
Characterizing the Microarchitectural Implications of a
Convolutional Neural Network (CNN) Execution on GPUs

Shi Dong
Dept. of Electrical and
Computer Engineering
Northeastern University
shidong@ece.neu.edu

Xiang Gong
Dept. of Electrical and
Computer Engineering
Northeastern University
xgong@ece.neu.edu

Yifan Sun
Dept. of Electrical and
Computer Engineering
Northeastern University
yifansun@ece.neu.edu

Trinayan Baruah
Dept. of Electrical and
Computer Engineering
Northeastern University
tbaruah@ece.neu.edu

David Kaeli
Dept. of Electrical and
Computer Engineering
Northeastern University

kaeli@ece.neu.edu

ABSTRACT
GPUs have become a very popular platform for accelerating the pro-
cessing involved in deep learning applications. One class of popular
variants, Convolutional Neural Networks (CNNs), have been widely
deployed to run on GPUs. In many application settings, a GPU has
sufficient computing power and memory space to accommodate
the dense matrix operations performed during CNN training. How-
ever, few characterization studies have considered how CNNs can
impact microarchitectural structures in a GPU. In this paper, we
perform a characterization of one selected CNN workload as run
on two different NVIDIA GPUs from distinct microarchitecture
families, highlighting the impact that microarchitecture plays on
this important class of workload.

First, we analyze the performance implications of a CNN model
using microarchitectural details on a layer-by-layer basis, and char-
acterize the memory access behavior in the context of a typical
GPU memory hierarchy, considering hardware resource utiliza-
tion associated with each primitive in the CNN model. We identify
major bottlenecks by considering the potential limits of using a
single GPU. Additionally, we evaluate a number of optimization
approaches, such as L1 cache bypassing and kernel fusion. L1 cache
bypassing can achieve up to a 6.2% speedup for a single layer, but
manipulating L1 cache provides very limited benefits in terms of
application speedup, while kernel fusion provides an overall appli-
cation speedup of 4.0%, on average.

CCS CONCEPTS
• General and reference→ Evaluation; Performance; • Com-
puter systems organization → Neural networks; • Comput-
ing methodologies → Neural networks;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184423

KEYWORDS
Convolutional Neural Networks; GPU; Characterization; Perfor-
mance analysis

ACM Reference Format:
Shi Dong, Xiang Gong, Yifan Sun, Trinayan Baruah, and David Kaeli. 2018.
Characterizing the Microarchitectural Implications of a Convolutional Neu-
ral Network (CNN) Execution on GPUs. In Proceedings of ACM/SPEC In-
ternational Conference on Performance Engineering, Berlin, Germany, April
9–13, 2018 (ICPE ’18), 11 pages.
https://doi.org/10.1145/3184407.3184423

1 INTRODUCTION
Deep Learning (DL) algorithms have emerged as a "celebrity" in the
field of machine learning, especially given that they can leverage
GPUs to accelerate their execution. Deep Learning and Artificial
Neural Networks were first described many years ago, but were
considered viable for learning problems until recently. With sup-
port of the state-of-the-art GPU hardware, neural networks have
been deployed in a wide range of applications including artificial
intelligence, natural language processing, and human-computer in-
terfacing. A commonly cited exemplary application is autonomous
vehicle guidance [8]. Using DL algorithms, a self-driving car is able
to identify its surrounding environment and make corresponding
movements without any human intervention. Another highly pub-
licized AI-related application, AlphaGO, uses DL as one of its key
algorithms during the training process [25]. In order to capture the
rapid growth of deep learning research, a number of frameworks
have been developed by both the academic and industry communi-
ties to further facilitate their development. Caffe [9], TensorFlow[1],
Theano [26], CNTK [22] andMXNet [2] are a few of the well-known
deep learning frameworks that provide users to design and deploy
neural network models efficiently.

Convolutional Neural Network (CNN) is one popular variant of
deep neural network (DNN) that leverages convolution as its major
linear transformation for feature extraction. It has been demon-
strated that CNN can be very effective in vision and speech classi-
fication domains [11, 13]. Similar to other models of deep neural

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

96

https://doi.org/10.1145/3184407.3184423
https://doi.org/10.1145/3184407.3184423

networks, the essential computations in CNNs have been acceler-
ated using a GPU, especially given that most computational op-
erations involving convolution are matrix-based. Since GPUs are
an effective target for accelerating matrix operations, they have
been quickly developed into a key resource for accelerating CNNs.
However, there has only been limited prior work with regards to
the execution of this type of workload on GPUs. Given this limited
knowledge, it becomes challenging to optimize GPU architectures
to run this class of compute-intensive applications.

In this paper, we capture and analyze the micro-architectural
information from two GPUs. The two GPUs are of different prod-
uct grade, server (Tesla K40) and desktop (GTX1080), and from
different microarchitecture family, kepler and pascal, respectively.
After then, we study the microarchitectural implications of effi-
ciently running CNNs. To begin this study, we have selected to
study AlexNet [11], which is a popular CNN model. Even though
the AlexNet is not the latest state-of-the-art CNN model, it covers
most of the commonly used primitives in deep neural networks,
and most importantly, its structure is simple to evaluate and its
execution presents a number of challenges to current GPU designs.
In terms of an implementation of AlexNet, we utilize DNNMark [7]
to drive this study, providing a highly configurable and light weight
infrastructure, that builds its core function using cuDNN[3] and
cuBLAS[5]. These two highly optimized libraries have been used
in many DNN frameworks that leverage Nvidia GPUs. Considering
their performance, cuDNN and cuBLAS provide a rich software core
for us to study DNN execution, working at a microarchitectural
level. In our evaluation, we report on execution performance, mem-
ory behavior, and resource utilization. Furthermore, we identify
some of the major limiting factors in GPU microarchitectures when
executing DNN primitives.

Based on our results, we first characterize the performance trends
of the workload on the two GPU platforms and identify the charac-
teristics of each layer, and then we identify that the convolution
layer are the main bottleneck during execution of the convolutional
neural networks. From a microarchitectural perspective, we also
identify additional limiting factors in the convolution layer, includ-
ing hardware limits, bandwidth of texture cache. Other than that,
we can improve the performance of CNN model with little or even
no source code modification. Given challenges in the cache hit rate
across all of the layers, we can optimize some layers by bypass-
ing the L1 cache. When L1 cache bypass is enabled, the backward
propagation of one convolution layer can achieve a 6.2% speedup
on GTX1080. Additionally, we propose a kernel fusion method in
which the kernels from the linear data transformation and non-
linearity layers can be combined to reduce unnecessary memory
transactions without introducing too much extra computation. We
have constructed an experiment and observed that the entire DNN
model execution is accelerated by 4% on GTX1080. We also discuss
the results accordingly.

