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ABSTRACT 
Many benchmarks have been proposed to measure the train-
ing/learning aspects of Artificial Intelligence systems. This is 
without doubt very important, because its methods are very 
computationally expensive, and, therefore, offering a wide varie-
ty of techniques to optimize the computational performance.The 
inference aspect of Artificial Intelligence systems is becoming 
increasingly important as the these system are starting to mas-
sive scale. However, there are no industry standards yet that 
measures the performance capabilities of massive scale AI de-
ployments that must perform very large number of complex in-
ferences in parallel. 

In this work-in-progress paper we describe TPC-I, the industry’s 
first benchmark to measure the performance characteristics of 
massive scale industry inference deployments. It models a repre-
sentative use case, which enables hard- and software optimiza-
tions to directly benefit real customer scenarios. 
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1 Introduction 
Until recently Artificial Intelligence (AI) benchmarks have 
been measuring the performance of a single applications that 
fit in a server or a set of servers. Today, many commercial AI 
systems are deployed on very large, complex systems in many 

cases distributed across multiple datacenters operating on 
very large datasets. Measuring the performance of such sys-
tems calls for a benchmark framework that can encapsulate 
the complexity of such systems. With respect to hardware it 
must include multiple servers running in multiple data cen-
ters, user interfaces, network communication and disk I/O as 
well as high availability. Beyond the inference component it 
must include mechanisms that enable high concurrent access 
with potential load balancing capabilities to assure optimally 
utilized systems and to guarantee latency and throughput re-
quirements. 

Many of the existing artificial intelligence (AI) benchmarks 
concentrate on the performance and accuracy levels of train-
ing AI models. Training is usually categorized as an occasion-
ally conducted, single-user task that is highly compute and 
memory intensive. Job completion times, resource consump-
tion, and costs associated are important metrics to differenti-
ate systems. Inference, to the contrary, is usually done fre-
quently by many users concurrently, and, depending on its use 
case, it may demand certain response times. From system lev-
el perspective, metrics that measure throughput and latency 
of inference are as important as metrics measuring resource 
consumptions. 

TPC benchmarks have certain unique characteristics. TPC-I is 
designed keeping those characteristic in mind. It is a complete 
system level benchmark for characterization of massive scale 
inferencing based on a well-trained model.  The motivation 
behind TPC-I is the lack of benchmarks while there are in-
creasing number of industries across many verticals that are 
actively using AI systems for decision making. To design TPC-
I, we studied two use cases: Highway Toll System and Airport 
Security.  

TPC-I is modeled after an airport security system. Airport se-
curity has been a major concern across the world. The US Cus-
toms and Border Protection Agency has deployed an Auto-
mated Passport Control (APC) system [6] in 63 international 
airports. This facial recognition system is situated in the pri-
mary inspection area of an airport to expedite the entry pro-
cess for international travelers by providing an automated 
process. Photos of each passenger’s passport and face are ob-
tained through a self-service reader. If this program was to be 
expanded to all US airline travelers, it would need to serve 2.6 
million passengers at 4,898 public airports according to FAA 
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travel statistics [15]. Assuming a uniform distribution of pas-
senger arrival at APC stations in a typical 18h airport day, this 
is one passenger every 0.0249 seconds. 

While the exact details of APC are unknown to the authors, it repre-
sents a typical use case of a large scale, high throughput with 
low latency inference system. Since the workload can be 
scaled to large system, it is suitable for capacity planning. The 
model can be extended to other use cases such as automatic id 
verification at airports, which is done manually today. 

The remainder of the paper is organized as follows: Section 2 
presents related work. Section 3 describes the current state of 
TPC-I, including a description of its use case, System Under 
Test and workload driver definition, data set and scaling and 
performance metric and execution rules. We conclude our pa-
per with Section 4. 

2 Related Work 
There are multiple benchmarks that focus on machine learning. 
The most cited once are DeepBench [4], DAWNBench Error! 
Reference source not found. and MLPerf [9]. DeepBench fo-
cuses on measuring the performance of basic operations that are 
commonly used for deep neural networks on specified hardware 
configurations. It does not go through an actual training or in-
ference process, but instead focuses on a set of operations most 
commonly used in deep learning. 

DAWNBench [10] is an end-to-end benchmark suite to measure 
the performance of training and inference while also reporting 
the cost for those operations. It has three distinct workloads, two 
of which are image classification workloads using the ImageNet 
2012 data set [11] and   image data set [8]. The third workload is 
an NLP based question answering workload using Stanford 
Question Answering Dataset (SQuAD) dataset [13]. These work-
loads are more end-to-end in the sense that users can report four 
different values i.e., training time, training costs, inference time 
and inference costs for each of the three individual datasets. 
Training on image classification on ImageNet dataset requires 
the trained model to have 93% or greater accuracy. Training on 
image classification on CIFAR dataset requires the trained model 
to have 94% or greater accuracy. The training on the question 
answering model on the SQuAD dataset requires an F1 score of 
0.75 or greater. DAWNBench benchmark also considers infer-
ence latencies as the time taken to infer or classify 1 image either 
with ImageNet trained model with 93% accuracy or CIFAR data 
trained model with accuracy of 94% or time taken to answer one 
SQuAD question using a model with a F1 score of at least 0.75. 
All of these latency times are calculated as the average time tak-
en when done this over 10,000 questions or images. 

