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ABSTRACT
Performance analysis in high performance computing (HPC) has
traditionally focused on improving application programs, for exam-
ple, by decreasing the overall runtime or increasing the throughput
of floating point operations. However, the same approaches might
also be used to influence the energy behavior. Since the increas-
ing energy consumption of HPC platforms is gaining more and
more attention, the identification of applications and platforms
for which energy and performance measurement lead to differing
results is of great importance. In this article, we analyze the energy
and performance behavior of particle solvers from the ScaFaCoS
library. Four different criteria are investigated with respect to their
influence on the energy consumption and achieved performance.
These criteria are the solution method chosen, the parameters of
the solution method, the degree of parallelism, and the parameters
of the hardware platform.
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1 INTRODUCTION
The ever increasing usage of computer systems in almost all areas
of modern life goes along with increasing operational costs. An
important part of these costs is caused by the energy requirements,
both directly as a consumable resource as well as indirectly, for
example, for power supply infrastructures or cooling facilities. Be-
sides hardware properties, also software-based decisions such as
the utilized algorithms and their parameters [12], the exploited
degree of parallelism [18], and adjustable hardware parameters
such as the processor frequency [10] or the mapping of workloads
to processors [16] have an influence on the energy consumption.
However, these decisions also affect the achievable performance of
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applications and their implementation. A joint analysis of energy
and performance characteristics is therefore highly required.

Investigations of energy requirements on high performance com-
puting (HPC) platforms are often performed with regard to appli-
cations in scientific computing [7]. For these kinds of applications,
it is usually more important to determine the solution of a specific
problem instead of utilizing a specific hardware or software. This
allows for various optimizations where time-to-solution and energy-
to-solution can be seen as competing goals. Particle simulations
are widely used in different areas of computational scientific, such
as biology, chemistry, and astrophysics. A major computational
part of the simulations is spent for determining long-range particle
interactions such as Coulomb or gravitational interactions. Several
efficient methods with individual parameters exist for the compu-
tation of these interactions, thus providing various opportunities
for investigating their energy and performance behavior.

In this article, we analyze the energy consumption and the per-
formance of different parallel particle solvers from the ScaFaCoS
library1. The library contains, for example, hierarchical methods
such as the Fast Multipole Method (FMM) and the Barnes-Hut
algorithm or mesh-based methods such as Particle-Particle-Particle-
Mesh (P3M) and Particle-Particle NFFT (P2NFFT). All solvers are
utilized through a common programming interface and compute
the same particle interactions in parallel. Thus, the library allows
to solve a single problem with several methods that might expose
different energy and performance behaviors. Four different aspects
are investigated to analyze the behavior of the particle solvers:

I. varying the utilized solver method,
II. varying parameters of the solver method,
III. varying the degree of parallelism, and
IV. varying the hardware platform.

The energy consumption and the performance of the solvers are de-
termined experimentally using particle systems of different size and
hardware platforms with different processor microarchitectures.
The analyses investigate whether there are situations in which the
energy behavior deviates from the performance behavior. Identify-
ing such situations is a necessary requirement for improvements
where either an optimal (i. e., lowest) energy consumption or an
optimal (i. e., highest) performance is preferred.

The rest of this article is organized as follows: Section 2 intro-
duces the ScaFaCoS library and the different variation approaches.
Section 3 describes the hardware and software environment and
the particle solvers. Section 4 presents the experimental results. Sec-
tion 5 discusses related work and Section 6 concludes the article.

1http://www.scafacos.de
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2 ENERGY AND PERFORMANCE
INFLUENCES ON PARTICLE SOLVERS

Particle solvers for Coulomb interactions are compute and data
intensive program parts of particle simulations. In the following,
the ScaFaCoS library with different solver methods and the different
variation approaches for influencing the energy and performance
behavior of the computations are described.