Although the convolution layer is the main limiting layer in
convolutional neural networks, we notice a trend that as hardware
advances with many optimization specifically proposed for linear
transformations such as convolution, the other layers start to con-
tribute more in execution time. Hence, a thorough characterization
of each primitive should be carried out in order to understand the
overall execution behavior of CNNs for future optimization.

.

.

.

W1

Wn

W3

W2

X1

X2

X3

Xn

Y

b

(a)

X1

X2

Y1

Y2

b1

b2

W11

W22

W12

W21

(b)

Figure 1: (a) Model of an artificial neuron. (b) A simple ex-
ample of a fully-connected layer.

The rest of this paper is organized as follows. In section 2, we
provide an overview of the basic elements and structure of a convo-
lutional neural network, and review GPU architecture. In section 3,
we discuss our characterization approach, the database-backed trace
tracking framework and the details of the hardware used for ex-
periments. In section 4, we present detailed analysis on both an
entire model and individual primitives. In section 5 we review the
contributions of this work, and in section 6 we discuss previous
work on convolutional neural networks characterization, and in
section 7 we conclude the paper.

2 BACKGROUND
2.1 Deep Neural Networks
The operations involved in Deep Neural Networks are basically
combinations of linear and non-linear data transformations, as
well as other techniques used to avoid over-fitting and improve
prediction accuracy. In this paper, we mainly concentrate on Con-
volutional Neural Network (CNN), a variant of a DNN that applies
convolutional operations. Generally, in a CNN model, the linear
data transformations can be broken down into twomajor categories:
i) fully-connected and ii) convolution. These two transformations
are carried out by applying elementary operations, such as multi-
plications and summations, which are performed on data, trainable
weights, and biases. For image processing, the data moving across
the network model is usually managed in a tensor format, meaning
that the data has at least 4 dimensions, N, C, H, and W, in which N
is the batch size, C is the number of channels, H is the height, and
W is the width. The tensor data is stored in memory as a matrix in
column-major format, with the number of rows equal toC ∗H ∗W
and the number of columns equal to N.

2.1.1 Linear Data Transformations. In the fully-connected layer,
the basic unit to construct is an artificial neuron, which is a sim-
ple mathematical model, as presented in Figure 1a. The neuron is
composed of operations such as multiplications and summations,
as expressed in Equation 1.

Y =
n∑
i=1

Wi ∗ Xi + b (1)

The fully-connected layer is constructed of multiple artificial
neural interconnects, as shown in figure 1b.

2

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

97

kernel

Input data

Feature maps

X1 X2 X3

X4

X9

X5

X7 X8

X6

w1 w2 w3

w4

w9

w5

w7 w8

w6

(a)

X1 X2 X3

X4

X9

X5

X7 X8

X6
Pooling group

(b)

Figure 2: (a) 2-D image convolution. (b) Feature map data di-
vided into multiple pooling groups.

Based on this model, the fully-connected layer can be interpreted
using amatrix-vectormultiplication, as indicated in equation 2. This
example has only one set of data inputs. If there are multiple sets
of data inputs, then the computation becomes a multiplication and
a summation of matrices.

[
Y1
Y2

]
=

[
W11 W12
W21 W22

]
∗

[
X1
X2

]
+

[
b1
b2

]
(2)

In the convolution layer, the operations are performed in a
different fashion. Figure 2a shows an example of a 2-D image con-
volution that is used in a typical CNN model.

In this figure, a convolution kernel of 3X3 is applied to an area
in the image of the same size. The input data is Xi , and the kernel
weights areWi . Using the computation shown in equation 3, we
can calculate a single result for Y based on the data covered by the
kernel as follows:

Yi, j =
kh/2∑

h=−kh/2

kw /2∑
w=−kw /2

Wh,w ∗ Xi+h, j+w (3)

In the above equations, k is the kernel size. In the next step, the
kernel is applied to the next data sample using a specified stride, and
we repeat the same process across samples of every channel until
all of the feature maps are calculated. During image convolution,
the weights are shared by all of the data samples (i.e., pixels, if
image data is used). Note that, as the stride grows, the calculated
feature map has a narrower height and width.

There are multiple options on how best to perform 2D image
convolution, including Direct, GEMM, FFT [20], andWinograd [12].
The Direct algorithm expresses the convolution as a direct convo-
lution [3]; The GEMM method transforms the entire process into a
matrix-matrixmultiplication. The FFT andWinograd algorithms are
fast implementations that are widely used [12], the former requires
significant memory space, while the latter is memory-efficient [6].

2.1.2 Non-linearity. The non-linearity is introduced as activa-
tion functions to deal with linear inseparable problems. Some
commonly used activation functions include the Rectified Linear
Unit (ReLU), the sigmoid, and the hyperbolic tangent (tanh) [19].

The non-linear activation functions should be used together with
linear transforms, meaning that every activation function follows
a linear data transformation. The equations below provide mathe-
matical descriptions of these functions.

yi = max(0,xi) yi =
1

1 + e−xi
yi =

exi − e−xi

exi + e−xi
(4)

These functions are implemented as element-wise matrix opera-
tions.

2.1.3 Other Techniques. Some other techniques involved in neu-
ral networks computations include pooling, local response nor-
malization (LRN), and Softmax. Each one of these steps has a
different mathematical model, and each with its own functionality
and operations. Pooling is a down-sampling technique to reduce
the amount of computation for the following layers, and it has been
shown to be an effective approach to improve robustness in practice.
As described in the Alexnet documentation [11], the pooling layer
can reduce the error rate by around 0.4%. Normally, pooling groups
are not overlapped, so the pooling layer can be viewed as a grid of
pooling groups spaced k data samples apart [11], where k is the size
of the pooling group. Figure 2b shows an example of the feature
map data being divided into 16 pooling groups.

The down sampling within one pooling group can be completed
either by selecting the maximum value (i.e., Max Pooling) or com-
puting the average of the group (i.e., Average Pooling). Max Pooling
is usually more widely used in CNNmodels, e.g. AlexNet. Max Pool-
ing selects the most representative value from a sub-group of the
feature map. By doing so, interference by neighboring pixels can
be reduced significantly. Similar to convolution, pooling also needs
a kernel to select the pooling group. But the kernel cannot be over-
lapped when it moves to next data sample. Besides, we can see that
Max Pooling has no complex arithmetic operations executed, other
than simple comparison and loading/storing of the data. The only
computation is to identify the maximum value among the pooling
groups.

In general, LRN is a normalization method that works across
various feature maps or channels. Basically, normalization is done
across data samples from multiple adjacent kernel maps, but at the
same relative position. Equation 5 describes its computation:

yi =
xi

k + α (

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(xj)2)β
(5)

where k,α , β are all configurable parameters of LRN, N is the num-
ber of kernel maps, n is the window size for normalization, xi is
the input data, and yi is the output with the same spatial location.
With this algorithm, the prediction error rate can drop by 2%[11].

