
Involving CPUs into Multi-GPU Deep Learning
Tung D. Le

IBM Research - Tokyo

Tokyo, Japan

tung@jp.ibm.com

Taro Sekiyama

IBM Research - Tokyo

Tokyo, Japan

sekiym@jp.ibm.com

Yasushi Negishi

IBM Research - Tokyo

Tokyo, Japan

negishi@jp.ibm.com

Haruki Imai

IBM Research - Tokyo

Tokyo, Japan

imaihal@jp.ibm.com

Kiyokuni Kawachiya

IBM Research - Tokyo

Tokyo, Japan

kawatiya@jp.ibm.com

ABSTRACT
The most important part of deep learning, training the neural net-

work, often requires the processing of a large amount of data and

can takes days to complete. Data parallelism is widely used for

training deep neural networks on multiple GPUs in a single ma-

chine thanks to its simplicity. However, its scalability is bound by

the number of data transfers, mainly for exchanging and accumu-

lating gradients among the GPUs. In this paper, we present a novel

approach to data parallel training called CPU-GPU data parallel
(CGDP) training that utilizes free CPU time on the host to speed

up the training in the GPUs. We also present a cost model for an-

alyzing and comparing the performances of both the typical data

parallel training and the CPU-GPU data parallel training. Using the

cost model, we formally show why our approach is better than the

typical one and clarify the remaining issues. Finally, we explain

how we optimized CPU-GPU data parallel training by introducing

chunks of layers and present a runtime algorithm that automati-

cally finds a good configuration for the training. The algorithm is

effective for very deep neural networks, which are the current trend

in deep learning. Experimental results showed that we achieved

speedups of 1.21, 1.04, 1.21 and 1.07 for four state-of-the-art neural

networks: AlexNet, GoogLeNet-v1, VGGNet-16, and ResNet-152,

respectively. Weak scaling efficiency greater than 90% was achieved

for all networks across four GPUs.

KEYWORDS
Deep learning; data parallelism; GPUs; CPUs

ACM Reference Format:
Tung D. Le, Taro Sekiyama, Yasushi Negishi, Haruki Imai, and Kiyokuni

Kawachiya. 2018. Involving CPUs into Multi-GPU Deep Learning. In ICPE
’18: ACM/SPEC International Conference on Performance Engineering, April
9–13, 2018, Berlin, Germany. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3184407.3184424

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00

https://doi.org/10.1145/3184407.3184424

1 INTRODUCTION
Deep learning is an effective tool for solving complex signal process-

ing problems such as ones in computer vision, speech recognition,

and natural language processing. In 2012, a deep convolutional

neural network called AlexNet [17] achieved outstanding image

classification results in the ILSVRC-2012 competition with a top-5

test error rate of 15.3%. In 2015, rectifier neural networks surpassed

human-level performance on image classification with a top-5 test

error rate of 4.94% [12]. Various the deep neural networks for image

recognition have been used for detecting pulmonary nodules in

the analysis of lung cancer [4]. Long short-term memory (LSTM)

networks have reached a major milestone: a 5.5% word error rate

in conversational speech recognition [21].

A deep neural network is a combination of many layers (the

deepest network up to date is the 1001-layer ResNet network [13])

and is trained using a large dataset. Training a neural network is

mainly based on matrix multiplications and is therefore often accel-

erated by using GPUs. To fully utilize multiple GPUs for training,

data parallelism is often used because 1) it is simple to adapt and

extend existing single-GPU training to multiple-GPUs training and

2) it fully utilizes the GPU-aware optimized training in a single

GPU. In data parallel training, the same neural network is used

for each GPU, but the training is done using different inputs for

each GPU. Once the GPUs have finished the forward and backward

phases of each training iteration, a server GPU accumulates the

partial gradients from the other GPUs and updates the learnable pa-

rameters. The server GPU then broadcasts the updated parameters

to the other GPUs at the beginning of the next training iteration to

ensure that every GPU has the same parameters.

However, the scalability of data parallel training is limited by

the accumulation and broadcasting of gradients. The greater the

number of GPUs that are used, the greater the amount of data

that are exchanged among GPUs. A simple yet effective solution

is using a tree layout of GPUs so that some communications are

done in parallel; this is the approach used in the BVLC/Caffe [15]

and Torch [2] deep learning frameworks. Another approach is us-

ing topology-aware communication libraries such as the NVIDIA

Collective Communications Library (NCCL) [3]. The TensorFlow

framework [5] does both gradient accumulation and parameter up-

date synchronously on CPUs on the host at the end of the backward

phase. This approach provides the flexibility needed for distributed

training but is slow for training on a single machine. The MXNet [6]

deep learning framework provides a mix of the above approaches:

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

56

https://doi.org/10.1145/3184407.3184424
https://doi.org/10.1145/3184407.3184424
https://doi.org/10.1145/3184407.3184424

gradient accumulation is done on the CPUs while parameter updat-

ing is done on the GPUs.

