
Performance-influencing Factors for Parallel and Algorithmic
Problems in Multicore Environments

Work-In-Progress Paper

Markus Frank & Steffen Becker
Universität Stuttgart
Stuttgart, Germany

(firstname).(lastname)@iste.uni-stuttgart.de

Angelika Kaplan & Anne Koziolek
Karlsruhe Institute of Technology

Karlsruhe, Germany
(firstname).(lastname)@kit.edu

ABSTRACT
Model-based approaches in Software Performance Engineering
(SPE) are used in early design phases to evaluate performance.
Most current model-based prediction approaches work quite well
for single-core CPUs but are not suitable or precise enough for
multicore environments. This is because they only consider a sin-
gle metric (i.e., the CPU speed) as a factor affecting performance.
Therefore, we investigate parallel-performance-influencing factors
(PPIFs) as a preparing step to improve current performance pre-
diction models by providing references curves for the speedup be-
haviour of different resource demands and scenarios. In this paper,
we show initial results and their relevance for future work.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Theory of computation → Parallel algorithms.

KEYWORDS
Software Performance Engineering, Multicore, Performance-influ-
encing Factors, Performance Prediction, Parallel Algorithms
ACM Reference Format:
Markus Frank & Steffen Becker and Angelika Kaplan & Anne Koziolek. 2019.
Performance-influencing Factors for Parallel and Algorithmic Problems
in Multicore Environments: Work-In-Progress Paper. In Tenth ACM/SPEC
International Conference on Performance Engineering Companion (ICPE ’19
Companion), April 7–11, 2019, Mumbai, India. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3302541.3313099

1 INTRODUCTION
To handle the rising complexity and the demand for high-quality
software, multiple disciplines are involved within a software devel-
opment process. The one we are focusing in this paper is Software
Performance Engineering (SPE). In SPE, model-based approaches
are used to evaluate the quality attributes (i.e., scalability, elasticity,
or performance) of software systems already during design time.

In the past, various approaches were developed to support soft-
ware performance engineers and to enable accurate predictions
even for complex, cloud-based systems. The most recent and most

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6286-3/19/04. . . $15.00
https://doi.org/10.1145/3302541.3313099

sophisticated approach are CloudSim [6] and Palladio [3]. These
approaches use software-, hardware-, and user-models to model
a given use-case and use analytic or simulation-based solvers to
evaluate the software behaviour, quality attributes, and hardware
utilisation. All these approaches use the CPU-speed as a single
metric for performance, which works well for single-core-based en-
vironments. However, the performance of multicore-based environ-
ments is influenced by a plurality of influencing factors. Therefore,
these approaches are not suitable for multicore-based environments
because of their inaccurate performance predictions [4, 5].

As an overall goal, we aim for an improved multi-metric per-
formance prediction model, which consists of some most relevant
performance-influencing factors. Further, we aim to provide refer-
ence speedup curves for different kinds of scenarios and resource
demands to further improve performance predictions.

In this paper, we investigate Parallel-Performance-Influencing
Factors (PPIFs) and their impact on the software performance, and
how they can be described in performance prediction models. We
provide a research strategy to collect PPIFs and an experimental
setup to measure their impact. Further, we present and discuss
preliminary measurements, results, conclusions, and sketch out the
next steps in remaining work.

The paper is structured as follows: First, we give a brief overview
of related work (Sec. 2), before we give our research approach and
experimental setup in detail (Sec. 3). Next, we provide a first insight
into our results and discuss them briefly (Sec. 4). We continue with
a sketch of remaining work (Sec. 5) and a short conclusion (Sec. 6).

2 RELATEDWORK
There are three main areas related to our work.

First, the research objective of performance-influencing factors
in general is one of them. Existing papers dealing with this objective
can be found in various domains (e.g., high performance computing
and cloud computing), depending on a particular parallelisation
paradigm (cf. [14]) or with focus on hardware, physical properties
(cf. [9]). In this paper, we intent to consider PPIFs in a more gen-
eral and holistic manner regarding these factors on hardware and
software level (cf. Section 4.1).

