
Automated Multi-paradigm Analysis of Extended and Layered
Queueing Models with LINE

Giuliano Casale
Imperial College London, UK

g.casale@imperial.ac.uk

ABSTRACT
LINE is an open source library to analyze systems that can be mod-
eled by means of queueing theory. Recently, a new major release of
the tool (version 2.0.0) has introduced several novel features, which
are the focus of this demonstration. These include, among others,
an object-oriented modeling language aligned with the abstraction
of the Java Modelling Tools (JMT) simulator and a set of native
solvers based on state-of-the-art analytical and simulation-based
solution paradigms.

CCS CONCEPTS
•Mathematics of computing→ Queueing theory; • Comput-
ing methodologies →Modeling and simulation;

KEYWORDS
Queueing network, steady-state, transient, simulation, stochastic
model, JMT, layered queueing network

ACM Reference format:
Giuliano Casale. 2019. Automated Multi-paradigm Analysis of Extended and
Layered Queueing Models with LINE. In Proceedings of Tenth ACM/SPEC
International Conference on Performance Engineering, Mumbai, India, April
7–11, 2019 (ICPE ’19 Companion), 2 pages.
https://doi.org/10.1145/3302541.3311959

1 INTRODUCTION
LINE (http://line-solver.sf.net) offers state-of-the-art performance
and reliability analysis methods for systems that can be modeled
using queueing theory and stochastic modeling [6]. The goal of the
tool is to simplify the computation of quality-of-service metrics in
complex systems such as software applications, business processes,
and computer networks. LINE decomposes a system model into one
or more stochastic models, typically extended queueing networks,
that are subsequently analyzed for the desired metrics, such as
mean throughputs and mean (or percentiles) of response times.

A new version of the tool (2.0.0) has been recently released,
which features primarily two changes from early versions, namely
a completely new solution engine supporting multiple solution

Work supported by the European Union’s Horizon 2020 research and innovation
program under grant agreement 825040 (RADON) and by EPSRC under grant
EP/M009211/1 (OptiMAM).
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6286-3/19/04. . . $15.00
https://doi.org/10.1145/3302541.3311959

methods and an object-oriented modeling language to specify sto-
chastic models with ease, abstracting the model data structures
from the particular solution technique chosen for their evaluation.
The object-oriented modeling language primarily offers two classes
of stochastic models: (i) Networkmodels, which are extended queue-
ing networks, such as open, closed and mixed queueing networks,
possibly featuring multiple classes, class-switching, finite buffer
capacities, priorities, caching, non-exponential service and arrival
distributions, and multiple types of scheduling and routing poli-
cies; (ii) LayeredNetwork models, which are layered queueing net-
works [4], i.e., models consisting of layers, each corresponding to a
Network object, which interact with each other through synchro-
nous and asynchronous calls. For both classes of models, LINE also
supports the definition of a class of random environments to de-
scribe systems that change with the environment (e.g., breakdown
and repair).

Main performance metrics returned by LINE include average
response times, queue-lengths, throughputs, and utilizations. Such
metrics can either refer to an individual station, or when meaning-
ful to the system as a whole (e.g., system response time, system
throughput). For response times it is also possible to obtain per-
centiles, either analytically (typically via mean-field approximation)
or via simulation.

LINE has been implemented in MATLAB 2018a and consists of
approximately 140 classes. A porting to GNU Octave is currently
ongoing. LINE 2.0.0 is open-source and distributed under the BSD-3
license.
2 SOLUTION METHODS
Solvers available in LINE can be either native or external. Each
native solver encodes a general solution paradigm and may offer
multiple solution methods differing for accuracy and computational
cost. Native solvers are described next; for brevity we do not discuss
in details external solvers interfaced with LINE such as LQNS [4].

CTMC solver. This is a solver that computes performance metrics
in an exact manner by explicit generation of the infinitesimal gen-
erator of the continuous-time Markov chain (CTMC) for the model.
As the CTMC typically incurs state-space explosion, this solver can
successfully analyze only small models through their global balance
equations. In order to cope with open models, which typically need
infinite state spaces, the CTMC solver uses a truncation approach.

FLUID solver. This solver analyzes the model by means of mean-
field approximations, leveraging a representation of the queueing
network as a system of ordinary differential equations (ODEs).
The resulting fluid model is approximate, but if the servers all use
processor sharing or infinite-server scheduling, it becomes exact as
the scale of the system grows to infinity [6].

JMT solver. This is a solver that uses a model-to-model trans-
formation to export a LINE model as a JMT simulation (JSIM) or

Posters and Demonstrations ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

37

https://doi.org/10.1145/3302541.3311959
http://line-solver.sf.net
https://doi.org/10.1145/3302541.3311959

Figure 1: Automated model export from LINE to JMT

analytical (JMVA) model [1]. The JSIM export method can analyze
also non-Markovian models, in particular those involving determin-
istic or Pareto distributions, or empirical traces. A tight integration
with LINE is offered, for example it is possible to visualize LINE
models through JSIMgraph, JSIMwiz and JMVA, see e.g. Figure 1.