In this paper, we first present a novel approach to data parallel

training called CPU-GPU data parallel (CGDP) training that utilizes

free CPU time on the host to speed up the training of deep neural

networks on the GPUs. In this approach, gradients are collected

and accumulated on the host layer-by-layer during the backward

phase. Once a partial gradient for a layer is available in a GPU, it is

sent to the host. Gradient accumulation is done by the CPUs while

the GPU moves on to computing the partial gradients for the other

layers. The accumulated gradients on the host are then sent back to

the GPU for updating of the learnable parameters. This approach

is particularly effective for convolutional neural networks, which

are widely used in image processing. Such networks usually start

with convolutional layers having a small number of parameters

and end with fully connected layers having a large number of

parameters. Since backward computations are performed from the

ending layer to the starting layer, collection and accumulation of the

gradients of the ending layers will have been completed by the end

of the backward phase even though they might take a substantial

amount of time. Furthermore, since collecting and accumulating the

gradients of the starting layers take less time, they are completed

immediately after the backward phase with a very low overhead.

Next, we present a cost model for analyzing the performance

of data parallel training on multiple GPUs. The model takes into

account not only the costs for computation and communication,

but also the cost for synchronization among GPU streams, which

is important for GPU applications. Using this model, we show

a condition under which the CGDP training is better than the

typical training. To the best of our knowledge, this is the first time

a cost model for data parallel training on multiple GPUs has been

proposed.

Finally, we extend the CGDP training by using chunks of layers

to deal with very deep and “flat” neural networks in which the

number of parameters for a layer is small and roughly equals the

number for the other layers. For such networks, the cost model

shows that the synchronization among GPU streams is a bottleneck

and slows the training down. In such cases, the layers are grouped

into chunks, and synchronizations are done for each chunk. We

present a runtime algorithm for automatically determining the

synchronization points so that the running time is optimized.

We implemented these ideas in the BVLC/Caffe [15] deep learn-

ing framework, which is widely used in deep learning communities.

Experiments were done with the ImageNet dataset [20] on an IBM

POWER8 machine coupled with four NVIDIA Tesla P100 GPUs [1].

Speedups of 1.21, 1.04, and 1.21 were achieved for three neural

networks: AlexNet [17], GoogLeNet-v1 [24], and 16-layer VGGNet

(model D) (VGGNet-16 hereafter) [22], respectively, corresponding

to more than 90% weak scaling efficiency for all three networks.

For a very deep neural network, the 152-layer ResNet network [11]

(ResNet-152 hereafter), while the naive CGDP training was slower

than the typical data parallel training, using chunks and the runtime

algorithm made it 1.07 times faster than the typical data parallel

training.

The rest of the paper is organized as follows. Section 2 reviews

data parallelism for deep learning. Section 3 describes in detail

our CPU-GPU data parallel training on a single machine coupled

with multiple GPUs. Our cost model is also presented in the sec-

tion. Section 4 presents a variant of the CGDP training that uses

chunks of layers in training and a runtime algorithm that auto-

matically optimizes the CGDP training with chunks for very deep

neural networks. Section 5 presents the experiment results for a real

dataset, ImageNet [20]. Section 6 discusses related work. Section 7

summarizes the key points and mentions future work.

2 DATA PARALLELISM FOR DEEP LEARNING
This section briefly reviews the training phase of a neural network

using the back-propagation algorithm [10] and data parallelism.

2.1 Training Deep Neural Networks
We first give an overview of training deep neural networks us-

ing feed-forward neural networks (FFNs), which are a fundamental

architecture for convolutional neural networks.

The goal of an FFN is to approximate a function f ∗; i.e., y∗ =
f ∗ (x) maps an input x (a tensor) to a categoryy∗ (a scalar value). In
general, an FFN defines a mapping y = fθ (x) where the parameter

θ is learnt to produce the best function approximation for f ∗. If y∗

is given in training, we have supervised training, otherwise, unsu-

pervised training. In this paper, we focus on supervised training. A

cost function, also often called a loss function, defines how well fθ
approximates f ∗. For example, the mean squared error (MSE) loss

function is defined on the whole training set X of N elements as

Jθ =
1

N

∑
x ∈X

(y∗ − fθ (x))
2.