The computation of the Softmax function should be performed
at the end of neural network model. It is the core function in the
output layer, as it interprets the output data from the previous layer,
and generates a set of probability-like values in the range of 0 to 1
(note, the sum of all of these values equals 1). For each value that
Softmax computes, it represents the extent to which the input data
should be classified into one of the predefined classes. The Softmax
function is defined in equation 6:

3

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

98

Yi =
exi∑N
j=1 e

x j
(6)

where N is both the number of outputs from the previous layer
and the number of classes.

2.1.4 Training of Neural Networks. To describe the entire train-
ing process mathematically, we can treat the whole network model
as a loss function, specifying inputs, outputs and model parame-
ters as arguments. The objective is try to optimize the in-network
parameters so that the overall loss can be minimized.

Training deep neural networks is an iterative and time consum-
ing task. It usually requires more than a thousand iterations before
the network parameters are properly trained. One of the most effec-
tive algorithms used to update the parameters is Stochastic Gradient
Descent (SGD), which is an iterative algorithm that processes a
mini-batch of the training data [11].

The detailed mechanism for training can be further divided into
a forward and a backward propagation. The purpose for performing
forward propagation during training is to calculate the loss of the
overall network based on the current parameters. The ultimate goal
of the backward propagation is to obtain the derivatives of the loss
function, with respect to the parameters for the SGD algorithm.
When computing the loss, we are able to calculate the derivatives
with respect to the inputs, outputs, and parameters of each layer by
applying the derivative chain rule in a backward-cascaded fashion.

2.2 Graphic Processing Units
The architecture of a Graphic Processing Unit (GPU) is designed to
improve instruction throughput rather than reduce the latency of a
single instruction. As such, the compute unit organization is much
simpler than a CPU core design. Nevertheless, the GPU has many
more cores than a CPU and is able to run thousands of threads
simultaneously with support of low-overhead thread switching to
hide latency. Therefore, GPUs clearly outperform CPUs in most
cases where instruction throughput matters. A good example is
with matrix-based computations, which are heavily used in almost
every DNN variant. Thus, GPUs are well-suited to execute DNNs
that are designed to run on parallel platforms.

The basic building block of an Nvidia GPU is the multi-threaded
Streaming Multiprosessors (SMs). As shown in Figure 3, each SM
contains a collection of computational resources that includes single
precision CUDA cores, load store units, special functional units,
and texture units. Each SM is also equipped with a large register
file, so that threads can have their own set. Dedicated registers,
assigned to each thread, means that data no longer needs to be
swapped out during context switching, as adopted in CPU This can
potentially reduce the corresponding overhead. With a low context
switch overhead, threads can hide pipeline stalls and effectively
utilize the computational resources of the GPU.

An array of SMs is connected to a hierarchical memory sys-
tem. Each SM has limited memory resources that are exclusive
to themselves, including the L1 cache, the shared memory and
the read-only/texture cache. The shared memory is a scratchpad
cache that is accessible by the programmer. In Kepler architecture,
it shares a configurable on-chip memory area with the L1 cache,
whereas it is a dedicated memory in Pascal. The read-only/texture

Figure 3: Diagram of a typical GPU architecture.

cache is accessible by the texture unit and the SM for general load
operations. It is a dedicated memory in Kepler but shares a config-
urable on-chip memory area with the L1 cache in Pascal. Each SM
has exclusive memory resources connected to a shared L2 cache.
The L2 cache is the primary point of data unification between the
SMs, servicing all general and texture memory requests, providing
efficient, high speed data sharing across the GPU. The L2 cache is
backed by a high bandwidth DRAM memory, which is the largest
memory on a GPU that programmers can access directly.

An SM in a Pascal GPU has 128 single-precision (FP32) CUDA
cores. In comparison, in the Kepler family, each SM has 192 CUDA
cores. Pascal maintains the same register file size and supports
similar occupancy of warps and thread blocks. However, more SMs
can be accommodated in a Pascal GPU thanks to the smaller SM
and better technology. Overall, the size of shared memory on the
Pascal GPU is also increased due to the increased SM count, and
aggregate shared memory bandwidth is effectively improved. A
higher ratio of shared memory, registers, and warps per SM in
Pascal GPUs allows the SM to execute code more efficiently. An SM
in Pascal also features a simpler datapath organization that requires
less die area and power to manage data transfers within the SM.
Pascal also provides superior scheduling and overlapped load/store
instructions to increase floating point utilization.

3 EVALUATION METHODOLOGY
3.1 Workload
In this paper, we select the AlexNet model to drive our characteri-
zation study. Although it is not the latest CNN model, it provides
an organization that lends itself to evaluation, while including al-
most all of the primitives widely used in current state-of-the-art
CNN models. Therefore, our microarchitectural characterization
when running Alexnet can serve as a representative CNN model.
Figure 4 shows the organization of AlexNet. As shown in this figure,
AlexNet consists of 5 convolution layers, 3 fully-connected layers,
3 maxpooling layers, 2 LRN layers, 7 ReLU activation layers, and 1

4

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

99

Softmax layer. The number of operations in each layer is listed in
Table 1. Note that we count every occurrence of either arithmetic
or logical operations.

In terms of workload, we select cuDNNv6[3], a highly optimized
DNN library specifically designed to run on Nvidia GPUs. This
implementation has been used extensively by the deep learning
research community, since it provides a user-friendly interface
and is able to achieve high performance in terms of execution
time. We use DNNMark [7], a configurable DNN benchmark suite
composed of both cuDNN and cuBLAS, to construct the AlexNet
model. Unlike applications found in other popular DNN frame-
works, the AlexNet benchmark constructed within DNNMark is
designed specifically for measuring hardware performance, essen-
tially reducing the benchmarking effort by removing the need to
develop new code. For input, we use a set of synthetic images,
generated in batches, with the same dimensions as shown in the
figure 4.

Table 1: Number of operations in each layer of AlexNet.

Layer Number of Operations Layer Number of Operations
conv1 210M conv4 448M
relu1 290K relu4 65K
lrn1 4M conv5 299M
pool1 630K relu5 43K
conv2 896M pool5 83K
relu2 186K fc6 75M
lrn2 3M relu6 4K
pool2 389K fc7 33M
conv3 299M relu7 4K
relu3 65K fc8 8M

softmax 1M

3.2 Hardware
In this paper, we select the Nvidia Tesla K40 [18] and GTX1080 [16]
as the hardware platforms to run our experiments. The K40 mi-
croarchitecture was developed as part of Nvidia Kepler family of
GPUs [14], while the GTX1080 is part of the Pascal family. They
represents different product grades, as well. K40 is designed for
servers, while the GTX1080 is designed for desktop acceleration.
These two platforms have different architectures and computing
capabilities, serving as good candidates to capture performance
trends, while migrating the same workload from one platform to
another. Table 2 provides details about each device.