2.1 Scalable Fast Coulomb Solvers (ScaFaCoS)
The ScaFaCoS library is a numerical software library that contains
various methods for the calculation of long-range particle inter-
actions, i. e. Coulomb or gravitational interactions. The provided
solver methods include tree-based methods, such as the Fast Multi-
pole Method (FMM) [11] or the Barnes-Hut algorithm [5], as well
as mesh-based methods, such as Particle-Particle-Particle-Mesh
(P3M) [3] or fast summations based on nonequispaced fast Fourier
transforms (P2NFFT) [15]. Parallelization is implemented using the
Message Passing Interface (MPI). The library provides a common
programming interface for invoking the different solver methods.
Thus, alternative solver methods can be employed without addi-
tional programming efforts. However, additional solver-specific
parameters can be set individually for each solver method. Addi-
tional information about the solver methods of the library and a
comparison of their capabilities is presented in [4].

After building the ScaFaCoS library, the utilization within an
application program proceeds in the following steps:

• Initialization of a solver method.
• Setting of particle system properties.
• Setting of solver-specific parameters.
• Tuning of the solver method.
• Computation of particle interactions.
• Termination of the solver method.

These steps have to be executed in parallel by all participating MPI
processes. The input data describing the particle system consists
of the three-dimensional position and the charge value of each
particle. The user of the library is responsible for distributing the
particle data initially among the processes such that each process
contributes its local share of the overall particle system. Computing
the particle interactions represents the step with the main com-
putational effort. This step might also be executed repeatedly, for
example, with slightly changing particle positions in a particle
dynamics simulation.

2.2 Variation approaches for energy and
performance behaviors

Applications in scientific computing are usually focused on the solu-
tion of a specific problem (e. g., with numerical simulations) instead
of utilizing a specific hardware platform or software implementa-
tion. This might allow to vary several aspects of the calculations and
computations as long as the determined results are the acceptable,
for example, in terms of correctness or accuracy. To analyze the
energy and performance behavior of the particle solver methods,
the following four variation approaches are investigated:

I. Variation of the solver method: For many computational
problems, there exist several alternative approaches or al-
gorithms. Their different program codes lead to a different
utilization of the hardware platform, for example, due to
the employed operations or memory access patterns. Thus,
depending on the executed program code, individual energy
and performance behaviors might be expose. The ScaFaCoS
library contains several alternative algorithms for computing
Coulomb interactions of particle systems. All solver meth-
ods are able to compute the same results, even though they
might differ in terms of the achieved accuracy. However, in
general it is possible to choose the specific solver method as
part of an optimization towards energy or performance.

II. Variation of solver parameters: Algorithms and imple-
mentations usually have parameters that control their com-
putational behavior. The resulting different kinds of compu-
tations lead to the execution of different parts of the program
codes which might expose different performance and energy
behaviors. Important parameters of the solver methods of
the ScaFaCoS library are, for example, the tree depths for
the tree-based methods or the mesh sizes for the for mesh-
based methods. These parameters determine the separation
of the overall computations into near-field computations (i. e.,
direct computations of pairwise particle interactions) and
far-field computation (i. e., approximations of interactions
of groups of particles). Since both kinds of computations
represent different parts of the program codes, shifting the
computational load between them can be adapted as part of
an optimization towards energy or performance.

III. Variation of the degree of parallelism: The degree of
parallelism of a parallel program code is controlled by spec-
ifying its number of processes or threads. Increasing the
parallelism can lead to lower runtimes and a higher compu-
tational performance. Decreasing the parallelism can lead to
idle compute units, such as cores of multi-core processors or
processors of multi-processor systems. Placing these units
in a standby mode might reduce the energy consumption.
All solver methods of the ScaFaCoS library are parallelized
with MPI. Thus, the number of utilized compute units can
be adapted as part of an optimization towards energy or
performance by specifying the number of MPI processes.

IV. Variation of the hardware platform: The utilized hard-
ware platform has a strong influence on the resulting energy
and performance behaviors. Furthermore, modern hardware
platforms allow to control parameters, such as the frequency
of processor cores, which directly influence the power con-
sumption. Especially, for data-intensive applications, whose
computational performance is limited bymemory accesses or
data exchanges instead of the amount of operations, it might
be advantageous to operate with a lower processor core fre-
quency. Even though this can lead to a higher runtime, a
lower energy consumption can be achieved if the reduced
power consumption outweighs the runtime increase. Com-
puting particle interaction with the ScaFaCoS library is a
data-intensive part of particle simulations and, thus, it can
be beneficial to adapt the hardware platform parameters as
part of an optimization towards energy or performance.
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3 EXPERIMENTAL SETUP
The variation approaches described in the previous section are used
to analyze the energy and performance behavior of the ScaFaCoS
library. In the following, the solver methods and their parameters
as well as the hardware and software environment are described.