Feed-forward neural networks are represented by a composition

of many functions; i.e., f (x) = f 3 (f 2 (f 1 (x))), where f i is the
i-th layer of the network. Generally speaking, an l-layer FFN is

represented as

fθ (x) = f lθl
(f l−1θl−1

(· · · (f 1θ1
(x))· · ·)),

where θ is the set of the layer parameters {θ1,θ2, . . . ,θl }.
A layer k is often defined by an activation function to make the

neural network nonlinear. Let yk−1 be an input vector of the layer

k (the output of the previous layer); an output vector yk of the layer

k is computed as

yk = f kθk
= σ (xk)

xk = w
T
k yk−1 + bk ,

where σ is an activation function (e.g., the rectified linear unit de-
fined by σ (z) = max{0, z}) and wT

k is the transpose matrix of the

weight matrix wk . Letm be the size of yk−1 and n be the size of yk .
Then, the size of matrix wk ism × n. Vector bk is the bias vector
of the layer k and has the size of n. In summary, a layer is param-

eterized by using two learnable parameters: the weight matrixw
and the bias vector b. In other words, θk = {wk ,bk }. Note that,

although the equation for xk is actually for a fully connected layer,

the definition of such a layer can be applied to other kinds of layers,

such as convolutional layers.

Training FFNs is almost always based on using gradients with

respect to learnable parameters to decrease the loss function. In

general, the training consists of three phases: forward, backward
and update. Given an l-layer FFN with learnable parameters θ =

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

57

{θ1,θ2, . . . ,θl }, the forward phase computes a scalar value Jθ . The
backward phase computes the gradients of the loss function with

respect to the learnable parameters, which are∇θ1 J ,∇θ2 J , . . . ,∇θl J .
Actually, we need to compute two gradients ∇wk J and ∇bk J for a
layer k . The update phase updates the learnable parameters using

their gradients in the direction that minimizes the value of the loss

function; for example,

wk = wk − η∇wk J ; bk = bk − η∇bk J ,

where η is a given learning rate.

To train an FFN using a large training dataset, a minibatch sto-

chastic gradient decent (SGD) algorithm is used. The training is

performed iteratively, in which, for each iteration, a minibatch

(subset) of examples extracted from the training dataset is used as

input.

2.2 Back-propagation Algorithm Used to
Compute Gradients

Next, we briefly review the back-propagation algorithm for gradient

computation in the backward phase. The back-propagation is based

on the chain rule of calculus that is used to compute the derivatives

of composite functions by propagating the derivative information

from the loss function back through the composite functions. The

back-propagation algorithm has five steps:

Step B-1: Compute the gradient for the output layer:

∇yl J = ∇f Jθ (y
∗, f)

Step B-2: Compute the gradient of the activation for the l-th layer:

∇xl J =

(
∂yl
∂xl

)T
∇yl J

Step B-3: Compute the gradients of the learnable parameters (weights

and biases):

∇wl J =

(
∂xl
∂wl

)T
∇xl J ; ∇bl J =

(
∂xl
∂bl

)T
∇xl J

Step B-4: Propagate the gradients with respect to the activations

of the lower-level layers (e.g., layers with smaller indices):

∇yl−1 J =

(
∂xl
∂yl−1

)T
∇xl J .

Step B-5: Continue steps B-2 to B-4 until l reaches 1.

The

(
∂y
∂x

)
denotes them × n Jacobian matrix of a function д for

y = д(x),m is the size of vector y and n is the size of vector x .

2.3 Typical Data Parallel Training
In this paper, we focus on data parallel training on a single machine

coupled with multiple GPUs. Let G be the number of GPUs in the

machine. For data parallel training, the GPUs use the same neural

network and train the network with different minibatches. Each

iteration of data parallel training comprises five steps:

Step T-1: Each GPU reads one minibatch and performs the forward

phase.

Step T-2: Each GPU performs the back-propagation to compute

the gradients with respect to its learnable parameters. Let

∇
j
wk

J and∇
j
bk

J be the gradients with respect to the learnable

parameters {wk ,bk } for a layer k computed by GPU j.
Step T-3: GPU 0 collects the gradients from the other GPUs and

computes their mean value:

∇0wk
J =

1

G

G−1∑
j=0

(∇
j
wk

J); ∇0bk
J =

1

G

G−1∑
j=0

(∇
j
bk

J)

Step T-4: GPU 0 updates its learnable parameters by using the

computed gradients.

Step T-5: GPU 0 broadcasts the values of its learnable parameters

to the other GPUs. The other GPUs set the values of their

learnable parameters to those values.

