
FAB : Framework for Analyzing Benchmarks
Varun Gohil∗

Indian Institute of Technology
Gandhinagar

gohil.varun@iitgn.ac.in

Shreyas Singh∗
Indian Institute of Technology

Gandhinagar
shreyas.singh@iitgn.ac.in

Manu Awasthi
Ashoka University

manu.awasthi@ashoka.edu.in

ABSTRACT
Performance evaluation is an integral part of computer architecture
research. Rigorous performance evaluation is crucial in order to
evaluate novel architectures, and is often carried out using bench-
mark suites. Each suite has a number of workloads with varying
behavior and characteristics. Most analysis is done by analyzing
the novel architecture across all workloads of a single benchmark
suite. However, computer architects studying optimizations of spe-
cific microarchitectural components, require evaluation of their
proposals on workloads that stress the component being optimized
across multiple benchmark suites.

In this paper, we present the design and implementation of FAB
- a framework built with Pin and Python based workflow. FAB
allows user-driven analysis of benchmarks across multiple axes
like instruction distributions, types of instructions etc. through an
interactive Python interface to check for desired characteristics,
across multiple benchmark suites. FAB aims to provide a toolkit
that would allow computer architects to 1) select workloads with
desired, user-specified behavior, and 2) create synthetic workloads
with desired behavior that have a grounding in real benchmarks.

CCS CONCEPTS
•General and reference→ Empirical studies; •Human-centered
computing → Visualization.

KEYWORDS
workload analysis, instruction mix, workload selection, workload
similarity
ACM Reference Format:
Varun Gohil, Shreyas Singh, and Manu Awasthi. 2019. FAB : Framework
for Analyzing Benchmarks. In Tenth ACM/SPEC International Conference on
Performance Engineering Companion (ICPE ’19 Companion), April 7–11, 2019,
Mumbai, India. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3302541.3313102

1 INTRODUCTION
Performance evaluation is an integral part of computer architecture
research, and is typically carried out with the help of benchmark
suites. These benchmark suites consist of a number of workloads
∗Both authors contributed equally to this research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6286-3/19/04. . . $15.00
https://doi.org/10.1145/3302541.3313102

which are generally representative of a particular application do-
main. Benchmark suites are used to quantitatively measure the
performance of system or a sub-system thereof. Computer architec-
ture research hinges on the ability of architects to select the right
set of workloads required to demonstrate the benefits of proposed
enhancements to existing architectures.

Selecting the right set of workloads for performance evaluation
of an architecture is not an easy task due to multiple reasons. First,
a benchmark suite comprises of a number of workloads that are
representative of the typical characteristics and behaviors of a class
of applications. For example, SPEC CPU2017 [2] suite comprises of
workloads that are compute-intensive and stress the CPU. Similarly,
there are individual benchmarks like STREAM [12] and that stress
the memory sub-system. Other, multi-threaded benchmark suites
like PARSEC 3.0 [5] which represent emerging application domains,
or SPLASH 3.0 [10] which represent complex, parallel applications
are also very popular for evaluating CPU architectures. In addition,
a number of these workloads could be executed using different
input sets. As a result, multiple behaviors could be exhibited by
a single workload, depending on provided inputs. Secondly, for
evaluating the same sub-system across multiple contexts could
lead to different benchmark suites being used. As an example, the
performance of CPU architectures across most verticals can be
evaluated using standard, well-known benchmarks suites like SPEC
CPU 2017 [2], PARSEC 3.0 [5], SPLASH 3.0 [10]. If we increase the
scope to include the server and high performance computing space
as well, this list grows to include suites like TPC [13], LINPACK [7]
and NAS parallel benchmarks [4].

Thirdly, a benchmark suite is an aggregation of a large number
of disparate applications where each workload can potentially have
multiple phases of execution [15]. Typically, in a given phase, a
workload stresses one or a small subset of system components. For
example, a memory intensive phase could potentially be followed
by a compute intensive phase. Not only that, each successive com-
pute intensive phase (of the same workload) might stress different
execution units: if the current phase is dominated by integer op-
erations, the next one could potentially be dominated by floating
point operations. The behavior of each phase and their order is
predominantly defined by the application.

This varied space could become especially difficult to maneuver
for architects and designers who are trying to optimize a specific
components of the architecture, say the floating point subsystem.
Once an enhancement has been designed, the architects would like
to study the system level implications of the proposed optimiza-
tion in terms of various metrics for performance and/or energy
consumption. As a result, the architect would like to select the
workloads from all possible available suites that show a significant
amount of floating point activity.