3.3 Profiling Tools
Capturing and parsing the micro-architectural information of CNNs
hasmany challenges due to the limitations of Nvidia profiler, nvprof[15].
These issues include: i) some layers invoke the same GPU kernel,
but specify very different kernel template arguments, meaning that
even though the kernel names are identical, they are in fact differ-
ent kernels. If we want to capture the layer-specific information,
using the kernel name only is not sufficient to uniquely identify
the kernel; ii) some layers launch the exact same kernel based on
their invocation order, according to the network model, so profiling
using only the kernel name will return average results for these

Table 2: Nvidia Tesla K40 and GTX1080 configuration de-
tails.

Type Tesla k40 Pascal GTX 1080
Number of processor cores 2880 2560

SIMD lane width 8
Maximum threads per processor 2048
Maximum threads per block 1024
Number of 32-bit registers 65536

Maximum registers per threads 255
Shared memory 64KB shared 96KB dedicated

L1 cache 64KB shared 64KB shared
Read-only data cache 48KB dedicated 64KB shared

L2 cache 1536KB 2048KB
GPU maximum clock rate 745Mhz 1607MHz

Memory clock rate 3004Mhz 10000MHz
Memory interface 384-bit 256-bit
Memory bandwidth 208 GB/sec 320 GB/sec

Memory size 12GB 8GB

layers. Therefore, we need to take the invocation order into account
so we can capture the information of each individual layer.

This imposes challenges to tie the characterized microarchitec-
tural information to a specific layer. In order to address this chal-
lenge, we designed a database-backed trace tracking system that
can capture the microarchitectural information for each layer in the
CNN model. We establish a relational database to store platform-
specific information, providing indices including the layer ID, kernel
name, invocation order, and etc. With the help of this trace track-
ing system, we are able to obtain layer-specific micro-architectural
information in a convenient and accurate manner. Figure 5 shows
the overall workflow of the trace tracking system. We first profile
the general execution information, i.e. kernel name and invocation
order to create the relational database table, and then we leverage
the database to profile the layer-specific microarchitectural metrics
and extract the necessary information to drive our analytical tools.

3.4 Experimental Setup
Our experimental framework is designed to capture microarchi-
tectural information at a kernel level for each layer involved in
computing a single iteration during the AlexNet training process,
without applying SGD. Thus, we focus on the execution of for-
ward and backward propagation. A full evaluation of SGD during
training is future work. Although hundreds of thousands iterations
will be involved in a complete training, we believe the evaluation
of one single iteration can be generalized given that performance
metrics are measured at a kernel level, and for each iteration, the
same kernels are executed. We use our database-backed trace track-
ing Framework to capture the information from the GPU kernels
launched. We run the same experiments with various batch sizes.
The number of images in one batch is 16, 64, and 128, which are
typical batch-size configurations used in practice.

4 EVALUATION RESULTS
In this section, we present several key metrics that capture per-
formance in terms of microarchitectural details. Our evaluation
is done on a kernel basis. Considering that cuDNN uses a flexible

5

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

100

Figure 4: The organization of AlexNet.

Figure 5: Database-based trace tracking system.

strategy to instantiate kernels while varying template arguments
for optimization purposes, we use the layer name rather than kernel
name to present our evaluation results, even though the results are
measured for kernels of primitives in cuDNN and cuBLAS.

4.1 Performance Analysis
First, we evaluate the runtime of each layer involved in one epoch
of AlexNet, running across various batch sizes. This gives us a
overview of performance for each layer, allowing us to identify
the important steps during model execution. Since both the size
of input image, as well as the training parameters, are fixed in the
model, the batch size becomes the only variable that controls the
scale of the final workload and size of the intermediate data. Fig-
ures 6 and 7 showcase the run times of AlexNet running on the K40
and GTX1080, respectively. During backward propagation, layers
with trainable parameters should have at least two computations
performing both data and backward propagation of weights. Bias
is not considered in this paper, since the related computations are
very simple.

From Figures 6 and 7, we can clearly see that the layers perform-
ing linear transformations are the major bottlenecks during the
execution of the entire AlexNet model on both platforms. Convo-
lution layers dominate performance of the linear transformations.
This trend is consistent on both platforms, which shows that using
a larger batch size leads to better throughput in terms of image
processing, meaning that the both platforms achieve good scala-
bility. The execution time is drastically reduced on the GTX1080,
though the runtime of the other layers (other than the convolution
layers) tends to become more prominent. Moreover, we noticed
that the execution time of each layer is well-correlated with the

16 64 128
Batch Size

0

100

200

300

400

500

600

R
un

ni
ng

Ti
m

e(
m

s)

Run time of Covolution Layers
Run time of Fully-Connected Layers
Run time of Nonlinearity
Run time of Other Techniques

Figure 6: Runtime of AlexNet on the K40.

16 64 128
Batch Size

0

50

100

150

200

250

R
un

ni
ng

Ti
m

e(
m

s)

Run time of Covolution Layers
Run time of Fully-Connected Layers
Run time of Nonlinearity
Run time of Other Techniques

Figure 7: Runtime of AlexNet on the GTX1080.

number of operations indicated in Table 1. All of the linear data
transformation layers take longer to finish.

In Figure 8 we report the speedup of running AlexNet on a
GTX1080, using the K40 performance as a baseline. Generally, the
GTX1080 has more SMs, (although there are fewer CUDA cores in
each SM) and a higher clock rate in terms of both processing cores
and memory, so the speedup is expected. But it can be observed that
the performance gain for each layer varies. The convolution, fully-
connected and pooling layers have significantly higher speedup
than the activation (ReLU) and softmax layers. The LRN layer has
relatively higher speedup during backward propagation versus
forward propagation. Based on this observation, we find that the
more advanced hardware has varied impact on the different layers
while the floating-point instruction counts are basically equal in the
applications built for each platform. The floating-point instruction
counts of layers in backward propagation are listed in figure 9.
Note that we only present the results from backward propagation
because we noticed that the metric trends for the forward and
backward propagation across every layer are very similar in most
cases, and backward propagation is the most critical part during
the CNN training. We present results for a batch size of 128, since