In this training, GPU 0 plays the role of a parameter server,

collecting gradients and updating the learnable parameters. The

backward phase consists of Steps T-2, T-3, and T-5. The training

actually begins with Step T-5 to ensure that the neural networks

are trained using the same parameters.

3 CPU-GPU DATA PARALLEL TRAINING
The drawback of the typical data parallel training lies in the com-

munication steps (Steps T-3 and T-5 (Section 2.3)), leading to a poor

scalability. The two steps depend on the communication pattern

among GPUs. Our goal for optimizing data parallel training is to

reduce as much as possible the effect of the communication steps

on the running time of one training iteration.

3.1 Algorithm
Our algorithm is based on two observations. The first is that the

gradients for one layer once computed will remain unchanged

during the backward phase. Hence, there is no need to postpone

gradient accumulation until the end of the backward phase. The

second observation is that gradient accumulation can be performed

with the support of CPUs on the host. We thus make Steps T-3

(gradient accumulation) and T-5 (parameter broadcast) overlapped

with Step T-2 (back-propagation). We refer to our algorithm as

CPU-GPU data parallel (CGDP) training.
To attain overlap of computation and communication in our

algorithm, GPU streams are used. In GPU-CUDA programming,

operations in the same stream are executed sequentially, while

operations in different streams are executed in parallel. If a stream

is not specified specified for an operation, the default stream is used.

Three streams are maintained in our algorithm. The first stream, the

default stream, is used to compute the loss function in the forward

phase and the gradients in the backward phases; it is also used to

update the parameters. The second stream, the D2H stream, is used

to send local gradients to the host and then call a callback function

on the host to accumulate the gradients. The third stream, H2D
stream, is used to broadcast the global gradients back to the GPUs.

Note that, even if more streams are used, the data transfers are

not done in parallel because only one transfer in one direction is

allowed at a time.

Each iteration in our CGDP training consists of three steps:

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

58

f 1θ1
f 2θ2

f 3θ3

GPU 0: backward phase GPU (G − 1): backward phase

f 1θ1
f 2θ2

f 3θ3
· · ·

∑G−1
i=0 (∇

j
w1

J)
∑G−1
i=0 (∇

j
w2

J)
∑G−1
i=0 (∇

j
w3

J)

global gradients

∇0w1

J ∇0w2

J ∇0w3

J ∇G−1w1

J ∇G−1w2

J ∇G−1w3

J· · ·

local gradients local gradients

∇0w2

J ∇G−1w3

J

∑

HOST

Figure 1: Communication pattern between host and GPUs during backward phase in CGDP training.

Step P-1: Each GPU reads one minibatch and performs the forward

phase.

Step P-2: Each GPU performs the backward phase (explained be-

low).

Step P-3: Each GPU performs the update phase to update its learn-

able parameters.

During the backward phase (Step P-2), gradients accumulations

are performed on the host, and the accumulated gradients are broad-

casted to all GPUs. Hence, at the end of the backward phase, all

GPUs have the same accumulated gradients, and they update their

learnable parameters in parallel. This is different from the typical

data parallel training in which only the GPU 0 has the accumulated

gradients and does the update phase. In other words, there is no

parameter server in the CGDP training.

Step P-2 is an extension of the original back-propagation algo-

rithm (Section 2.2). Five steps are added: Steps B-4-1, B-4-2, and

B-4-3 after Step B-4; and Steps B-5-1 and B-5-2 after Step B-5. Let

Q be a queue to store the layers for which backward computation

has been completed. If a layer is inQ , its gradient has been sending

to the host or accumulated into the global gradient on the host.

Step P-2 for each GPU is as follows (the GPU stream is shown in

parentheses):

Step B-1 (Default stream): Compute the gradient for the output

layer:

∇yl J = ∇f Jθ (y
∗, f)

Step B-2 (Default stream): Compute the gradient of the activation

for the l-th layer:

∇xl J =

(
∂yl
∂xl

)T
∇yl J

Step B-3 (Default stream): Compute the gradients of the learnable

parameters (weights and biases):

∇wl J =

(
∂xl
∂wl

)T
∇xl J ; ∇bl J =

(
∂xl
∂bl

)T
∇xl J

Step B-4 (Default stream): Propagate the gradients with respect to

the activations of the lower-level layers (e.g., layers with

smaller indices):

∇yl−1 J =

(
∂xl
∂yl−1

)T
∇xl J .

Step B-4-1 (Host): Synchronize the default stream with respect to

the host.