Second, in reference to software performance prediction models,
we can regard machine modelling approaches in algorithm engi-
neering (cf. [12]) as another related topic to our work. These models
play a major role when it comes to the analysis and optimisation of
parallel algorithms. Simple, but adequately accurate machine mod-
els for parallel computer architectures are required (cf. [1], [12]).
However, these models do not aim at making timing predictions.

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

21

Third, CPU simulators are used to design newmicroarchitectures
and to predict the performance of an application with relatively
high accuracy [10]. These type of simulators are often used by
computer-system architecture research. In contrast to model-based
performance prediction, CPU simulators require implementation
of software or at least an execution trace [11]. Therefore, CPU
simulators are unsuitable for our scope. However, we will analyse
CPU simulators to learn about PPIFs.

3 METHOD AND EXPERIMENTAL SETUP
In the following, we outline our research approach and explain our
experimental setup.

3.1 Research Approach
To improve the current performance prediction models, we propose
to follow the method for experiment-based performance model
derivation given by Happe [7]. Following this method, the perfor-
mance model is extended step by step by additional PPIFs (e.g.,
cache size, memory bandwidth, etc.) until the accuracy reaches
a satisfying level. However, knowing which PPIFs have the most
significant impact on performance and therefore need to be con-
sidered in performance predictions is not trivial. A lot of different
performance-influencing factors exist, and based on given different
use-cases, they have a variable impact.

Therefore, in a first step we collect a set of PPIFs as complete as
possible. For that, we (a) perform a structured literature review and
(b) interview experts from the SPE, HPC, andOS domain. In a second
step, we prioritise the PPIFs based on the results from the interviews.
In the third step, we setup an experiment environment, where we
vary only one of the PPIFs while we keep the others constant and
evaluate the performance of this run. In the last step, we evaluate
the measurements and provide performance reference curves for
different scenarios, resource demands, and configurations.

3.2 Experimental Setup
Figure 1 shows a sketch of our experimental setup. To get accurate
and reproducible results, we use ProtoCom1. ProtoCom enables us
to generate work packages of specific primitive resource demand
(like calculating Fibonacci numbers or primes). The advantage of
using ProtoCom is that we can specify the exact runtime (i.e., five
seconds) of these packages in a given environment [2]. This allows
us to minimise variance.

For each resource demand, we use ProtoCom to generate various
work packages of the same demand. In a next step, we take these
packages and put them in a parallel execution paradigm (i.e., Java
Threads). Next, we vary the performance-influencing factors. To
do so, we fix all PPIFs except one (i.e., the thread number) and let
them execute multiple times on our test environment. During the
test run, we execute each setting 30 times and vary the one PPIF
we are interested in.

4 PRELIMINARY RESULTS
In the following, we present preliminary results of our current work.
First, we summarise the outcome of the PPIF-collection and the

1https://sdqweb.ipd.kit.edu/wiki/ProtoCom

Figure 1: Sketch of the experimental setup

interviews. After that, we present measurements we took from one
experimental setup and run.

4.1 PPIF-Collection
The following list of PPIFs represents the outcome of a structured
literature review and expert interviews we performed. For the lat-
ter, we interviewed four software performance experts within our
department, seven HPC experts from the University of Dresden,
Hasso-Plattner Institute, and Karlsruhe Institute of Technology
(KIT), and three experts for parallel execution in embedded systems
from the University of Chemnitz.

The following list is categorised into two groups and contains a
subset of all PPIFs, which the experts agreed on.