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

33

https://doi.org/10.1145/3302541.3313102
https://doi.org/10.1145/3302541.3313102
https://doi.org/10.1145/3302541.3313102

Figure 1: Framework Flow Figure 2: Instruction Mix of dgemm bench-
mark

Currently, selecting a set of workloads that satisfy the criteria
specified by an architect, is a very difficult task, mostly because
there is no central repository which can help architects compare
workload characteristics across multiple suites in one place. Further-
more, there are no existing mechanisms for an architect to create
synthetic workload(s) by putting together interesting phases of
multiple workloads, potentially from multiple benchmark suites. Fi-
nally, there are very few, well-defined axes using which an architect
can specify the requirements of a workload that she is interested
in.

In this paper, we present FAB which aims to facilitate the pro-
cess of workload selection and creation. FAB presents a Pin and
Python based workflow which helps an architect select interest-
ing workloads from a wide variety of available workloads, across
benchmark suites. FAB does this by making the following important
contributions:

(1) FAB provides a mechanism of instruction classification for
the x86_64 instruction set. We manually classify the entire
instruction set in to multiple bins, with each bin representing
a set of instructions with similar characteristics. These bins
can then be used by the architects for specifying a number
of things ranging from analysis of a single workload to com-
parison across workloads. Currently, FAB provides 43 such
bins that cover all instructions of the x86_64 instruction set.
The FAB back-end allows this information to be generated
for any new workload compiled for the x86_64 ISA.

(2) FAB provides an interactive Python notebook to visualize
the architectural characteristics of multiple workloads, from
across benchmark suites. This visualization is user defined
and can be along as many axes/bins as she desires. The
notebook also provides for visualizing the similarities (or
differences) along user specified axes, across various work-
loads.

2 FRAMEWORK DESCRIPTION
As shown in Figure 1, FAB’s workflow currently consists of two
parts. The first part, or the backend, deals with a Pin based flow,
which takes a workload binary and the associated input files as
input, and generates an instruction mix for the workload as output.
This has to be done once for every new workload. The instruction
mix is then used for various kinds of analyses using the tool’s fron-
tend, which is a Jupyter notebook. The frontend also contains the
pre-classified instruction bins, which can be referenced directly
from within the notebook. The notebook takes the benchmark and

instruction bins as input and produces stacked barcharts and den-
drograms which assist in analysis. We describe the overall workflow
in more detail, next.

2.1 Instruction Mixes
To understand a workload’s behavior it is important to analyze
different characteristics of the workload. Examples of these charac-
teristics include the instruction mix, instruction level parallelism,
branch transition rate and working set size, among others.

Currently, FAB uses the instruction mixes as the primary char-
acteristic for facilitating analysis. Instruction mixes include the
various instructions executed by a workload and their frequency.
Instruction mixes are chosen since they are a microarchitecture
independent characteristic; they depend on the ISA, the source
code and the compilation method, making it completely indepen-
dent of the circuit-level implementation. This ensures that instruc-
tion mixes can be used for picking workloads as long as the ISA,
and compilation flags remain the same. While some prior work
has used instruction mixes [6, 14] as a characteristic for study-
ing workload behavior, they do not use an exhaustive instruction
mix. Instead, most limit themselves to the study of memory and
branch operations obtained using the perf utility. FAB, on the other
hand provides the capability to study workloads across all possible
instruction mixes for the x86_64 ISA.

Currently, FAB contains instructionmixes of SPECCPU2017 [2],
PARSEC 3.0 [5], SPLASH 3 [10] and OpenBLAS [1] benchmark
suites. These mixes were generated using the opcodemix tool of
Pin [11] for x86_64 ISA. Figure 2 provides an example of the dy-
namic instruction profile of dgemm, a workload from the Open-
BLAS suite. As mentioned previously, this exercise for generating
instruction mixes needs to be done once for every workload. For
the aforementioned workloads, we carry out instruction mix gen-
eration and provide these mixes as part of the Jupyter notebook.
This information is then used for a variety of analyses including
inter- and intra- workload comparisons.

2.2 Instruction Binning
A focus on the just the execution frequency of instructions does not
provide adequate insight to workload behavior. Most researchers
prefer analyzing a specific function or aspect of the system (much
like the fact that [14] and [6] look at the memory and branch opera-
tions executed). However, more interesting analyses can be carried
out, if we can classify the instructions into multiple bins, with

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

34

Figure 3: Floating point instructions in SPEC CPU 2017 and PARSEC 3.0

each bin representing a specific type of instructions. For exam-
ple, branches and integer instructions could be a bin each, bitwise
logical operations could be another.

However, care has to be taken regarding the granularity of the
bins. Too fine a granularity would result in a large number of bins.
As a result, the analyses generated using those would be hard to
reason about. On the other hand, coarser granularity will result in a
small number of bins, which would potentially not provide enough
information. In this work, we group all the x86_64 instructions [3]
into a set of 43 pre-made “bins”. These include regular instructions,
as well as ISA extensions, including SSE and AVX. The binning
of instructions was done by manually going through the entire
instruction set, and classifying them accordingly.