6

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

101

co
nv

1
fw

d

re
lu1

fw
d

lrn
1

fw
d

po
ol1

fw
d

co
nv

2
fw

d

re
lu2

fw
d

lrn
2

fw
d

po
ol2

fw
d

co
nv

3
fw

d

re
lu3

fw
d

co
nv

4
fw

d

re
lu4

fw
d

co
nv

5
fw

d

re
lu5

fw
d

po
ol5

fw
d

fc6
fw

d

re
lu6

fw
d

fc7
fw

d

re
lu7

fw
d

fc8
fw

d

so
ftm

ax
fw

d

so
ftm

ax
bw

d

fc8
w

bw
d

fc8
d

bw
d

re
lu7

bw
d

fc7
w

bw
d

fc7
d

bw
d

re
lu6

bw
d

fc6
w

bw
d

fc6
d

bw
d

po
ol5

bw
d

re
lu5

bw
d

co
nv

5
w

bw
d

co
nv

5
d

bw
d

re
lu4

bw
d

co
nv

4
w

bw
d

co
nv

4
d

bw
d

re
lu3

bw
d

co
nv

3
w

bw
d

co
nv

3
d

bw
d

po
ol2

bw
d

lrn
2

bw
d

re
lu2

bw
d

co
nv

2
w

bw
d

co
nv

2
d

bw
d

po
ol1

bw
d

lrn
1

bw
d

re
lu1

bw
d

co
nv

1
w

bw
d

Layers

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

S
pe

ed
up

K40 GTX1080

Figure 8: Speedup of running AlexNet on the GTX1080, using K40 performance as the baseline.

co
nv

1
w

re
lu1 lrn

1
po

ol1

co
nv

2
w

co
nv

2
d

re
lu2 lrn

2
po

ol2

co
nv

3
w

co
nv

3
d

re
lu3

co
nv

4
w

co
nv

4
d

re
lu4

co
nv

5
w

co
nv

5
d

re
lu5

po
ol5

fc6
w

fc6
d

re
lu6

fc7
w

fc7
d

re
lu7

fc8
w

fc8
d

so
ftm

ax

Layers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FP
In

st
C

ou
nt

s

×1011
K40 GTX1080

Figure 9: The floating-point instruction counts.

that this configuration can fully utilize the massive hardware of a
GPU.

4.2 Characteristics Analysis of Layers
Next, we delve a step deeper into the microarchitectural details that
can explain the difference in terms of performance observed across
different layers. First, we highlight the reason for stalls during ker-
nel execution on the baseline K40 platform in order to understand
the characteristics of each layer. Figure 10 shows a breakdown of
the stalls in each layer of AlexNet running on the K40.

Based on the stall categories chosen, we can identify the major
bottleneck present in each layer, identifying the two largest con-
tributors. We select conv2_w, relu2, lrn2, pool2, fc6_w, and softmax
to represent convolution, activation, LRN, pooling, fully-connected,
and softmax layer, respectively. As indicated in the figure, the two
dominating stall categories for conv2_w are stall_exec_dependency
and stall_not_selected. The former indicates the intrinsic program
characteristics of this layer, meaning that there are many dependen-
cies during instruction execution within a warp. The latter implies
the warp is not selected to run since the scheduler selects compet-
ing warps. In other words, the SMs are always busy when warps
are scheduled. Therefore, the performance of conv2_w is mainly
bounded by computing. The two major stall reasons for relu2 are
stall_memory_throttle and stall_memory_dependency. The meaning
of these two reasons are obvious. The former is caused by memory
bottlenecks, and the latter is due to program characteristics related
to data dependencies on memory loads and stores. Hence, the relu2
layer is memory-bound. Due to the dominating stall reasons in lrn2,
pool2, and softmax as indicated in the figure, they are all compute
and memory bound. fc6_w is somewhat special in that it is partially
bounded by memory and partially bounded by instruction fetch.
Even though there is little public documentation describing how
does instruction fetch works on Nvidia GPUs, we believe it should

be related to the performance of the warp scheduler, and will be
explained later according to the results of the GTX1080.

Given the characteristics of the representative layers/ primitives,
it is expected that performance gain varies on the given hardware.
Generally, a higher processor clock rate and more SMs should bene-
fit compute-intensive applications more, while increasing the mem-
ory clock rate only creates limited benefits. Since data load/write
performance is not only dependent on the memory clock rates, but
also the demands and bandwidth of the different memory com-
ponents in the memory hierarchy, our performance gains, due to
using a faster memory clock rate, can to some extent remove mem-
ory bottlenecks. But this is only true for for more memory-bound
applications. Alternatively, higher processor clock rates and higher
number of SMs have a direct impact on the FLOP rate. Hence, this
explains variations in performance gains as we migrate AlexNet
from the K40 to the GTX1080, which has more SMs, and higher
processor and memory speeds.

In Figure 11, we present the stall breakdown when running
AlexNet on the GTX1080. We can now see how the distribution of
stalls change when running with a higher clock rate and with more
SMs. One obvious finding is that the reason stall_memory_throttle
is gone for all layers, meaning that the GTX1080 provides a faster
data-path for moving data between processors and memory. For
relu2, the major reason for stalls is tied to program characteristics
that are highly dependent on memory operations. Increasing the
memory frequency should lead to limited performance benefits,
given that relu2 is a stream-like application with little temporal
locality. The breakdown of stalls in conv2_w does not change much.
Given that we see that the scheduler is choosing to run other warps,
this layer still has headroom to improve if a higher GPU core clock
rate is used, or SMs are added. The lrn2, pool2, and softmax layers
become memory-bound on GTX1080, because the compute perfor-
mance of the GTX1080 over the K40 has improved more versus
the memory performance of the two systems. The fc6_w layer is
both memory and compute bound. Since we see the same warp
scheduling issues we encountered for conv2_w, there is headroom
to improve performance for fc6_w. The new scheduler design in
the Pascal architecture significantly alleviates the problems experi-
enced with instruction fetching on the K40, so the new scheduler
is able to handle more warps [17].

Finally, we list the CUDA cores ALU utilization for both plat-
forms, considering that this metric reflects, to a great extent, how
well the available hardware can be exploited. Figure 12 shows the
ALU utilization while running AlexNet. As shown in the figure,

7

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

102

co
nv

1
w

re
lu1 lrn

1
po

ol1

co
nv

2
w

co
nv

2
d

re
lu2 lrn

2
po

ol2

co
nv

3
w

co
nv

3
d

re
lu3

co
nv

4
w

co
nv

4
d

re
lu4

co
nv

5
w

co
nv

5
d

re
lu5

po
ol5

fc6
w

fc6
d

re
lu6

fc7
w

fc7
d

re
lu7

fc8
w

fc8
d

so
ftm

ax

Layers

0

20

40

60

80

100

Pe
rc

en
ta

ge
(%

)

stall inst fetch
stall exec dependency
stall memory dependency

stall texture
stall sync
stall other

stall pipe busy
stall constant memory dependency

stall memory throttle
stall not selected

Figure 10: Stall breakdown for AlexNet running backward propagation on the K40.