4.1.1 Configurable PPIFs. Configurable factors are propertieswhich
can be directly configured or influenced by the software developer
and therefore adjusted to the given hardware or scenario. Often
auto-tuners are used to find the best configuration for these prop-
erties on a given system.
Parallelisation Strategy: The parallelisation strategy describes
the used parallelisation paradigm or pattern. For example, Java
Threads with a master-worker pattern, OpenMP, or ACTORS.
Thread Pool Size: The thread pool size specifies the number of
worker threads. Typically, software threads are mapped to worker
threads and then to hardware threads. Only worker threads are
active.
Number of Threads: This is the number of totals spawned threads
in the application. I.e., in a Java application spawning a thread for
each task executed in parallel is possible. By using a thread pool,
these threads are scheduled.
Software Caches: Software caches can influence the performance
of the software significantly.
Data Locality: Usually data is stored in the memory belonging
to the core which first touches/creates the data. So, this core has
the optimal latency to access the data. Other cores have significant
latency.

4.1.2 Fixed PPIFs. In contrast to configurable PPIFs, fixed PPIFs
are given by the considered application or the used infrastructure
and cannot be influenced by the software developer.

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

22

Type of Resource Demand: The type of resource demand is given
by the type of the task performed on the CPU. I.e., processor-
intensive tasks (like calculating Fibonacci numbers) or I/O-intensive
tasks (like sorting an array).
Memory Design: The memory design is a hardware specific char-
acteristic and defines the layout of CPUs, caches, and main memory.
It also defines how these components are interconnected.
Memory Bandwidth: The memory bandwidth specifies the char-
acteristics of the interconnections of the memory design, i.e., how
many lanes are available, what is the total throughput, and how
many components share the connection.

With these list of PPIFs at hand, we execute our experimental
setup to determine the impact of each factor on the overall perfor-
mance of the software.

4.2 Performance Measurements
In this section, we describe and report about our first experiments
and findings. According to our experimental setup, we picked a
first set of PPIFs—the number of worker threads and the type of
resource demand—to focus on and executed a first experiment run.

Soft- and Hardware Setup. In our experimental setup, we exe-
cuted a number of experiment runs. In each experiment run, we
changed the resource demands and for each demand the number of
worker threads. As resource demands, we used calculating Mandel-
brot, Fibonacci, and prime numbers as well as sorting the array and
counting numbers. Regarding the number of worker threads, we
increased the configuration step-wise from 1 to 128 and as paral-
lelisation paradigm we used Java Threads from the Java concurrent
base class. Further, we configured ProtoCom do generate 1280 work
packages each have a calibrated single thread execution time of
200 ms. In each run, we measured the completion time, i.e. the time
needed to execute all work packages.

We executed all experiments on a dedicated server, which had
40 physical cores and hyper-threading enabled: 4x Intel(R) Xeon(R)
CPU E7 - 4870 @ 2.40 GHz with 10 Cores each; Each CPU had an L1
Cache with 320 KiB, an L2 Cache with 2560 KiB, and an L3 Cache
with 30 MiB; A total of 896 GB DDR3 RAM; Running on Ubuntu
16.04.

Results. The result of our measurements is plotted in Figure 2.
The figure shows the speedup curves for the individual resource
demands by using a different number of worker threads. Each data
point represents speedup in comparison to sequential execution.
To minimise variances, we used the mean execution time from the
30 experiment runs for each configuration to calculate the speedup.

The chart shows a near to linear speedup until 36 worker threads.
As reference to calculate the speedup we used the execution time
from a sequential execution. Staring from 40 worker threads, the
speedup starts to spread a lot. Calculating Mandelbrot and sorting
array demands continue to speed up while calculating primes and
Fibonacci numbers do not benefit any more from additional worker
threads. The counting numbers demand even drops significantly in
performance. At around 80 worker threads we cannot observe an
additional speedup.

Interpretation. In the following, we briefly interpret the observa-
tions.