Table 1 lists the existing bins and the types of instructions con-
tained in each. These bins serve as well defined axes which can
help architects analyze workloads along specified axis and choose
the workloads as per one’s requirements. For example if one wants
to analyze the double precision floating point instructions executed
by the workloads one can directly use the dpf bin provided in the
framework. To give more control to the user, the framework also
supports creation and usage of custom user-defined bins, as well as
grouping pre-existing bins into larger ones.

Bin Type Bin Names
Logic (fine) logic_and, logic_and_not, logic_not, logic_or, logic_xnor,

logic_xor,
Logic (coarse) cmp (compare), logic, shift
Arithmetic (fine) all_add, all_sub, all_mul, all_div, all_spc, int_add, int_sub,

int_mul, int_div, int_spc, spf_add, spf_sub, spf_mul, spf_div,
spf_spc, dpf_add, dpf_sub, dpf_mul, dpf_div, dpf_spc,
int_add_sub, int_add_mul, dpf_add_sub_mul, spf_add_sub_mul

Arithmetic (coarse) all, int, spf, dpf
Branch brn
Move mov, mov_fp
Others avxsse, con (convert), spc (special)

Table 1: Bin Types

3 USE CASES
In this section, we present details on two present use cases of FAB,
namely workload selection and workload similarity analysis.

3.1 Workload Selection
Using the framework a computer architect can not only select a
set of workloads from within a benchmark suite but also across
multiple benchmarks. Suppose a computer architect modifies the
Floating Point Unit (FPU) to optimize execution of single precision

floating point instructions. For evaluating such optimization, the
selected workloads should have significant number of single preci-
sion floating point instructions, which might not be the case for all
the workloads in a given suite – the architect might want to choose
workloads that best suit her needs from across multiple suites.

As an example, we use FAB to select a suitable set of workloads
from PARSEC 3.0 and SPEC CPU2017 suites. For SPEC CPU 2017,
we only consider workloads in the float sub-suite. On specifying spf
(single precision floating pont), dpf (double precision floating point)
and fp_mov (data movement floating point) bins as those of interest,
FAB generates plots in Figure 3. Figure 3 shows the percentage of
single precision floating point instructions in workloads of SPEC
and PARSEC. Only 5 out of 12 PARSECworkloads have greater than
20% single precision floating point instructions, while only 2 out of
23 SPEC FP 2017 benchmarks show a similar statistic. Hence, a set of
workloads for analyzing the benefits of the FPU optimization would
contain streamcluster, facesim workloads from PARSEC and 521,
621 workloads from SPEC CPU 2017. Each of these workloads has
more than 30% single precision floating point instructions. Similarly,
the architect can also specify multiple such criteria when selecting
workloads that match her preferences.

3.2 Workload Similarity Analysis
Similarity analysis within a suite or across multiple suites can help
architects understand similarities, if any that might exist between
different workloads of the suites. This is useful for creating a re-
duced workload set by removing workloads with mostly similar
behavior. For finding similarity between workloads, the framework
uses agglomerative hierarchical clustering [8]. This requires each
workload to be represented as an n-dimensional vector, which we
refer to as the characteristic vector. Currently, the elements of the
characteristic vector are the percentage frequency of bins as speci-
fied by the user.

The workloads are iteratively grouped into clusters based on
the distance between their characteristic vectors. Each cluster con-
tains workloads which exhibit similar behavior with regards to
specified bins. This process can be represented as a dendrogram.
A dendrogram showing the similarity between PARSEC 3.0 and
SPLASH 3 with spf, dpf, fp_mov bins (floating point instructions) as
the characteristic vector is shown in Figure 4. From Figure 4 one can
easily divide the workloads into two clusters - one cluster contains
all workloads joined with red line and the other contains all the
workloads joined with green line. Thus workloads within the same

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

35

cluster show similar behavior in terms of floating point instructions
executed. Using this mechanism one can get a workload set with
each workload having similar behavior for the specified bins.

The generated dendrograms can also be used for finding a re-
duced workload set from a benchmark suite which has a wide
coverage of workload behaviors across the entire suite. Instead of
selecting workloads having similar behavior, we can select work-
loads with diverse behaviors to increase coverage. The methodology
for finding a reduced set from a dendrogram is described in [14].

Figure 4: Dendrogram between PARSEC and
SPLASH

4 FUTUREWORK
4.1 Extending FAB
FAB is easily extensible owing to pre-defined hierarchy of the un-
derlying database of workload characteristics. In the future, we
plan on adding more analytical and visualization features to the
front-end, as well as more information to the back-end to enable
it to carry out multiple types of analyses. Some of the proposed
future work envisioned for FAB is enumerated below.
• Enable FAB analyses to support a richer set of metrics like
working set size and branch transition rates, in addition to
instruction mixes.
• Enable FAB to analyse a broader set of benchmark suites by
adding characterization data from suites like BioPerf (bioin-
formatics), MediaBench (media) and Moby (mobile applica-
tions).
• Enable FAB to carry out cross-ISA analysis of workloads by
adding characterization data for suites across multiple ISAs
like ARM and RISC-V.