co
nv

1
w

re
lu1 lrn

1
po

ol1

co
nv

2
w

co
nv

2
d

re
lu2 lrn

2
po

ol2

co
nv

3
w

co
nv

3
d

re
lu3

co
nv

4
w

co
nv

4
d

re
lu4

co
nv

5
w

co
nv

5
d

re
lu5

po
ol5

fc6
w

fc6
d

re
lu6

fc7
w

fc7
d

re
lu7

fc8
w

fc8
d

so
ftm

ax

Layers

0

20

40

60

80

100

Pe
rc

en
ta

ge
(%

)

stall inst fetch
stall exec dependency
stall memory dependency

stall texture
stall sync
stall other

stall pipe busy
stall constant memory dependency

stall memory throttle
stall not selected

Figure 11: Stall breakdown for AlexNet, running backward propagation on the GTX1080.

almost all of the layers involved in linear transformations have
higher ALU utilization levels on the GTX1080. There is one case
in lrn1, where the utilization level on GTX1080 is lower. This is
because the LRN layer becomes memory-bound on the GTX1080,
due to the increased computing capability, requiring more data to
be accessed. This results in more processing core idle time.

co
nv

1
w

re
lu1 lrn

1
po

ol1

co
nv

2
w

co
nv

2
d

re
lu2 lrn

2
po

ol2

co
nv

3
w

co
nv

3
d

re
lu3

co
nv

4
w

co
nv

4
d

re
lu4

co
nv

5
w

co
nv

5
d

re
lu5

po
ol5

fc6
w

fc6
d

re
lu6

fc7
w

fc7
d

re
lu7

fc8
w

fc8
d

so
ftm

ax

Layers

0

20

40

60

80

100

A
LU

U
til

iz
at

io
n

K40 GTX1080

Figure 12: Compute unit utilization levels.

4.3 Memory Access Behavior
In this section, we focus on characterizing the memory behavior of
each layer in AlexNet. Generally, in a discrete GPU, other than the
main memory, the other critical memory component is the cache.
The design of cache takes advantage of the locality present in
applications, both in time and space, reducing the latency between
instruction processing and memory access. In the GPU models we
use, there are three different types of cache working together to
support the streaming multiprocessors: i) an L2 cache, ii) a texture

cache, and iii) an L1 cache, as shown in figure 3. Other than that,
there is also an on-chip fast scratch-pad memory, shared memory,
for the programmer to directly utilize in order to achieve better
performance. Depending on the memory space specified by the
CUDA programmer, the processor will initially request the data
from either the L1, shared memory, or the texture cache. If not
present in any of the three locations, the data will be requested
from higher levels in the memory hierarchy.

Given that the K40 and GTX1080 have different on-chip memory
arrangements, as observed in Table 2, we showcase the cache hit
rate on both platforms. In this section, we only present a subset
of layers in backward propagation, using a batch size of 128 for
simplicity, because the layers of the same type have very similar
characteristics, as discussed earlier in our stall analysis and in our
utilization evaluation. Likewise, we select conv2_w/d, relu2, lrn2,
pool2, fc6_w/d, and softmax to represent convolution, activation,
LRN, pooling, fully-connected, and softmax layer, respectively. We
also only present backward propagation with a batch size of 128
for the same reasons as in our earlier discussion. Figures 13 and 14
present the cache hit rates of all caching components.

From the cache hit rates shown for the K40 in Figure 13, we notice
that layers of the linear data transformation make good use of the
texture cache. This can be explained since the computations in both
the convolution and fully-connected layers exhibit a high degree of
spatial locality. The texture cache is designed in such a way as to
take advantage of spatial locality. The L1 cache is a bit too limited
in terms of space to handle this data. As a result, we see no L1
activities. In terms of the L2 hit rate, we can see cache accesses exist

8

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

103

conv2 w conv2 d relu2 lrn2 pool2 fc6 w fc6 d softmax
Layers

0

20

40

60

80

100

C
ac

he
H

it
R

at
e

l1 hit rate
tex cache hit rate

l2 l1 read hit rate
l2 texture read hit rate

Figure 13: Cache hit rate for backward propagation of se-
lected layers on the K40.

conv2 w conv2 d relu2 lrn2 pool2 fc6 w fc6 d softmax
Layers

0

20

40

60

80

100

C
ac

he
H

it
R

at
e

tex cache hit rate l2 hit rate

Figure 14: Cache hit rate for backward propagation of se-
lected layers on the GTX1080.

in almost every layer except the activation layers. This is caused by
the element-wise operations present, so the activation layer acts
as a streaming application with no temporal locality. Likewise, the
texture cache is heavily utilized as well on the GTX1080. Even the
activation layer, which has no temporal locality, also makes use of
the texture cache to exploit spatial locality. In order make a fair
comparison, we enable the usage of L1 cache on the GTX1080 by
toggling the corresponding compile flag [4]. However, the L1 cache
is unified with the texture cache, so it is difficult to observe any
L1 cache activities merely through the texture cache hit rate. To
address this issue, we compare the texture cache hit rate between
the two cases where L1 cache is enabled, and then disabled. The
results show no change in the texture cache hit rate, meaning that
there is basically no L1 activities as well.

Next, we analyze the number of memory transactions and mem-
ory throughput for each level within the GPU memory hierarchy.
Besides the improvements in memory throughput at every memory
level (thanks to the increased clock rate), we also notice an increase
in the number of memory transactions handled by the memory
components on the GTX1080 with higher capacity, such as shared
memory and L2 cache. In contrast, the number of memory transac-
tions issued to the DRAM is reduced significantly. This means that
the larger L2 cache can better exploit locality, storing data closer
to the processor and reducing DRAM request. Similarly, a larger
shared memory provides more opportunity to store data structures
that will be re-used frequently.

Although there are many differences in memory performance
between the two platforms, the trend in these metrics for the two
platforms is still very similar in most cases. To provide a better view
from both the processing core side and DRAM side, we split the
metrics into two parts, each of which represents the memory com-
ponents closer to the processor or closer to the DRAM, respectively.
Figures 15- 16 shows the number of memory transaction and the
memory throughput in various memory components. Note that we
only present results from the GTX1080 because the trends are very
similar.

From Figure 15a, we can see that the linear data transformation
layers rely heavily on shared memory and the texture cache. As
indicated in the cache hit rate figures, both the convolution and
fully-connected layers possess high temporal and spatial locality,
given that data accessed within a region is repeatedly accessed. As
a result, there are a large number of memory transactions issued to
these two memory levels, especially read requests. This means that
some shared memory data is heavily reused during the computation.
On the contrary, for other layers, the utilization of shared memory
and texture cache is very limited. Even for the pooling and LRN
layers, the data reuse rate is very low. Figure 15b supports the
previous statement. For the other layers, including pooling, LRN,
activation, and Softmax, the number of memory transactions does
not vary significantly across the memory hierarchy.