Step B-4-2 (D2H stream): Send local gradients ∇
j
θl
J to the host,

and call the callback function to accumulate the local gradi-

ents into the global gradient on the host. Push l to Q .
Step B-4-3 (H2D stream): For each layerk inQ , if all local gradients

∇
j
θk

J , j = 0, . . . , (G − 1) have been accumulated into the

global gradient, broadcast the global gradient to all GPUs

and remove k from Q .
Step B-5: Continue steps B-2 to B-4-3 until l reaches 1.
Step B-5-1 (H2D stream): For each layerk inQ , if all local gradients

∇
j
θk

J , j = 0, . . . , (G − 1) have been accumulated into the

global gradient, broadcast the global gradient to all GPUs

and remove k from Q . Repeat this step until Q is empty.

Step B-5-2 (Default stream): Synchronize the H2D stream with re-

spect to the host.

The global gradient of a layer is the gradient accumulated from all

local gradients of that layer from all GPUs. The synchronization

step (Step B-4-1) is particularly important because it ensures that

the local gradient of a layer is sent to the host after the gradient

computation has finished.

Figure 1 illustrates the communication pattern between the host

and GPUs during the backward phase of one iteration. On the host,

for each GPU, there is a concurrent vector of the local gradients

produced by the layers. There is also a concurrent vector of global

gradients accumulated from the local gradients. The GPUs com-

municate directly with the CPUs to send gradients to the CPUs.

Once a layer has computed its gradients with respect to its learn-

able parameters, the gradients are sent to the host, where they

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

59

are accumulated into the global gradients (Step B-4-2). Gradient

accumulation on the host is done in parallel using the OpenMP API.

Once this gradient accumulation has been completed (by checking

the existence of the layer in the queue Q), the global gradients are

broadcasted back to all GPUs (Step B-4-3). At the same time, the

next layer computes the other gradients (Steps B-2, B-3, B-4). Note

that, once all layers have finished their computations, the comple-

tion of gradient accumulation for the last layer (or maybe the few

last layers) has not finished yet. Hence, we need another step at the

end of the backward phase to check for the completion by all layers

and then broadcast the remaining global gradient(s) to the GPUs

(Step B-5-1). Step B-5-2 ensures that all accumulated gradients are

available in the GPUs before performing the update phase.

3.2 Cost model
We designed a cost model for the CGDP training and analyzed its

performance. Without loss of generality, we assume that every GPU

trains the same neural network in parallel at the same pace. In other

words, the same layers in each network finish its computation at

the same time. This means that it is sufficient to consider only the

training for one GPU. Furthermore, we consider only the backward

phase because we do not change the forward and update phases.

Given an l-layer FFN where f i is its i-th layer, let t ibp be the

time on the GPU for the layer’s back-propagation (Steps B-1, B-2,

B-3, B-4), and t ia be the time on the host for gradient accumulation,

where t ia includes the synchronization time t ias (Step B-4-1) and

accumulation time t iaa (Step B-4-2). Let t ibc be the time for broad-

casting the accumulated gradient from the host to the GPUs (Step

B-4-3).

In CGDP training, t iaa and t ibc overlap the next t
j
bp (s), l ≥ j > i .

In addition, t iaa and t
j
aa , i , j , overlap because they are handled by

different processes in parallel.

Definition 3.1. The back-propagation time on a GPU for an l-
layer FFN, TBP , is defined by:

TBP =
1∑
i=l

(t ibp)

Definition 3.2. The total processing time for a layer i in an l-layer
FFN is defined by:

T iBP =
i∑
l

(t ibp + t
i
as) + t

i
aa + t

i
bc

Intuitively, the total processing time for a layer is the time from

the beginning of the backward phase to the point where the layer’s

accumulated gradient is available in the GPU. Note that the defini-

tion of T iBP does not guarantee that, for i < j , the layer j will finish
before the layer i during the backward phase.

Definition 3.3. The running time of the backward phase using

CGDP training, T , is computed as

T = max

i=1, ...,l
(T iBP).

Intuitively, the running time of the backward phase depends on

the slowest layer (the one with the longest total processing time).

Definition 3.4. The running time of the backward phase in the

typical data parallel training, T ′, is computed as follows (in this

case, there is no synchronization as only one stream, the default

stream, is used; i.e., tas = 0):

T ′ = TBP +
1∑
i=l

(t iaa + t
i
bc).

Note that tbc inT is the time for broadcasting the gradients from

the host to every GPU, while tbc in T ′ is the time for broadcasting

the parameters from the server GPU to the other GPUs. For each

layer, the numbers of the gradients and parameters are the same.

Hence, we assume that these tbc (s) are the same though they might

be different due to different connection topologies among CPUs

and GPUs. In addition, taa in T is performed by CPUs while the

one in T ′ is performed by GPUs.