3.1 Particle solver methods
The energy and performance measurements are performed with
a generic test program that can invoke any solver method of the
ScaFaCoS library. The test program is part of the library package
and was mainly developed for the verification and comparison
of the different solver methods. The measurements include only
the computation of the particle interactions while all other library
functions (e. g., initialization, parameter setup, tuning) are not con-
sidered. A benchmark particle system (called cloud-wall) is used
for the experimental analysis. The three-dimensional base system
contains 300 particles, whereas 100 particles are distributed ran-
domly (cloud) and 200 particles are distributed on a regular grid
(wall). Larger systems with 300×8, . . . , 300×85 particles are created
by repeating the base system several times in each dimension. All
parameters of the solver methods either have default values or are
tuned automatically. Unless otherwise stated, these values are used.

The experimental analysis uses the following solver methods:

Direct: The Direct solver computes the particle interactions
by a direct summation of the contributions of all pairs of
particles.Withn particles, themethod has a runtime ofO(n2).
Periodic boundary conditions are computed by placing a
layer of copies of the given particles around the original
particle system. Thus, the method is only appropriate for
small particle systems. The method has no parameters that
can influence the behavior of the computations.

Ewald: The Ewald solver computes the particle interactions
using the Ewald summation [3]. The approach separates
the contributions of the particle interactions into two parts:
The k-space part (i. e., far-field computations) is calculated
with a reciprocal lattice. The real-space part (i. e., near-field
computations) is calculated directly between particles within
a given cutoff range. Both the maximum number of k-space
vectors and the cutoff range are parameters of the method
that influence the computational demands and the accuracy
of the results.

P3M: The P3Msolver is a parallel implementation of the Particle-
Particle-Particle-Mesh algorithm [3]. The algorithm uses a
grid-based approach to accelerate the time-consuming k-
space part of the Ewald summation using Fast Fourier Trans-
forms (FFT). Similar to the Ewald solver, the computational
demands of the far-field computations depend on the size
of the FFT grid and the computational demands of the near-
field computations depend on the cutoff range. Both can be
controlled by parameters.

P2NFFT: The Particle-Particle NFFT (P2NFFT) solver performs
fast Ewald summations based on nonequispaced fast Fourier
transforms (NFFT) [15]. The P2NFFT solver represents a gen-
eral framework for particle mesh algorithms and supports
periodic and nonperiodic boundary conditions. Similar to

Table 1: Overview of the utilized hardware platforms.

Name Sandybridge Haswell Skylake

Processor Xeon E5-2650 Xeon E5-2683 v3 Core i7-6700
Cores 2 × 8 2 × 14 1 × 4
Frequency 1.2–2.0 GHz 1.2–2.0 GHz 0.8–3.4 GHz
L3 cache 20 MB 35 MB 8 MB
Memory 32 GB 128 GB 16 GB

the Ewald solver and the P3M solver, the computational de-
mands of the far-field and near-field computations can be
controlled by parameters that specify the size of the FFT grid
and the cutoff range.

FMM: The FMM solver is a parallel implementation of the
Fast Multipole Method [11]. This tree-based algorithm uses
a recursive subdivision of the particle system into smaller
boxes. Contributions from interactions between particles
inside each box and between neighboring boxes belong to
the near-field and are calculated directly. All other contri-
butions belong to the far-field and are approximated with
multipole expansions. Using these expansions allows for a
hierarchical grouping of the contributions and enables effi-
cient operations for calculating interactions between entire
boxes of particles at once. The level up to which the sub-
division into boxes is performed can be set by a parameter
that controls the computational costs of the near-field and
far-field computations.

3.2 Hardware platforms
The experimental analysis uses three hardware platforms with
different processor microarchitectures as shown in Table 1. The
platforms comprise of two Intel Xeon server systems and one Intel
Core desktop system. The server systems have dual sockets, a high
number of cores, and large L3 caches, but only a narrow range
of frequencies with a low maximum frequency. In contrast, the
desktop system has only a single socket, a low number of cores, and
a smaller L3 cache. However, the range of processor frequencies is
wider and includes a significantly higher maximum frequency.

