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ABSTRACT
There are nearly one hundred parallel and distributed graph
processing packages. Selecting the best package for a given
problem is difficult; some packages require GPUs, some are
optimized for distributed or shared memory, and some require
proprietary compilers or perform better on different hard-
ware. Furthermore, performance may vary wildly depending
on the graph itself. This complexity makes selecting the op-
timal implementation manually infeasible. We develop an
approach to predict the performance of parallel graph process-
ing using both regression models and binary classification by
labeling configurations as either well-performing or not. We
demonstrate our approach on six graph processing packages:
GraphMat, the Graph500, the Graph Algorithm Platform
Benchmark Suite, GraphBIG, Galois, and PowerGraph and
on four algorithms: PageRank, single-source shortest paths,
triangle counting, and breadth first search. Given a graph,
our method can estimate execution time or suggest an imple-
mentation and thread count expected to perform well. Our
method correctly identifies well-performing configurations in
97% of test cases.

CCS CONCEPTS
• General and reference → Performance; • Computing method-
ologies → Supervised learning by classification; Supervised
learning by regression.
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1 INTRODUCTION
Our research is motivated by the current state of parallel
graph processing. Fields such as social network analysis [6]
and computational biology [15] require the analysis of ever-
increasing graph sizes. The wide variety of problem domains
is resulting in the proliferation of Parallel Graph Processing
Implementations (PGPI). The most comprehensive survey,
released in 2014, identified and categorized over 80 different
PGPIs [4] not including domain-specific languages such as
Gremlin [16].

We take inspiration from the Graph500 benchmark [12]
and its complete specification of graph kernels to fairly com-
pare performance. We present EPG*, a framework which
simplifies the installation, comparison, and performance anal-
ysis of four widely-implemented graph algorithm building
blocks: breadth first search (BFS), single-source shortest
paths (SSSP), PageRank (PR), and Triangle Counting (TC).

This paper describes the following contributions.
∙ Reproducible analysis of the performance and scalabil-

ity of PGPIs.
∙ Recommendation of well-performing algorithms across

PGPIs based on properties of the input graphs. To
illustrate our approach, we show that for a common
performance objective, Traversed Edges Per Second,
the average improvement recommended by the model
is between 6% (for PR) and 700% (for BFS) better
than the average across all configurations. The same
approach can be applied to other objectives such as
energy or power.

To be clear, we are not proposing a new benchmark suite
or providing new implementations. Instead, we introduce a
method to compare and recommend existing software pack-
ages without requiring the user to be familiar with the un-
derlying implementation. We provide EPG* open-source at
https://github.com/HPCL/easy-parallel-graph.

2 METHODOLOGY
EPG* works by automatically downloading or generating
graph datasets and converting them to the correct formats,
running experiments for different thread counts, then using
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this as training data to a recommender system. This sys-
tem either uses regression to predict runtime or classifies
configurations as “well-performing” or not.

At each stage we ensure the comparison is fair; we use
undirected graphs with no duplicate edges, the same graph
files, random seeds, and stable repository forks. We manu-
ally inspect source code to ensure timing data and stopping
criteria (e.g. termination condition for PR) are consistent.
Namely, we split total execution time into data structure
construction, input file reading, and algorithm runtime.

Each experiment is run multiple times to account for algo-
rithmic and OS variation and uses different starting vertices
(roots) for BFS and SSSP for each trial. For building the
machine learning model, we use a grid search on Kronecker [8]
synthetic graphs and 25 real-world graphs from the Stanford
Network Analysis Project (SNAP) [9] or KONECT [7].

2.1 Graph Processing Systems
This study explores five shared-memory parallel graph pro-
cessing packages and one distributed memory framework
operating on a single node (Powergraph). They are:

(1) The Graph500 [12]
(2) The Graph Algorithm Platform (GAP) Benchmark

Suite [2]
(3) GraphBIG benchmark suite [13]
(4) GraphMat [19] PowerGraph [5]
(5) Galois [14]
(6) Powergraph [5]

2.2 Algorithms
We consider four parallel algorithms: breadth first search
(BFS), single-source shortest paths (SSSP), triangle counting
(TC), and PageRank (PR), though not all algorithms are
implemented on all systems.

One challenge with PR is the stopping criterion; all im-
plementations have been modified to use ‖𝑝𝑡 − 𝑝𝑡−1‖1 (the
absolute sum of differences) where 𝑝𝑡 is the PageRank vec-
tor at step 𝑡. Verification of the PR results is beyond the
scope of this paper though this may explain performance
discrepancies.