With regards to memory throughput, In figure 16a, we can see
that shared memory throughput was almost 4x higher than on the
texture cache, even though the number of memory transactions
in these two components is similar in the convolution layers. This
indicates that shared memory has much higher bandwidth than the
texture cache. For instance, shared memory usually takes 38 cycles
to read, while the texture cache takes 436-443 cycles [29]. The latest
hardware has shortened the performance gap between those two,
but the gap is still significantly wide. Therefore, the bandwidth of
texture cache is a limiting factor for the convolution layers.

Note that increasing the bandwidth of texture memory without
taking other associated memory components into account, could
result in limited benefits. For example, if the texture cache becomes
much faster than the L2 cache, execution will bottleneck at the L2.
Increasing the bandwidth of the texture cache further would not
benefit performance.

From Figure 16b, we can see that the throughput of DRAM in
the activation layers is higher than that for the other layers. This
is because the memory access pattern in the activation layers is
more regular, meaning that memory requests can be coalesced,
resulting in a better ratio between the size of useful data to number
of memory transactions. Given that throughput is computed using
the size of the requested data, divided by the time between the
first and last memory transaction, a higher ratio leads to higher
throughput.

We evaluate the utilization of the memory hierarchy in Figure 17.
We show how each layer utilizes individual memory levels in the
hierarchy. We find that the convolution layers can leverage shared
memory and the texture cache, while activation layers utilize the
DRAM heavily during the execution.

4.4 Potential Optimization
From our analysis, we propose a number of design changes that can
benefit CNN execution on GPUs, especially the GTX1080. First, we
begin with the major bottleneck which are present in the convolu-
tion layer, as indicated in figures 6 and 7. Stalls during convolution
are due both to intrinsic program characteristics, and the limits of
the hardware (even on the GTX1080). A simple solution is to add
more SMs. Increasing the DRAM bandwidth on the GTX1080 will
not benefit the CNN throughput very much. Instead, if we increase
the bandwidth of the texture cache, we should see much better
performance. As discussed earlier, a significant number of memory

9

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

104

conv2 w conv2 d relu2 lrn2 pool2 fc6 w fc6 d softmax
Layers

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N
um

be
ro

fM
em

or
y

Tr
an

sa
ct

io
ns

×108

tex cache transactions
shared load transactions
shared store transactions

l2 tex read transactions
l2 tex write transactions

(a)

conv2 w conv2 d relu2 lrn2 pool2 fc6 w fc6 d softmax
Layers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
ro

fM
em

or
y

Tr
an

sa
ct

io
ns

×108

l2 read transactions
l2 write transactions

dram read transactions
dram write transactions

(b)

Figure 15: (a) Number ofmemory transactions inmemory components closer to processor. (b) Number ofmemory transactions
in memory components closer to DRAM.

conv2 w conv2 d relu2 lrn2 pool2 fc6 w fc6 d softmax
Layers

0

500

1000

1500

2000

Tr
ou

gh
pu

t(G
B

/s
)

tex cache throughput
shared load throughput
shared store throughput

l2 tex read throughput
l2 tex write throughput

(a)

conv2 w conv2 d relu2 lrn2 pool2 fc6 w fc6 d softmax
Layers

0
50

100
150
200
250
300
350
400

Tr
ou

gh
pu

t(G
B

/s
)

l2 read throughput
l2 write throughput

dram read throughput
dram write throughput

(b)

Figure 16: (a)Memory throughput ofmemory components closer to processor. (b)Memory throughput ofmemory components
closer to DRAM.

conv2 w conv2 d relu2 lrn2 pool2 fc6 w fc6 d softmax
Layers

0

20

40

60

80

100

M
em

or
y

U
til

iz
at

io
n(

%
)

shared utilization
tex utilization

l2 utilization
dram utilization

Figure 17:Memory components utilization of selected layers
on the GTX1080.

transactions occur in the texture cache, but given its meager band-
width, low throughput results. Thus, increasing the bandwidth of
texture cache is beneficial in terms of reducing the read latency
from the texture cache.

Next, we find that L1 cache is essentially unused in most of the
layers. The main reason is that the L1 cache is too small to hold
data that has a strided access pattern. Based on this observation,
we can enable L1 cache bypassing[27] for selected layers to avoid
unnecessary data requests to the L1 cache. When we re-run our
application with the L1 cache disabled for both reads and writes,
we observe a speedup in some layers for both forward and back-
ward propagation. From these results, we find that a single layer
used in backward propagation (calculating the convolution layer
weights) can achieve a 6.2% speedup on the GTX1080. However,
this approach is limited in terms of achieving better overall appli-
cation throughput. One issue is that some layers exhibit temporal
locality, so L1 cache bypassing needs to be applied selectively by
these layers. If we focus on optimizations that only benefit a subset
of layers, the overall performance gains will be limited.

Another optimization we explore is to apply kernel fusion[28] for
the linear data transformation layers and the non-linear activation
layers. As indicated in the results from the utilization breakdown,
the activation layers place little pressure on compute resources due
to its simple, element-wise, operations. The idea is to combine the
linear data transformation and non-linearity. By doing so, we can
eliminate all activation layers in the neural network model, leading
to a significant reduction in the number of memory transactions,
with only a small amount of computation added in the linear data
transformation layers. Although the run time of the activation lay-
ers is insignificant, we can still save the time spent on running the
driver and kernel launch, improving power efficiency as well. Given
that cuDNN is not an open-source library, we are not able to further
explore kernel fusion. So in order to evaluate the potential benefits
of kernel fusion, we directly removed activation layers, assuming
that the additional computation in the linear data transformation
layers can be ignored. In this experiment, we measure the overall
runtime, not just the kernel execution time. We are able to produce
a speedup of 4% on average. As the activation layers only take 3%
of the overall execution time, we save approximately 1% the time
spent on driver and kernel launch.

5 DISCUSSION
Convolutional neural networks are quickly becoming very impor-
tant applications in a number of domains. CNN computations have
a set of applications with distinct characteristics both in comput-
ing and memory access. Given the diversity of CNN applications,
exploring characteristics of the basic primitives in CNN is a pre-
requisite to accelerating this class of applications in general. Some
researchers have explored using FPGAs for application-specific so-
lutions [23]. However, the GPU is still preferred in most cases, given

10

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

105

that it provides a more flexible parallel programming framework
and large memory space for storing massive amount of training
data. Our evaluation in this paper focused on the microarchitec-
tural demands associated with CNNs when mapped to two Nvidia
GPUs. We evaluated how the same workload scales on platforms
with different computing capabilities. We also analyzed microar-
chitectural metrics across different layers, considering the pressure
placed on both compute units and memory components. We also
proposed optimization methods based on the observed bottlenecks
and insights. Through our experiments, we find there is still further
room for improvements from perspective of both hardware and
software optimizations.