3.3 Software environment
The utilized hardware platforms use the Debian GNU/Linux 8.6
operating systemwith kernel version 4.7. The processor frequencies
are controlledmanually through the CPUFreq kernel interface using
the userspace governor. Energy measurements are performed with
the Running Average Power Limit (RAPL) interface by accessing
model specific registers of the processor. Instead of reading the
appropriate results directly from the registers, the Performance
Application Programming Interface (PAPI)2 is used. A dedicated
RAPL component allows for transparent power and energy readings
for Intel Sandy Bridge processors and its successors [23]. The PAPI
library of version 5.5.1 was used for the measurements.

2http://icl.utk.edu/papi
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3.4 Measurement methodology
The measurements were conducted by performing multiple con-
secutive trials [1]. For a specific configuration of the settings and
parameters to be varied, ten consecutive trials are executed and
measured. This process is repeated for the trials of the next config-
urations to be investigated. Average values of the consecutive trials
are used for the analyses. The hardware platforms were used exclu-
sively, i. e. no other users or processes except from the operating
system have utilized the platform at the same time.

The PAPI library provides a uniform interface for starting, stop-
ping, and querying performance-relevant measurements for the
execution of program codes at runtime [6]. Measuring the en-
ergy consumption of the processors is performed using the hard-
ware counters rapl:::PACKAGE_ENERGY:PACKAGE0 (first socket)
and rapl:::PACKAGE_ENERGY:PACKAGE1 (second socket if present).
The program code for the measurements is integrated into the li-
brary function that performs the step for computing the particle
interactions (see Sect. 2.1). However, since this library function
is executed in parallel with MPI, only a single process per com-
pute node performs the measurements and determines the energy
consumption of all processors of the compute node. The overall
execution of the library and its solver methods is performed with a
generic test program that is part of the ScaFaCoS library.

4 ENERGY AND PERFORMANCE ANALYSES
The energy and performance behavior of the different solvers of
the ScaFaCoS library is analyzed experimentally as described in the
previous section. In the following, the results of the four variation
approaches from Sect. 2.2 are shown and the findings are discussed.

4.1 Variation of the solver method
To investigate the influence of the specific particle solver method,
the five methods Direct, Ewald, P3M, P2NFFT, and FMM are com-
pared. Figure 1 shows the runtime (left), the energy consumption
(middle), and the power consumption (right) depending on the num-
ber of particles for the different methods. All methods are executed
sequentially on the Haswell platform. The runtimes of all solvers
increase strongly for increasing numbers of particles. However,
especially the Direct method and the Ewald method show a very
steep increase and their runtimes are even for the smallest number
of particles at least one order of magnitude higher than the other
methods. Both methods represent reference methods which are not
designed for efficient computations and thus, results with larger
numbers of particles are omitted. The fast methods P3M, P2NFFT,
and FMM show a very similar runtime with the FMMmethod being
slightly slower and the P3M being slightly faster. The runtime of
the P2NFFT method varies between them.

The behavior of the energy consumption of all methods corre-
sponds to their runtimes. This indicates that the operations per-
formed by the different methods lead to almost the same utilization
of the hardware. Even though the methods are based on different
mathematical and computational approaches, neither of them pro-
vides a significant increase or reduction of the energy consumption
during the course of the computations. However, the power con-
sumption shows a more different behavior. All methods are within

a range of about 58.5 J s−1±5 %, but the lowest power consump-
tion is now achieved with the P2NFFT method. Furthermore, also
the two reference methods Direct and Ewald are able to achieve
a lower power consumption than the two fast methods P3M and
FMM. However, in general these differences occur mainly for short
computations with small numbers of particles, while during longer
running computations the power consumption of all methods ap-
proaches similar values of 58 J s−1 to 59 J s−1.