Our approach is not specific to a particular algorithm;
measuring the execution time, data structure construction
time, and power consumption can be applied easily to other
implementations. We hope this motivates others to use the
framework for their own work.

2.3 Machine Specifications
We performed experiments on a 56-core (28 thread) node with
128GB DDR4 RAM and two Intel Xeon E5-2690 v4 CPUs.
The operating system is GNU/Linux 3.10.0. Our code was
compiled with GCC version 4.8.5 except GraphMat which
was compiled with the Intel compiler version 17.0.0.

3 MACHINE LEARNING
RECOMMENDATIONS

3.1 Graph Features
We use as features the numbers of threads, edges, vertices,
average clustering coefficient, number of triangles, fraction of
closed triangles, diameter (longest shortest path between two
vertices), 90th percentile effective diameter, and the fractions
of nodes and edges in largest strongly and weakly connected
components (SCC and WCC) for a total of 12 features.

For regression, we attempt to predict runtime. However,
for small graphs or some roots, the runtime is effectively 0
which skews our models so we instead calculate the 𝑧-score
of the runtimes for each algorithm (normalization).

For classification, we normalized using Traversed Edges
Per Second (TEPS) which is runtime divided by the number
of edges in the graph. This is a misnomer for algorithms like
PR which touch edges multiple times, but to account for this
we train separate models for each algorithm.

3.2 Models
The goal of EPG* is to suggest the best package for a given
graph, algorithm, and hardware configuration. To accomplish
this we model performance using linear regression and binary
classification.

We split the data into a 70%-30% training and test set.
The linear model was then trained for each algorithm with
the normalized and unnormalized version of the training set.
To further improve the accuracy, we incorporated a ridging
based linear regression model.

Since predicting runtime is a secondary goal (the user just
wants the best-performing package), we also built classifiers
to determine if a package is well-performing. We began with
binary classification using logistic regression. Each data point
in the learning set is tagged either “good” or “bad” based on
its TEPS. We weighted these tags such that roughly 1/3 are
considered “good.” (See the sums along the rows of Table 1)

We also implemented a supervised decision tree-based
model, random forests, and achieved higher accuracy.

4 MACHINE LEARNING RESULTS
4.1 Regression
We built linear regression models for four different configura-
tions: with and without ridging on normalized and unnormal-
ized runtimes. Figure 1 shows how the results progressively
improved with each configuration leading up to the best one
being ridging on the normalized learning set (R+N). How-
ever, the 𝑅2 values for R+N, while an improvement, are still
relatively low.

Although 𝑅2 is a common metric for evaluating a linear
model, it is not sufficient for our purposes. This can be intu-
ited by noting our goal is to predict runtime; a linear model
can have a low 𝑅2 yet still predict runtime with reasonable
accuracy. We measure Root Mean Square Deviation (RMSD)
to measure the degree of difference in runtime (the middle
plot in Figure 1). However, RMSD is hard to compare across
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Figure 1: Linear regression with and without ridging and nor-
malization

Table 1: Confusion matrices for all algorithms. The columns
are predictions, the rows are observations.

(a) Logistic Regression

TC

good bad
good 0 49
bad 0 113

BFS

good bad
good 133 9
bad 91 4

PR

good bad
good 161 0
bad 81 0

SSSP

good bad
good 27 85
bad 17 113

(b) Random Forest

TC

good bad
good 43 1
bad 0 118

BFS

good bad
good 110 0
bad 0 147

PR

good bad
good 75 0
bad 1 193

SSSP

good bad
good 51 11
bad 9 198

algorithms; BFS has a much lower runtime than TC. Thus, we
use and Normalized Root Mean Square Deviation (NRMSD)
(the right plot). This gives us a better idea of how much the
runtimes vary as a percentage of overall runtime. We note
that our model predicts runtime within a factor of 2 in the
worst case (BFS) and a factor of 0.5 in the best case (TC).

4.2 Classification
The classification model is more accurate than linear regres-
sion in identifying the well-performing graph, algorithm, and
hardware configuration. Table 1(a) shows the confusion ma-
trix for logistic regression across all algorithms. Although the
model achieves an overall accuracy of 64%, it categorizes all
data points as “bad” for TC and “good” for PR, resulting
in a high percentage of false negatives and false positives for
TC and PR, respectively.

