its
parent physical core though the experiments are conducted on
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logical cores. We selected a fewworkloads, as enumerated in Table 1
from the BigDataBench suite[4] to perform a comparative study.

Micro Benchmarks
Word Count

Sort
Grep

Graph Benchmarks
Page Rank

Connected Components
K-means

Table 1: List of various benchmarks we chose from Big Data
Bench

Metric Spark V1.3 Spark V2.2 %
Time 3914.45 1482.31 62.13

cycles PTI 408.85 475.41 16.28
instructions 1.16E+13 9.90E+12 55.45
branches PTI 185.24 190.56 2.87

branch misses PTI 1.31 1.38 5.29
cache misses PTI 2.45 2.83 15.11

cache references PTI 8.32 10.42 25.25
Table 2: Performance metrics comparison of benchmark
WordCount(50GB) on single core with different versions of
Spark. Data is normalized per thousand instructions (PTI)
for comparison

2.2 Preliminary Results
We executed various benchmarks listed in Table 1 with different
versions of Apache Spark and collected the performance counters
using Intel VTune. Figure 1 illustrates the comparison between
the CPI across multiple benchmarks and seems to indicate Spark
2.2 delivering a lower CPI. However, a closer examination of the
wordcount application as illustrated in Table 2 indicates that there is
nearly a 55% reduction in the total number of instructions executed.
We narrowed this to the Tungsten compiler that was introduced in
Spark version 2.2 which is more efficient at code generation. The
signature of the code however is similar in that both have approxi-
mately the same fraction of branches and branch misses. However,
it is interesting to observe that the number of cache references
and misses per thousand instructions has increased indicating an
increased pressure on the cache.

Figure 1: Overall Analysis - Spark

Figure 3 illustrates that the Tungsten compiler generates more
efficient code. Also, note that the sensitivity of performance to
datasizes without Tungsten is due to a reduction by 10% in the

Figure 2: Spark Version Summary

Figure 3: Instructions and Cycles
Tungsten ON vs Tungsten OFF - Benchmark: WordCount using

DataFrames, Input Size: 20GB , Spark Version: 2.2

total number of page faults. Also, we observed that the IPC of the
application dropped from 1.584 to 1.308 with Tungsten compiler on
causes the application became more memory bound. This indicates
to the hardware designer cache latency becomes a critical factor in
their design.
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