The third benchmark is MLPerf [9]. It is a machine learning (ML) 
benchmark suite for measuring the performance of ML software 
frameworks, ML hardware accelerators, and ML cloud platforms. 
MLPerf’s workloads cover a broad spectrum of use cases. There 
are seven different AI/ML categories, which includes image clas-
sification, object detection, speech to text, translation, recom-
mendation, sentiment analytics and reinforcement learning. This 
benchmark can model two scenarios: (i) closed model where 

changes to the model are minimal, primarily intended to test the 
underlying hardware and software systems, (ii) open model 
where the model is continuously enhanced using ML. 

The three benchmarks calculate the training time and latencies 
for inference, but do not benchmark throughput of a system 
from inference point of view after an AI model is deployed. The 
proposed benchmark is to measure the inference throughput of a 
system and the price per inference of such a system, which has 
deployed the model for classification or identification. 

3 Benchmark Description 
TPC benchmarks fall into one of two classes, enterprise or ex-
press benchmarks [1]. Enterprise benchmarks are technology 
agnostic, i.e., instead of defining specific steps to be executed by 
a specific product or groups of products, they define domain 
specific workloads on an abstract level. Express benchmarks, on 
the other hand, define very specific steps developed for a group 
of products. The steps can be scripted and provided in form of a 
benchmark kits. 

The decision whether to use the enterprise or express model for 
TPC-I was carefully weighted. It was decided to use the enter-
prise model, mainly because AI technology is still evolving at a 
very rapid paste. Enterprise benchmark, being technology agnos-
tic, entices existing system providers to improve performance by 
adding new technologies to their systems. It also welcomes en-
tirely new system providers that have technologies that are radi-
cally different from existing once and that could not have been 
anticipated at the time of benchmark development. 

3.1 Use Case 
TPC-I is modeled after a massive scale facial recognition system 
as described in section 2. The mixture and variety of operations 
measured by TPC-I are not designed to exercise all possible 
operations used in large scale AI systems. And they are cer-
tainly not limited to those of a facial recognition process. They 
rather capture the variety and complexity of typical tasks exe-
cuted in a realistic large-scale AI system characterized by: 

 Receiving and processing of high resolution photos 

 Running inference on complex models 

 Fulfilling latency and throughput requirements 

3.2 SUT Driver and Communication Definition 
A TPC-I test configuration consists of one or multiple System 
Under Tests (SUT), Driver System (DS) and Communication In-
terfaces (CI). A SUT consists of: 
 One or more inference processing units, 
 All front-end systems to support the backends, e.g. data com-

munication processors; cluster controllers and workload bal-
ancers, 

 All hardware and software components of all networks re-
quired to connect and support the SUT components, 

 Data storage media to satisfy high availability requirements. 

The DS provide Remote Camera Emulator (RCE) functionality 
that emulate the target camera population during the benchmark 
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Figure 2: Passenger 
APC Interaction Pro-
file 

run. TPC-I being an enterprise benchmarks allows for various 
system architectures to be benchmarked. Figure 1 shows a sam-
ple 3-Tier test system configuration, with a RCE layer, client and 
server systems. We group those parts of the system that will be 
part of the System Under Test (SUT). For instance, the Remote 
Camera Emulators and its Network are not part of the SUT. The 
SUT contains all components that will be priced. 

 

Figure 1: 3-Tier Sample Test System Configuration 

3.3 Data Set and Scaling 
The throughput of the TPC-I benchmark is driven by the number 
and activity of each APC station, which is emulated by one RCE. 
We are still in the evaluation process to determine which data 
set fits TPC-I. Of course, getting real person image data is im-
posible because of privacy concerns. Hence, we will need to set-
tle on a data set that results in similarly complex inference oper-
ations. One data set being considered is Google’s Street View 
House Numbers (SVHN) [16]. One of the largest advantages of 
SVHN is its size. It contains over 600,000 digit images. The com-
plexity of its images, i.e. digits and numbers in natural scene im-
ages, makes it a very attractive data set compared to MNIST. 
Hence, SVHN resembles a significantly harder real world prob-
lem of recognising digits and numbers in natural scene images 
compared to MNIST. 

TPC-I has similar scaling requirements than TPC-C. TPC-I re-
quires that in order to obtain a higher throughput, more RCEs 
must be configured resulting in more photos being sent for im-
age recognition, i.e. inference in the backend. TPC-I is designed 
to scale just as more APC stations are bing added to the system. 
However, certain latency requirements must be maintained as 
TPCI is scaled up. Each added APC must not exeed a passanger 
response time of 186s, which is the maxium of the negative ex-
ponential distribution of the user interaction in an APC and the 
tolerable time passengers are likely to accept interacting with an 
APC. Like the APC interaction profiles themselves, the frequen-
cy of the individual interaction profiles are modeled after realis-
tic scenarios. 