Overhead time is defined as the additional time for accumulating

and exchanging gradients among GPUs in the backward phase. For

the typical data parallel training, overhead time is computed as

T ′O = T
′ −TBP =

1∑
i=l

(t iaa + t
i
bc)

. For the CGDP training, overhead time is non-trivial to compute.

However, simplification by assuming that taa and tbc of layers

l , l − 1, . . . , 2 perfectly overlap the next tbp (s) makes T = T 1

BP . The

overhead time is then computed as

TO = T −TBP =
1∑
i=l

(t ias) + t
1

aa + t
1

bc

The CGDP training is faster than the typical data parallel training

ifTO < T
′
O . If the layer 1 has a small number of parameters, then taa

in TO is approximately equal to taa in T ′O . Hence, TO < T
′
O holds

if

∑
1

i=l (t
i
as) <

∑
2

i=l (t
i
aa + t

i
bc). This condition is easy to meet for

several practical neural networks such as AlexNet, GoogLeNet-v1,

and VGGNet-16.

4 CHUNK-SIZE OPTIMIZATION
As mentioned in the Introduction, we extend CGDP training by

using chunks of layers to deal with very deep and “flat” neural

networks in which the number of parameters for a layer is small

and roughly equals the number for the other layers.

In the naive CGDP training, the gradients are sent to the host

layer-by-layer, which is triggered by a synchronization using the

default stream with respect to the host. In other words, the D2H

stream waits for the computation of a layer in the default stream to

finish. For neural networks that have many layers, e.g., ResNet-152

with 152 layers, there are many synchronizations in the CGDP

training, which slows down the backward phase.

We first describe how the naive CGDP training is extended by

using chunks to reduce the effect of synchronizations on the perfor-

mance of the backward phase and then present a runtime algorithm

for automatically finding a good setting for the CGDP training with

chunks.

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

60

5.91

5.45 5.35 5.43
5.16

5.40
5.63

5.82 5.72

6.15
6.33

6.57
6.43

6.57 6.63

4.48

5.71

4

4.5

5

5.5

6

6.5

7

7.5

R
un

ni
ng

 ti
m

e
pe

r 1
0

ite
ra

tio
ns

 (i
n

se
co

nd
)

Chunk size (the number of layers)

Average
Maximum

Minimum

Figure 2: Running time for ten iterations of training ResNet-152 (minibatch size 16, 4 GPUs, no validation) for various chunk
sizes. “TypDP” means using the typical data parallel training. The maximum, minimum, and average values were calculated
for every ten iterations.

4.1 CGDP training using chunks
Because stream synchronization slows down the performance of

the backward phase, it is better to perform synchronization after

several layers have finished rather than after each layer has finished.

In particular, it is best to optimize the (

∑l
i=1 (t

i
as) + t

i
aa + t

i
bc)) part

of T .
We call a group of layers for which the gradients are sent to

the host together a chunk of layers, and denote it by {}. Given a

neural network, we can use multiple chunks with varying num-

bers of layers for CGDP training. For example, if a neural net-

work has six layers (f 1θ1
, f 2θ2
, f 3θ3
, f 4θ4
, f 5θ5
, f 6θ6

), we could use three

chunks { f 1θ1
}, { f 2θ2

, f 3θ3
}, and { f 4θ4

, f 5θ5
, f 6θ6
}. The backward phase of

the CGDP training using three chunks is performed as follows:

compute gradients for the layers of chunk { f 4θ4
, f 5θ5
, f 6θ6
} using the

default stream, synchronize with the D2H stream to send the gradi-

ents of these layers to the host, compute the gradients for the layers

of the chunk { f 2θ2
, f 3θ3
} using the default stream, synchronize with

the D2H stream to send the gradients of these layers to the host,

compute the gradients for the layers of the chunk { f 1θ1
}, synchro-

nize with the D2H stream to send the gradients of these layers to

the host, and wait for all gradients to be available on the GPUs. In

this example, only three synchronizations are needed using chunks

while six synchronizations are needed without chunks.

There is a tradeoff between the number of synchronizations and

the number of layers in a chunk. It is obvious that CGDP train-

ing with chunks reduces the number of synchronizations because∑l
i=1 (t

i
as) becomes

∑c
j=1 (t

j
as), where c is the number of chunks.

Nevertheless, using chunks potentially produces more overhead

since we have postponed gradients accumulations for the layers in a

chunk until the last layer in the chunk finishes its back-propagation.

In other words, (t iaa+t
i
bc) for a layer i becomes the sum of (t

j
aa+t

j
bc)

for all layers j in the chunk to which layer i belongs. This makes it

more difficult to optimize CGDP training.