4.2 Variation of solver parameters
To investigate the influence of method parameters, the separation of
the computations into near-field computations and far-field compu-
tation is varied for the methods P2NFFT and FMM. For the P2NFFT
method, an increase of the far-field computations is achieved by
increasing the grid size parameter. At the same time, the near-field
computations are reduced by reducing the utilized cutoff radius as
far possible while still achieving a specific accuracy of the results.
For the FMM method, the far-field computations are increased and
the near-field computations are decreased by using a larger tree
depth for the subdivision into boxes. The methods are executed
sequentially on the Haswell platform using particle systems of size
300×82 and 300×85. Total results as well as separate results for the
near-field and far-field computations of the methods are shown.

Figure 2 shows the sequential runtime (left) and the energy
consumption (right) of the P2NFFT method depending on the grid
size. It can be observed that the grid size has a significant influence
on the runtime of the P2NFFT method. This behavior is caused by
the near-field and far-field computations whose runtimes behave as
expected. The minimum of the total runtime is achieved with a grid
size of 32 for 300×82 particles and with a grid size of 448 for 300×85
particles. The energy consumption reflects the general behavior
observed for the runtime. For 300×82 particles, the minimum of the
total energy is achieved with the same grid size that also leads to
the minimum of the total runtime (i. e., 32). Choosing slightly lower
or higher grid sizes leads to an increase of both the runtime and
the energy consumption. For 300×85 particles, the minimum of the
total energy is achieved with a grid size of 384. The corresponding
runtime is about 5 % higher than the runtime minimum. However,
using the optimal grid size of the runtime (i. e., 384) leads to an
increase of the energy consumption of only about 1 %. Even though
the potential savings in runtime or energy are relatively small,
the results indicate a difference between the energy and runtime
requirements of the two computational parts of the P2NFFTmethod.

Figure 3 shows the sequential runtime (left) and the energy con-
sumption (right) of the FMM method depending on the maximum
tree depth. It can be observed that the tree depth has a significant
influence on the runtime of the FMM method. However, the param-
eter controls only the maximum tree depth while the actual tree
depth is determined automatically by the specific FMM solver [9].
Thus, using a larger maximum tree depth (i. e., larger than 3 for
300×82 particles and larger than 6 for 300×85 particles) do not lead
to further differences. The minimum of the total runtime is achieved
when the runtimes of the near-field and far-field computations are
about the same. The same behavior is observed for the energy con-
sumption. The minimum of the total runtime and the total energy
is achieved with the same maximum tree depth.
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Figure 1: Sequential runtime (left), energy consumption (middle), and power consumption (right) depending on the number
of particles for different particle solver methods.
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Figure 2: Sequential runtime (left) and energy consumption (right) of the P2NFFT method depending on the grid size.
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4.3 Variation of the degree of parallelism
To investigate the parallel behavior of the particle solver methods,
the degree of parallelism represented by the number of utilized
MPI processes is varied. The two methods P2NFFT and FMM are
considered. The methods are executed on the Haswell platform
using particle systems of size 300×82 and 300×85.

Figure 4 shows the parallel runtime (left), the parallel speedup
(middle), and the energy consumption (right) depending on the
number of MPI processes. The results show that the parallel run-
times of all solver methods decrease for increasing numbers of MPI
processes. However, for 300×82 particles, this runtime improve-
ment deteriorates when using more than 14 MPI processes (i. e.,
more than the number of cores of one processor). For the larger
number of particles, the runtime improvement becomes less signif-
icant when using more than 28 MPI processes (i. e., more than the
total number of physical cores of both processors). Nevertheless,
the P2NFFT method still achieves a reduction of the parallel run-
time when using the Hyper-Threading capabilities of processors
(i. e., with 56 MPI processes). The runtime results are reflected by
achieved parallel speedups. While with the smaller number of parti-
cles, a maximum speedup of about 8 is achieved, the larger number
of particles lead to a maximum speedup close to the total number
of physical cores available. Only for the P2NFFT method, a further
increase of the parallel speedup is achieved using Hyper-Threading.

The energy consumption corresponds to the general runtime
behavior. However, there are quantitative differences, especially
for high numbers of MPI processes. When using Hyper-Threading
for the P2NFFT method, the resulting reduction of the energy con-
sumption of about 6 % to 7 % is smaller than the runtime reduction
of about 14 % to 34 % occurring at the same time. Furthermore,
for larger numbers of MPI processes (i. e., 28 and 56), the paral-
lel runtime of the FMM method increases only slightly while the
increase of the energy consumption is stronger at the same time.
Nevertheless, these results do not indicate significant differences
between optimal energy and performance behaviors. The number
of MPI processes with the smallest parallel runtime leads also to
the smallest energy consumption for the considered measurements.