The intent of the scaling requirements is to maintain the ratio 
between the APC load presented to the system under test, the 
required space for storage, and the number of APC stations gen-
erating the workload.  

 

3.4 Performance Metric and Execution Rules 
The execution rules and metric are two fundamental compo-
nents of any benchmark definition and, they are probably the 
most controversial when trying to reach an agreement be-
tween different companies in a benchmark consortium. The 
execution rules define the way a benchmark is executed, while 
the metric emphasizes the portions of a benchmark that are 
measured. We describe them in one section since they are in-
trinsically connected to each other and they are equally pow-

erful in how they control perfor-
mance measurements.  
Execution rules and metric are 
modeled after TPC-C. The interac-
tion profile between the airline pas-
senger and the APC system is de-
picted in Figure 2. Once an APC sys-
tem is available to a passenger he 
first scans his ID, then after Delay1 
the passenger scans his boarding 
pass, after Delay2 the passenger 
takes his picture and submits it . Fi-
nally, after Delay3 the passenger 
picks up his transaction receipt and 
leaves the station for the next pas-
senger. 

Each delay is taken independently 
from a negative exponential distri-

bution as follows: 𝐷𝑒𝑙𝑎𝑦௜ =

− log(𝑟) ∗ 𝜇௜  with 𝑖 ∈ {1,2,3}  and 
𝑟 ∈ (0,1)  a random number uni-

formly distributed. The completion time, i.e. response time 
(RT), is measured in the RCE with a resolution of 0.1 seconds. 
It is defined as the delta between the start time (T1) and the 
end time (T2) of the passenger interaction, i.e. 𝑅𝑇 = 𝑇ଶ − 𝑇ଵ.  

The TPC-I transaction mix represents the clearance process of 
a passenger by the APC. The metric used to report Maximum 
Qualified Throughput (MQTh) is the number of clearances per 
minute. MQTh is reported as “Clearances per minute TPC-I”  
CpmI. The duration of the test includes the ramp up time and 
the steady state time. When taking the MQTh the system must 
be in a steady state for an uninterrupted minimum of 60 
minutes. The steady state must represent the true sustainable 
throughput of the SUT. Although the requirement of the 
measurement interval is at most 60 minutes, the system under 
test must be configured such that it could sustain the reported 
tpmC for a continuous period of at least 18 hours without 
manual intervention.  

3.5 Pricing 
The fact that a price/performance metric and an availability date 
metric is mandatory in TPC benchmarks since the first TPC 
benchmark was introduced in 1989 has been proven vital to the 
customres of the TPC. The TPC has taken a general approach to 
assuring that pricing of benchmarked systems is reported cor-
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rectly and has real world relevance. As a consequence reporting 
of a three-year verifiable cost of ownership for all the compo-
nents used in the system is mandatory in all TPC benchmarks. 
To regulate pricing, the TPC publishes the TPC Pricing specifica-
tion.  

TPC pricing specification require that the total price must be 
within 2% of the price a customer would pay for the configura-
tion. Test sponsors are required to publish an updated price if 
future changes vary the price of the configuration outside of this 
range. As this requirement stands for the active life of the 
benchmark result, specific price quotations used in the bench-
mark do not require any “good for a number of days” statements. 
Line item pricing is required, although bundles of components 
that are identifiable with a single product identifier are allowed. 
Line items should be priced at the value that the supplier would 
sell for quantity=1. 

Discount information must be complete enough that the final 
discount could be determined from other information included in 
the quotation. Each line item could have an individual discount, 
or a group of line items could be discounted at a specific rate, or 
the entire configuration could be discounted at a specific rate. 
Discounts could be based on quantity, total dollar volume, or the 
relative value of the combination of components included in a 
discount. Discounts may not depend on any purchase other than 
the components included in the benchmark’s priced configura-
tion. 

Price quotations may be for the exact number of items bid or for 
a smaller number with an indication that it is good for quantities 
greater than the number. Since price quotations may not be de-
pendent on past or future purchases, quotations may be used in 
more than one benchmark result, if they apply. 

3.6 Auditing 
Another key aspect of TPC benchmarks are the audit process. 
For enterprise TPC benchmarks the TPC mandates an independ-
ent audit by a certified auditor. While the TPC-I specification 
defines the benchmark specific rules for auditing, the actual au-
dit is conducted by an independed, third party auditor. These 
audtiors undergo a rigorous examination process before they 
become certified TPC auditors, which is a requirement to audit 
TPC benchmarks. We are very grateful to our auditors as they 
serve a dual purpose. They make sure that the benchmark result 
they are auditing is compliant with the TPC-I specification. On 
the other hand, auditors continuously supply feedback to the 
TPC about issues they encounter in the field. This feedback is 
directly taken to the subcommittees to implement improvements 
to their benchmarks. 

4 Conclusion 
This work-in-progress paper described the current state of the 
TPC’s efforts to create a benchmark in the Artificial Intelligence 
work space. We showed TPC-AI is an initiative to characterize 
massive scale inference representative many real-life scenarios. 
While there are still open issues and tough decisions ahead the 
authors plan to ratify TPC-I in the TPC this year to supply the 

industry with a much needed large scale benchmark in the AI 
space.  
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