LN solver. LayeredNetwork models are treated in LINE as en-
sembles of extended queueing networks (i.e., Network objects) and
the corresponding native solver is called LN. This solver can use any
standard Network solver in LINE (CTMC, FLUID, JMT, ...) to analyze
a given layer and its main role is to update the layered parameters
after each iteration. Compared to solvers such as LQNS, LN is there-
fore parametric on the solution technique used in each layer, for
example allowing to combine analytical and simulation solvers.

MAM solver. This is a matrix-analytic method solver that relies
on quasi-birth death (QBD) processes to analyze open queueing
systems with non-exponential arrival or service processes. Fitting
functions are supplied to help the user parameterize such processes
in terms of phase-type distributions. In LINE 2.0.0, the QBD solver
implementation depends on the BUTools library [5].

MVA solver. This is a solver based on approximate and exact
mean-value analysis [2]. The solver is best suited to analyze product-
form models, but approximations for multi-server stations and non-
exponential distributions are also featured.

NC solver. This solver uses a combination of methods based on
the normalizing constant of state probability to solve a model. The
solver is applicable in particular to models that admit a product-
form solution [2] and it is particularly useful to compute marginal
and joint state probabilities in queueing network models. Normal-
izing constants are either computed exactly or via approximations,
such as the logistic expansion and logistic sampling methods [3].

SSA solver. This is a discrete-event simulator based on the model
state space that, contrary to the CTMC solver, does not require to
exhaustive state space generation. Each entity in the queueing net-
work is seen as an agent synchronizing passive and active actions
with other agents. The model simulation can be parallelized on
multi-core machines.
3 EXAMPLE: PERCENTILE COMPUTATION
We now demonstrate the response time percentiles analysis in a
simple model. We begin by instantiating a simple closed model
consisting of a delay followed by a processor-sharing (PS) station:

Figure 2: Simulated vs approximated response time tail

model = Network('model');
node{1} = Delay(model, 'Delay');
node{2} = Queue(model, 'Queue1', SchedStrategy.PS);

We assume that there exist a single service class consisting of 5
jobs that circulate between the two stations, requiring exponential
service times at both nodes with rates 1.0 and 0.5.
jobclass{1} = ClosedClass(model, 'Class1', 5, node{1}, 0);
node{1}.setService(jobclass{1}, Exp(1.0));
node{2}.setService(jobclass{1}, Exp(0.5));
model.link(Network.serialRouting(node{1},node{2}));

We now wish to compare the response time distribution at the PS
queue computed analytically through a fluid approximation against
the empirical distribution simulated by JMT. To do so, we call the
getCdfRespT method on both the Fluid and JMT solvers:
RDfluid = SolverFluid(model).getCdfRespT();
RDsim = SolverJMT(model,'seed',23000, ...

'samples',1e4).getCdfRespT();

The returned data structures, RDfluid and RDsim, provide the cu-
mulative distribution function (CDF) value F (t) = Pr (T ≤ t), where
T is the random variable denoting the response time, while t is
the desired percentile. A comparison between the complementary
CDF (1 − F (t)) obtained through JMT and the corresponding fluid
approximation is shown in Figure 2.

It is worth noting that, to produce the results from JSIMgraph in
Figure 2, the JMT solver automatically exports the model to XML,
adding in the process logger nodes to record the flow of individual
jobs, and then importing back the results to estimate the empirical
distribution from the logged data.

REFERENCES
[1] M. Bertoli, G. Casale, and G. Serazzi. 2007. The JMT Simulator for Performance

Evaluation of Non-Product-Form Queueing Networks. In Proc. of the 40th Annual
Simulation Symposium (ANSS). 3–10.

[2] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. 2006. Queueing Networks and
Markov Chains. Wiley.

[3] G. Casale. 2017. Accelerating Performance Inference over Closed Systems by
Asymptotic Methods. In Proc. of ACM SIGMETRICS. ACM Press.

[4] G. Franks, T. Omari, M. C. Woodside, O. Das, and S. Derisavi. 2009. Enhanced
Modeling and Solution of Layered Queueing Networks. IEEE Trans. Software Eng
35, 2 (2009), 148–161.

[5] G. Horváth and M. Telek. 2016. BuTools 2: a Rich Toolbox for Markovian Perfor-
mance Evaluation. In Proc. of VALUETOOLS.

[6] J. F. Pérez and G. Casale. 2017. Line: Evaluating Software Applications in Unreli-
able Environments. IEEE Trans. Reliability 66, 3 (2017), 837–853.

Posters and Demonstrations ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

38

	Abstract
	1 Introduction
	2 Solution methods
	3 Example: percentile computation
	References