Linear Speedup: The close-to-linear speedup of all demands up
to 36 cores was expected since we used independent work packages,
which do not interact with each other. Sincewe are using 40 physical
cores, we expected all demands to speed up linear to this number of
threads. However, the question remains why some demands start
to slow down already before reaching 40 worker threads.
Hyper-threading: From 40 to 80 worker threads we can observe
the additional benefit gained from hyper-threading. Especially the
Mandelbrot and sorting array demand benefit from hyper-threading.
Because these demands are an I/O-intensive task they benefit very
well from hyper-threading.
Processor-intensive Tasks: While the Mandelbrot and sorting
array demands benefit a lot from hyper-threading, calculating
primes and Fibonacci numbers do not. The reason for this we see
in the different characteristics of the demands. Mandelbrot and sort
array are I/O-intensive demands. Calculating primes and Fibonacci
numbers are processor-intensive tasks, which do not have to wait
for I/O and therefore cannot take advantage of hyper-threading.
Performance Drop: The counting numbers demand is implemen-
ted to count from 0 to n while adding each number to a total sum.
The reason for the performance drop of this demand is an open
question and needs to be researched in further experiments.
Additional Worker Threads: We assumed using a higher num-
ber of worker threads than the number of cores available will result
in a performance drop due to scheduling and spawning overhead.
However, we could find no evidence for this. One reason for this
might be that the number of 128 worker threads is only about 3x
the number of physical cores. Further increasing the number of
worker threads might provide evidence for this hypothesis.

5 REMAININGWORK
Remaining work includes extending the experimental setup along
the three dimensions: (i) test environment, (ii) parallelisation strat-
egy, (iii) complexity of the parallel and algorithmic problem.

In the following, we describe these dimensions in detail:
(i) Concerning the test environment, we plan to use different

hardware setups and operating systems to compare and validate
our preliminary results. As previously stated, we ran our experi-
ments on a dedicated server, which is equipped as outlined in Sec-
tion 4.2. In the next step, we will also apply our research approach
(cf. Section 3.1) on a system called bwUniCluster. The extended
HPC-system consists of more than 860 SMP-nodes with 64-bit Xeon
processors from Intel. A detailed configuration description can be
found in [13].

(ii) As mentioned before in Section 3.2, we have focused so far on
Java Threads as an approach to parallelisation. Moreover, we will
consider different kind of parallelisation strategy classes (i.e., shared,
distributed, and hybrid memory parallelisation like combining MPI
and OpenMP) in future work.

(iii) The last dimension refers to the complexity of parallel and
algorithmic problems. Therefore, we distinguish between low, me-
dium, and high complexity. So far, we considered low complexity
problems (i.e., Mandelbrot, sorting array, calculating primes, Fi-
bonacci numbers, and counting numbers; cf. Section 4.2) in our
experiments. Medium complexity problems includes algorithms in
terms of standard or optimised matrix-matrix multiplication (e.g.,

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

23

Figure 2: Measurements of Speedup Functions for Different Resource Demands on a 40-Core System with Enabled Hyper-
threading

Strassen’s matrix multiplication) and matrix inversion. As parallel
matrix operations can be regarded as one of the most fundamental
problems studied in scientific computing and are of great practical
interest, they get more attention in future work.

Related to high complexity, we plan to investigate typical parallel
algorithms in material science simulation. Therefore, we consider
Pace3D (Parallel algorithms for crystal evolution in 3D) that con-
tains different modules for the solution of diverse applications [8].
We will focus on the solver for phase-field models for microstruc-
ture formations in multi-component and multi-phase materials [8].

Furthermore, we extend our investigations along these dimen-
sions regarding the remaining configurable PPIFs (i.e., software
caches und data locality).

6 CONCLUSION
To improve the accuracy of current software performance models,
we focused on parallel-performance-influencing factors (PPIFs). As
a preparing step, we collected a set of PPIFs using a structured liter-
ature review and expert interviews. Dividing these factors in con-
figurable and fixed, we analysed our PPIFs in-depth by defining an
experimental setup using ProtoCom to get precise and reproducible
results. In general, our setup is defined along three dimensions: (i)
test environment, (ii) parallelisation strategy, (iii) complexity of the
parallel and algorithmic problem. So far, we executed all experi-
ments on a dedicated server regarding low complexity problems
using Java Threads as parallelisation strategy. Thus, we provided
reference curves for the speedup behaviour in our preliminary re-
sults. Finally, we gave an overview of remaining work to achieve our
overall goal for an improved multi-metric performance prediction
model, which consists of a number of most relevant performance
properties.