4.4 Variation of the hardware platform
To investigate the influence of parameters of the hardware platform
on the energy and performance behavior, the utilized hardware
platform as well as the processor frequency is varied. The two
methods P2NFFT and FMM and the particle system of size 300×85
are considered. All methods are executed by using one MPI process
per physical processor core of the specific hardware platform, i. e.,
16 MPI processes for Sandybridge, 28 MPI processes for Haswell,
and 4 MPI processes for Skylake (see Table 1).

Figure 5 shows the parallel runtime (left) and the energy con-
sumption (right) depending on the processor frequency. The results
show that the processor frequency has a significant influence on the
parallel runtime of the solver methods. For the two server platforms
(i. e., Sandybridge and Haswell), the rather small range of supported
processor frequencies of 1.2GHz to 2.0GHz leads to a reduction
of the parallel runtime by a factor of about 1.6. For the Skylake
desktop platform, the larger range of 0.8GHz to 3.4GHz leads to a
runtime reduction by a factor of about 4. This corresponds to an

almost linear improvement for both solver methods, thus showing
that their performance behavior is mainly determined by the com-
putational speed of the processors. Furthermore, even for equal
processor frequencies, there is a strong difference between the hard-
ware platforms resulting from the different numbers of processor
cores available. The minimum of the parallel runtime is achieved by
choosing the maximum processor frequency on each platform as
well as the Haswell platform among the three available platforms.

The energy consumption shows a very different behavior than
the parallel runtime. For all measurements, there occurs a U-shape
where the energy consumption first decreases and later increases
for increasing processor frequencies. Thus, the minimum of the
energy consumption is achieved by choosing an intermediate pro-
cessor frequency of about 1.6GHz to 1.7GHz. The optimal choice
of the processor frequency is almost the same for the two solver
methods and the three hardware platforms. In comparison to using
the maximum frequency (i. e., with the minimum parallel runtime),
the optimal frequency with respect to the energy consumption leads
to an increase of the parallel runtime of about 22 % to 23 % for the
Sandybridge and Haswell platform and 90 % to 98 % for the Skylake
platform. At the same time, the achieved reduction of the energy
consumption is only up to 6 % for the Sandybridge and Haswell
platform but up to 46 % for the Skylake platform. The results demon-
strate that optimizations towards energy or performance require
differing approaches. Even though the loss of performance observed
is larger than the energy improvement obtained, a significant re-
duction of the energy consumption can still be achieved especially
for platforms with large ranges of processor frequencies.

4.5 Discussion
The measurements indicate that all variation approaches investi-
gated in the previous subsections have a significant influence on the
energy and performance behavior. However, varying the solution
methods or their parameters often requires additional program-
ming efforts and a deep knowledge of the specific solution methods.
The common programming interface of the ScaFaCoS library and
the parameterized implementations of their solvers lower the re-
quired efforts for these kinds of investigations significantly, thus
demonstrating that this library design is very advantageous for sub-
sequent analyses and optimization approaches. Varying the degree
of parallelism or the processor frequency is already common prac-
tice and can be performed without significant efforts. However, the
findings have shown that especially the achievable reduction of the
energy consumption with an optimal processor frequency depends
strongly on the range of frequencies supported by the processor.
The desktop platform was much more affected by this effect, thus
showing that the priorities of the analyses might have to incorpo-
rate, for example, differences between desktop and server platforms
or the direction of future hardware platform developments.

So far, the analysis has considered only selected configurations
of particle solver methods, parameters, and input data. However,
an investigation encompassing the entire space of possible con-
figurations leads to large amounts of measurement results that
would be very time consuming to obtain and to analyze. This would
require a generalization of the approach, for example, with con-
secutive iterations parameter spaces and automated detection of
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Figure 4: Parallel runtime (left), parallel speedup (middle), and energy consumption (right) depending on the number of MPI
processes for different particle solver methods.
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Figure 5: Parallel runtime (left) and energy consumption (right) depending on the processor frequency for different particle
solver methods and hardware platforms.

optimal energy and performance behaviors. The analysis based on
the four considered variation approaches is independent from the
considered library of particle solver methods and can be applied to
other libraries as well. However, single investigations might not be
applicable to all kinds of libraries, for example, a variation of the
solution method can only be exploited if there are several alterna-
tive methods available for solving a single problem. Furthermore,
the overall approach is not limit to software libraries at all, but can
be generalized to other computational problems where different
algorithms or implementations are available.