Proposition 4.1. Given an l-layer FFN, there are
∑l−1
k=1

(l−1
k

)
ways to group layers by chunks for CGDP training with chunks.

Proof. The proof is completed by counting the total number

of ways to insert k delimiters, k = 1, 2, . . . , (l − 1), into the spaces

between two consecutive characters in the sequence “f1 f2 . . . fl ”
so that there is no more than one delimiter in the same space. □

4.2 Heuristic algorithm for finding chunks
Here we present a runtime algorithm for finding the chunk size

that minimizes the running time for the backward phase. It is run

for the first few training iterations to determine a good chunk size

for reducing the running time for training. Two heuristic rules are

used for determining how to expand the search space and how to

stop the algorithm.

To limit the search space, here we consider only the case in

which chunks have the same size except for the few last layers of

the backward phase. Assume that we train an l-layer FFN using the

CGDP training with chunks of the same size, k . If (l mod k = 0),

there are (lk − 1) chunks with size k , including layers from l to
(k + 1), and there are k chunks with size 1, including the remaining

layers from k to 1. If (l mod k , 0), there are

⌊
l
k

⌋
chunks with

size k , including layers from l to (l − k ∗
⌊
l
k

⌋
+ 1), and there are

(l − k ∗
⌊
l
k

⌋
) chunks with size 1, including the remaining layers

from (l − k ∗
⌊
l
k

⌋
) to 1. The few last layers have a chunk size of 1

in order to reduce the effect of t iaa and t ibc on training overhead.

Figure 2 shows the running time for training ResNet-152 for

chunk sizes from 1 to 100. It also shows the running times for single-

GPU training and the typical data parallel training to illustrate the

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

61

overhead of the CGDP training. The naive CGDP training (with

chunks of size 1) was slower than the typical data parallel training.

This is because ResNet-152 has many small layers (the number of

parameters is small). Hence, the overhead of synchronizations is

high, which results in the total overhead being high. Increasing the

chunk size (chunk sizes 2, 4, 6, 8), gradually improved the results.

However, using a large chunk size is not good due to the overhead

of gradient accumulation. Compared to the running time for single-

GPU training, the overhead time for multiple GPU training was

very high, so there is potentially room for improvement.

Algorithm 1 shows our algorithm for finding a good chunk size

for CGDP training with chunks. Assume that we train a neural

network using N iterations. There are two user-defined parameters

in the algorithm: step and range. The step parameter is used to

heuristically determine how to expand the search space for chunk

size and how to stop the algorithm. The range parameter is used to

determine how to stop the algorithm and it is used together with

the parameter step. Variable chunk is used to store the chunk size

for the current iteration. It is the variable to be optimized. It is

continually updated during the execution of the algorithm and is

set to the value of variable best_chunk upon completion. Variable

best_chunk holds the chunk size that results in the minimum run-

ning time, which is stored in a variable lapse_min. Variable lapse
is the running time of the last interval iterations. At the begin-

ning of training, variables chunk, best_chunk, and lapse_min are

set to 1, 1, and +∞, respectively (Line 1).

Our heuristic algorithm for finding a good chunk (Lines 7–25

in Algorithm 1) runs as follows. After each interval iteration,

the algorithm is triggered. Although the value of interval can

be changed, we use a fixed value of 10 here. The algorithm mea-

sures the running time for the interval iterations, and stores it

in variable lapse (Line 13). If lapse < lapse_min, the values

of best_chunk and lapse_min are updated to the current values

(Lines 14–16). As mentioned, there are two heuristic rules in the

algorithm. The first rule is used to expand the search space of the

chunk size: chunk := (chunk < step)?(chunk+1) : (chunk+step)
(Lines 18–22). The rule says that, at the beginning of the algorithm,

if chunk < step, the value of the chunk size is gradually increased

by 1. Otherwise, the chunk size is increased by step. This rule
flexibly adjusts the search space of the algorithm. If step is large
and close to the number of layers, most of the values for the chunk

size are aggressively scanned. If it is small, big jumps in chunk

size are made, and some values are ignored, which speeds up com-

pletion. The second rule is used to determine when to stop the

algorithm; that is, chunk ≥ best_chunk + step ∗ range (Lines

8–10). Intuitively, once a best_chunk is found, the algorithm runs

another range times. If there is no a better chunk size, the algo-

rithm stops. Note that, if best_chunk < step, the algorithm runs

another (step − best_chunk + range) times before determining

whether to stop.