This motivated us to consider methods which work well
even with a relatively small training set. Table 1(b) shows
the confusion matrix of a random forest classifier across all
algorithms. Random forest provides a significant improvement
over logistic regression. Not only does it achieve a mean
accuracy of 97% across all algorithms, the percentage of
false positives and negatives is also significantly reduced;
the model achieves perfect classification for BFS and a near
perfect classification for TC and PR.

Table 2: TEPS for each algorithm. Improvement is computed
as the mean TEPS of data labeled as good divided by the mean
TEPS for all data. Larger TEPS indicates better performance.

Algorithm Min Max Mean
(all)

Mean
(good)

Improvement
(%)

TC 1.2e2 2.3e3 6.8e2 1.6e3 66.6
BFS 2.8e3 3.1e10 1.1e8 8.1e8 700.7
PR 7.6e1 1.1e5 4.4e3 4.7e3 6.8
SSSP 2.3e2 2.6e10 8.2e7 1.1e8 34.1

Even when the model wrongly classifies a data point as
good, it is only negligibly slower than average. With SSSP,
the mean TEPS for the nine false positives is slower than
the mean overall TEPS by only 0.03%. The singular false
positive for PR is 11% slower, but we used the worst results
from eight random seeds for Table 1; the rest had no false
positives.

Similar to performance penalty, performance improvement
for true positive predictions is also better for random forests.
Performance improvement determines by how much the pro-
posed model outperforms a hypothetical strategy which picks
configurations at random. We see from Table 2 that for each
algorithm, the mean TEPS across all experiments is signifi-
cantly lower than the mean for experiments labeled “good”
and this improvement ranges from 7% to 700%. The perfor-
mance improvement for PR is not as high as the other algo-
rithms. This is explained by the low variance in runtime—and
therefore TEPS—of PR: the coefficient of variation (standard
deviation/mean) of TEPS for BFS it is 1.5 and PR is only
0.21.

5 RELATED WORK
Most performance analysis of graph processing systems come
from the empirical results of each new library designer’s
publications, like for GraphMat [19], PowerGraph [5], and
GraphBIG [13]. Other work uses hand-tuned implementations
and provides performance improvement recommendations [10,
17]. Additionally, Graphalytics [3] automates the setup and
execution of graph packages for performance analysis. These
projects accomplish a different goal of comparing performance
between packages for a given dataset rather than building
models of performance characteristics.

With respect to algorithm classification, the work most
similar to ours appears in [11], where machine learning models
are used to predict the scalability of the Graph500 which
supports only BFS and SSSP.

6 CONCLUSION & FUTURE WORK
We presented a method for predicting the performance of
parallel graph processing implementations (PGPI). We make
a fair comparison by ensuring graphs, stopping criterion,
and runtime configurations are uniform across PGPIs. We
use EPG* to run a large number of experiments and from
them generate models of performance based on the graph
algorithm, hardware, and input graph.
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We demonstrated its effectiveness in recommending im-
plementations, resulting in 97% classification accuracy and
mean performance improvement ranging between 7% and
700%. To improve this further, we note each package uses
different timing software and poorly-chosen roots may be
measured as 0. Even with good roots, BFS only takes 0.2
seconds on a graph with ∼ 64 million edges so is more sus-
ceptible to OS jitter and measurement error. Future work
includes running experiments on larger graphs and to better
select roots. To improve the robustness of our models we will
run on different hardware. We should reproduce the results on
the Graph500 [11] to more critically evaluate our approach.

Additionally, we plan to combine regression and classifica-
tion to produce a ranking of configurations similar to work by
Sood et al. [18]. We also seek to refine our features to speed
up our recommendations; of the 12 features, some should
have a greater effect on runtime.

We plan to add more common graph algorithms such as
betweenness centrality and minimum spanning tree. Addition-
ally, EPG* measures six PGPI. Adding more is not difficult;
our goal is to motivate the developers of these packages to
add to EPG*. One potential motivator for community contri-
bution would be a leaderboard in which our recommendation
system ranks implementations by their aggregate perfor-
mance. The difference between this and the Graph500 is our
leaderboard would measure more algorithms and datasets.

Lastly, parallel SSSP and BFS algorithms contain param-
eters (∆ for SSSP and 𝛼 and 𝛽 for BFS) which affect per-
formance. We plan to add parameter tuning as performed
in [1].

Our vision is this approach can change the way users
select an implementation for graph computations; instead of
tracking down performance results and repositories, they can
simply provide a description of their problem(s) and receive a
recommendation, installed and configured for their machine,
ready to use.
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