As a further step, rather than reducing the execution time, we
will focus on power efficiency. Considering that each layer has
different needs in terms of computing resources and main mem-
ory, the GPU architecture can be argumented with big-little core
techniques, so that heavy layers that hunger for compute resources
can be scheduled on big cores, while lightweight layers can run on
the smaller cores. Another approach is to design a dynamic clock
rate tailored for each layer. It is demonstrated that not every layer
requires the same processor and memory frequency, so finding a
set of clock rate configurations for each layer can achieve better
power efficiency.

6 RELATEDWORK
There have been a number of earlier evaluation studies that focused
on Neural Networks. Shi et al. conducted a series experiments
of evaluating the current state-of-the-art deep learning software
tools [24]. They evaluate a number of neural network models using
state-of-the-art deep learning tools on both single and multiple
GPUs. They propose a general guide of leveraging proper software
tools on the targeted platforms, They also point out possible opti-
mization directions for researchers. Kim et al. also evaluate several
existing deep learning frameworks and suggest possible optimiza-
tion methods leveraging convolution algorithms to improve CNN
efficiency [10]. They characterize existing deep learning frame-
works at an application level and explore the benefits of using
different convolution algorithms in order to achieve better perfor-
mance. Rhu et al. measure the memory usage of DNNs and propose
a virtualization method to deal with issues of memory limits of
a GPU [21]. Basically, they characterize the data access and data
re-use patterns to create a virtual memory management strategy
for DNN applications. The first two works above only evaluate
performance at an application level, and the last focuses on data
usage in the memory. The work presented in this paper provides a
much more comprehensive dive into CNN execution behavior from
a GPU microarchitectural perspective.

7 CONCLUSION
In this paper, we characterize the demands placed on a GPUmicroar-
chitecture while running a commonly used CNN model (AlexNet).
We consider performance on a layer-by-layer basis. We carefully
select metrics that can characterize the execution behavior of each
layer in the model, and identify the major limiting factors for each
layer. From our evaluation, we find that the characteristics of each

layer vary significantly due to the distinct type of operations per-
formed. Based on the microarchitectual demands imposed by each
layer, we identify the major bottlenecks present in both an entire
CNN model, and each individual layer, and suggest several opti-
mization approaches that are able to improve the performance with
only minor changes and overhead.

REFERENCES
[1] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. (2015). http://tensorflow.org/
[2] Tianqi Chen, Mu Li, and et al. 2015. MXNet: A Flexible and Efficient Machine

Learning Library for Heterogeneous Distributed Systems. CoRR (2015). http:
//arxiv.org/abs/1512.01274

[3] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. arXiv preprint arXiv:1410.0759 (2014).

[4] NVIDIA Corporation. 2014. CUDA C Programming Guide. (2014).
[5] NVIDIA Corporation. 2015. CuBlas library v7.5. (2015).
[6] NVIDIA Corporation. 2017. CuDNN library v6.0. (2017).
[7] Shi Dong and David Kaeli. 2017. DNNMark: A Deep Neural Network Benchmark

Suite for GPUs. GPGPU-10 (2017), 63–72. https://doi.org/10.1145/3038228.3038239
[8] Erico Guizzo. 2016. How Google’s Self-Driving Car Works. (2016).
[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).

[10] Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Lee. 2017. Perfor-
mance Analysis of CNN Frameworks for GPUs. Performance Analysis of Systems
and Software (ISPASS) (2017).

[11] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems 25 (2012), 1097–1105.

[12] Andrew Lavin and Scott Gray. 2015. Fast Algorithms for Convolutional Neural
Networks. arXiv preprint arXiv:1509.09308 (2015).

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
(2015), 436âĂŞ444. https://doi.org/10.1038/nature14539

[14] NVIDIA. 2012. NVIDIA’s Next Generation CUDATM Compute Architecture,
KeplerTM GK110. (2012).

[15] NVIDIA. 2016. CUDA Toolkit Documentation. (2016).
[16] NVIDIA. 2016. NVIDIA GeForce GTX 1080. (2016).
[17] NVIDIA. 2016. NVIDIA Tesla P100. (2016).
[18] NVIDIA. 2016. TESLA GPU ACCELERATORS FOR SERVERS. (2016).
[19] Genevieve B. Orr and Klaus-Robert Mueller (Eds.). 1998. Neural Networks : Tricks

of the Trade. Lecture Notes in Computer Science, Vol. 1524. Springer.
[20] Victor Podlozhnyuk. 2007. FFT-based 2D convolution. (2007).
[21] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W.

Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. Microarchitecture (MICRO) (2016).

[22] Frank Seide and Amit Agarwal. [n. d.]. CNTK: Microsoft’s Open-Source Deep-
Learning Toolkit. ACM, 2135–2135. https://doi.org/10.1145/2939672.2945397

[23] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Es. 2016. From high-level deep neural
models to FPGAs. Microarchitecture (MICRO) (2016).

[24] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking
State-of-the-Art Deep Learning Software Tools. CoRR abs/1608.07249 (2016).
http://arxiv.org/abs/1608.07249

[25] David Silver and Google DeepMind Demis Hassabis. 2016. AlphaGo: Mastering
the ancient game of Go with Machine Learning. (2016).

[26] Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).

[27] Yingying Tian, Sooraj Puthoor, Joseph L. Greathouse, Bradford M. Beckmann,
and Daniel A. Jiménez. 2015. Adaptive GPU Cache Bypassing. Proceedings of the
8th Workshop on General Purpose Processing Using GPUs. https://doi.org/10.1145/
2716282.2716283

[28] Guibin Wang, YiSong Lin, and Wei Yi. 2010. Kernel Fusion: An Effective Method
for Better Power Efficiency on Multithreaded GPU. Proceedings of the 2010
IEEE/ACM Int’L Conference on Green Computing and Communications & Int’L
Conference on Cyber, Physical and Social Computing. https://doi.org/10.1109/
GreenCom-CPSCom.2010.102

[29] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and An-
dreasMoshovos. 2010. DemystifyingGPUmicroarchitecture throughmicrobench-
marking. Performance Analysis of Systems and Software (ISPASS) (2010).

11

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

106

http://tensorflow.org/
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://doi.org/10.1145/3038228.3038239
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/2939672.2945397
http://arxiv.org/abs/1608.07249
https://doi.org/10.1145/2716282.2716283
https://doi.org/10.1145/2716282.2716283
https://doi.org/10.1109/GreenCom-CPSCom.2010.102
https://doi.org/10.1109/GreenCom-CPSCom.2010.102

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Graphic Processing Units

	3 Evaluation Methodology
	3.1 Workload
	3.2 Hardware
	3.3 Profiling Tools
	3.4 Experimental Setup

	4 Evaluation Results
	4.1 Performance Analysis
	4.2 Characteristics Analysis of Layers
	4.3 Memory Access Behavior
	4.4 Potential Optimization

	5 Discussion
	6 Related Work
	7 Conclusion
	References