REFERENCES
[1] David A Bader, Bernard ME Moret, and Peter Sanders. 2002. Algorithm engineer-

ing for parallel computation. In Experimental Algorithmics. Springer, 1–23.

[2] Steffen Becker, Tobias Dencker, and Jens Happe. 2008. Model-Driven Generation
of Performance Prototypes. In Proceedings of the SPEC International Workshop on
Performance Evaluation: Metrics, Models and Benchmarks (SIPEW ’08). Springer-
Verlag, Berlin, Heidelberg, 79–98. https://doi.org/10.1007/978-3-540-69814-2_7

[3] Steffen Becker, Heiko Koziolek, and Ralf Reussner. 2009. The Palladio component
model for model-driven performance prediction. Journal of Systems and Software
82, 1 (2009), 3–22.

[4] Markus Frank and Marcus Hilbrich. 2016. Performance Prediction for
Multicore Environments—An Experiment Report. In Proceedings of the
Symposium on Software Performance 2016, 7-9 November 2016, Kiel, Ger-
many. https://sdqweb.ipd.kit.edu/typo3/sdq/fileadmin/user_upload/
palladio-conference/2016/papers/Performance_Prediction_for_Multicore_
Environments_-_An_Experiment_Report.pdf

[5] Markus Frank, Stefan Staude, and Marcus Hilbrich. 2017. Is the PCM Ready for
ACTORs and Multicore CPUs? — A Use Case-based Evaluation. In Proceedings
of the Symposium on Software Performance 2017, 9-10 November 2017, Karlsruhe,
Germany.

[6] Tarun Goyal, Ajit Singh, and Aakankasha Agrawal. 2012. Cloudsim: simulator
for cloud computing infrastructure and modeling. Procedia Engineering 38, 4
(2012), 3566–3572.

[7] Jens Happe. 2008. Predicting Software Performance in Symmetric Multi-core and
Multiprocessor Environments. Dissertation. University of Oldenburg, Germany.
http://oops.uni-oldenburg.de/827/1/happre08.pdf

[8] Johannes Hötzer, A Reiter, H Hierl, Philipp Steinmetz, Michael Selzer, and Britta
Nestler. 2018. The parallel multi-physics phase-field framework Pace3D. Journal
of computational science 26 (2018), 1–12.

[9] Zheng Li, Liam OBrien, Rainbow Cai, and He Zhang. 2012. Towards a taxonomy
of performance evaluation of commercial Cloud services. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 344–351.

[10] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
2005. Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset. SIGARCH Comput. Archit. News 33, 4 (Nov. 2005), 92–99. https://doi.
org/10.1145/1105734.1105747

[11] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-core Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 475–486. https://doi.org/10.1145/2485922.2485963

[12] Peter Sanders. 2010. Parallel Algorithm Engineering. (2010). https://pdfs.
semanticscholar.org/d98d/ff63386f1e2f629f1f480f7eb5d1119fdf3d.pdf

[13] SCC. 2018. KIT - SCC - Dienste - Wissenschaftliches Rechnen - High Performance
Computing (HPC) und Clustercomputing - bwUniCluster. https://www.scc.kit.
edu/dienste/bwUniCluster.php.

[14] Felix Wolf and Bernd Mohr. 2003. Automatic performance analysis of hybrid
MPI/OpenMP applications. Journal of Systems Architecture 49, 10-11 (2003),
421–439.

Work-in-Progress & Vision Papers ICPE ’19 Companion, April 7–11, 2019, Mumbai, India

24