5 RELATEDWORK
In the past, studies about the energy and power consumption in
scientific computing have focused on linear algebra operations [21]
as well as on general benchmarks, such as NPB and PARSEC [22].
However, only few investigate specifically the differences between

energy/power and performance [2, 13]. Commonly analyzed in-
fluences on the energy requirements include code optimizations,
dynamic concurrency throttling (DCT), and dynamic voltage and
frequency scaling (DVFS). The overall results show large variations
in the achieved improvements of the energy requirements, thus
demonstrating that dedicated analyses for individual applications
and their various influences are necessary. This article provides
a dedicated analysis of solver methods for particle simulations,
which represent an important class of applications that have not
been investigated in detail so far. Furthermore, we have extended
the analysis to include novel influences, such as the usage of al-
ternative solution methods and the selection of method-specific
parameters.

For an older version of the FMM solver method, an autotuning
approach for its method parameters, such as the utilized tree depth,
was developed [9]. The presented results showed the significant
influence of the method parameters on the performance of the
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FMM method. While the optimization approach was also based on
experimental measurements, it did not consider the parallelization
or the energy consumption. An analysis of the energy behavior
of the FMM with DVFS is presented in [8]. The work focuses on
the the prediction of energy-efficient settings using a system-on-
chip platform. The results showed that due to a large percentage of
energy consumed by constant power of the platform, a maximum
frequency setting minimized both the execution time and the en-
ergy consumption. For the hardware platforms and measurements
presented in this article, the minimum of the energy consumption
is achieved with an intermediate processor frequency.

Several approaches were developed to measure, model, and pre-
dict the energy behavior of parallel hardware platforms. Various
benchmark suites were used to include a representative set of ap-
plications codes into the studies. For example, the ASC Sequoia
benchmark suite and the multi-zone version of the NAS Parallel
Benchmarks were used to analyze the effects of DCT and DVFS in
hybrid MPI/OpenMP applications [14]. In [20], the SPEC CPU2006
benchmark suite is used to compare the measurements obtained
with external power-meters and with internal hardware counters
on multi-core platforms. Benchmark suites, such as SPLASH-2 or
PARSEC, also include particle solver methods. These benchmark
suites are used, for example, to investigate different power and
energy models with respect to their prediction capabilities [19]
or to quantify the amount of energy required for shared memory
programming of an energy-efficient system-on-chip many-core sys-
tem [17]. The results presented in these works also include energy
measurements of particle solver methods. However, a dedicated
analysis of these methods is not included as they represent only a
small part of the utilized applications. The analysis provided in this
article, focuses solely on particle solver methods and investigates
especially the relation between energy and performance behaviors.

6 CONCLUSIONS
In this article, we have analyzed the energy and performance behav-
ior of different particle solver methods from the ScaFaCoS library.
Four different aspects were presented to systematically vary the
computations used to solve a specific problem. The results showed
that the energy consumption and the required runtime often exhibit
the same general behavior. Small deviations occurred for the power
consumption when varying the particle solver method as well as
for the energy consumption when varying the grid size parameter
of the P2NFFT solver method. However, much larger differences
between the energy and the parallel behavior were observed for
varying the processor frequency. While the minimum of the parallel
runtime is always achieved with the maximum processor frequency,
the minimum of the energy consumption requires to use signif-
icantly smaller processor frequencies. The findings indicate that
there can be situations in which the energy behavior deviates from
the performance behavior. Due to the large number of potential
influences for particle solvers, the presented grouping allows to
identify specific aspects that might be used for further analyses
or optimizations. Furthermore, the implementation of the particle
solvers as a library has demonstrated to be of great advantage for
the analyses, because all investigated variations of the solvers could
be performed without additional programming efforts.
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