4.2 Workload Creation
We also aim to augment the functionality of FAB to support work-
load creation by generating synthetic workloads with user specified
characteristics. Previous work has shown that statistical profiles
of workloads can be used for generating synthetic workloads [9].
These workloads are typically shorter than the actual workloads,
leading to reduced simulation time. By using these techniques, the
performance characteristics can quickly converge to a steady state
which makes such workloads suitable for accelerated design space
exploration[8]. Enhancements to specific components of an archi-
tecture can be tested by generating workloads that heavily utilize
that component.

In future, we aim to use instruction mixes to train statistical
machine learning models like generative adversarial networks to
generate synthetic workloads using the framework. We envision
that the computer architect will be able to define not only the
composition of the synthetic workload using bins but also specify
different phases that she is interested in observing. Not only that,
an architect might be interested in observing the behavior of a
proposed architectures under a sequence of pre-specified program
phases, which might be harder to find in existing applications.
For example, the architect might want to observe the proposed
architecture under a integer compute-intensive phase, followed by
a memory-intensive phase, followed by a floating point compute-
intensive phase. Allowing for the creating of such user-specified
workloads, which still have a basis in “real” workloads will help
reason about system design and help architects explore what-if
scenarios.

5 CONCLUSIONS
In this paper, we introduce FAB - an extensible and flexible frame-
work that allows computer architects to analyze and compare char-
acteristics of workloads within one, and across multiple benchmark
suites.

The framework currently can be used for analyzing and select-
ing workloads that fulfill computer architect specified criteria. By
providing visual aids like dendograms, the framework allows for se-
lecting workload sets across multiple benchmark suites by allowing
for removal of workloads with similar behavior. We aim to extend
FAB to support multiple ISAs and provide richer set of options to
the user for specifying workload characteristics.

ACKNOWLEDGMENTS
This work was supported in part by SERB grant ECR/2017/000887,
IIT Gandhinagar and Ashoka University.

REFERENCES
[1] [n. d.]. OpenBLAS : An optimized BLAS library. http://www.openblas.net/
[2] [n. d.]. SPEC CPU 2017 Documentation. https://www.spec.org/cpu2017/
[3] 2016. Intel 64 and IA-32 Architectures Software Developers Manual Volume 2A:

Instruction Set Reference, A-L.
[4] D. H. Bailey et al. 1991. The NAS Parallel Benchmarks&Mdash;Summary and

Preliminary Results. In Proceedings of Supercomputing.
[5] Christian Bienia et al. 2008. The PARSEC Benchmark Suite: Characterization and

Architectural Implications. Technical Report TR-811-08. Princeton University.
[6] C. Bienia et al. 2008. PARSEC vs. SPLASH-2: A quantitative comparison of

two multithreaded benchmark suites on Chip-Multiprocessors. In Proceedings of
IISWC.

[7] Jack J. Dongarra et al. 2002. The LINPACK benchmark: Past, present, and future.
[8] Lieven Eeckhout. 2010. Computer Architecture Performance Evaluation Methods

(1st ed.). Morgan & Claypool Publishers.
[9] L. Eeckhout et al. 2000. Performance analysis through synthetic trace generation.

In Proceedings of ISPASS.
[10] C. Sakalis et al. 2016. Splash-3: A properly synchronized benchmark suite for

contemporary research.
[11] Chi-Keung Luk et al. 2005. Pin: Building Customized Program Analysis Tools

with Dynamic Instrumentation. In Proceedings PLDI.
[12] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current

High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19–25.

[13] D. A. Menasce. 2002. TPC-W: a benchmark for e-commerce. IEEE Internet
Computing 6, 3 (2002).

[14] R. Panda et al. 2018. Wait of a Decade: Did SPEC CPU 2017 Broaden the Perfor-
mance Horizon?. In Proceedings of HPCA.

[15] Timothy Sherwood et al. 2002. Automatically Characterizing Large Scale Program
Behavior. SIGOPS Oper. Syst. Rev. 36, 5 (2002).

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

36

http://www.openblas.net/
https://www.spec.org/cpu2017/

	Abstract
	1 Introduction
	2 FrameWork Description
	2.1 Instruction Mixes
	2.2 Instruction Binning

	3 Use Cases
	3.1 Workload Selection
	3.2 Workload Similarity Analysis

	4 Future Work
	4.1 Extending FAB
	4.2 Workload Creation

	5 Conclusions
	Acknowledgments
	References