5 EXPERIMENTAL RESULTS
5.1 Configurations
Experiments were run on an IBM POWER8 NUMA-based ma-

chine [1] equipped with two 4GHz 10-core POWER8 processors,

eight simultaneous multi-threads (SMTs) per core and 256 MB RAM

Algorithm 1 Runtime algorithm for finding a good chunk size

1: procedure CGDP(N , step, ranдe)
2: chunk ← 1;best_chunk ← 1; lapse_min ← FLOAT_MAX

3: iter ← 1; interval ← 10;done ← FALSE

4: start_time ← System.currentTimeMillis()

5: while iter ≤ N do ▷ Training for N iterations

6: CGDPTrainByChunk(chunk) ▷ See Section 4.1

7: if (iter mod interval = 0) and (done , TRUE) then
8: if chunk ≥ best_chunk + step ∗ ranдe then
9: chunk ← best_chunk

10: done ← TRUE

11: else
12: end_time ← Sys.currentTimeMillis()

13: lapse ← (end_time − start_time)

14: if lapse < lapse_min then
15: lapse_min ← lapse

16: best_chunk ← chunk

17: end if
18: if chunk < step then
19: chunk ← chunk + 1

20: else
21: chunk ← chunk + step

22: end if
23: start_time ← Sys.currentTimeMillis()

24: end if
25: end if
26: iter ← iter + 1

27: end while
28: return
29: end procedure

Table 1: Neural networks and experimental settings.

Network Layers Parameters
(million)

Minibatch size
per GPU

AlexNet 8 60 256

GoogLeNet-v1 22 7 64

VGGNet-16 16 138 32

ResNet-152 152 49 12

per processor, four NVIDIA Tesla P100 GPUs (each with 16 GBmem-

ory), and NVLinks among the GPUs and CPUs (one 80 GB/s duplex

link between GPUs 0 and 1, one 80 GB/s duplex link between GPUs

2 and 3, two 80 GB/s duplex links from CPU 0 to GPUs 0 and 1,

and two 80 GB/s duplex links from CPU 1 to GPUs 2 and 3). It was

also equipped with CUDA Toolkit v8.0.44 and cuDNN 5.1.5 state-of-

the-art library for primitives used in deep neural networks, which

was developed by NVIDIA developers and is highly optimized for

GPUs.

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

62

Figure 3: Number of parameters per layer for AlexNet, GoogLeNet-v1, VGGNet-16 and ResNet-152. Strings “x3”, “x8”, “x36”,
“x3” are used to indicate the number of blocks of layers for ResNet-152 only, e.g., there are three blocks of layers 2, 3, and 4.

We used four neural networks that are widely used in computer

vision: AlexNet
1
[17], GoogLeNet-v1

2
(Inception-v1) [24], VGGNet-

16
3
(model D) [22], and ResNet-152

4
[11]. Table 1 shows the basic

information for these networks and the size of the minibatch (num-

ber of images processed by one GPU in one training iteration) used

for training them. The distributions of parameters in the layers of

these networks are shown in Figure 3. The layers in GoogLeNet-v1

and ResNet-152 have relatively the same size, and they are small,

while the last few layers in AlexNet and VGGNet-16 are quite large

compared to the other layers. The dataset used for training was a

subset of the ImageNet ILSVRC2012 [20] database, which contains

1.2 million images classified into 1000 categories.

We implemented our optimization in the BVLC/Caffe deep learn-

ing framework [15] developed by UC Berkeley researchers. The

vanilla BVLC/Caffe v1.0.0-rc3 (hereafter, BVLC/Caffe) used the

standard data parallel training with a tree pattern for communi-

cation among GPUs. We refer to our optimization in BVLC/Caffe

as TRL/Caffe. To obtain exact results, for each training session,

we ran the program ten times and calculated the average running

time. Each training session comprised 1000 training iterations. The

running time for an iteration was averaged on the basis of 1000

iterations.

5.2 Results for CGDP training
5.2.1 Running time for training. The scalability of CGDP train-

ing compared to the typical training was determined by analyzing

the running time for training. Table 2 shows the running times for

one training iteration with one, two, and four GPUs for AlexNet,

GoogLeNet-v1, and VGGNet-16. The results for ResNet-152 are an-

alyzed in detail in Section 5.3. The results in Table 2 indicated that

1
AlexNet’s network definition:

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

2
GoogLeNet-v1’s network definition:

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

3
VGGNet-16’s network definition:

https://gist.github.com/ksimonyan/211839e770f7b538e2d8

4
ResNet-152’s network definition:

https://github.com/KaimingHe/deep-residual-networks

TRL/Caffe is more scalable than BVLC/Caffe. When the number

of GPUs was one, the running times for both frameworks were

almost the same for each network. When the number of GPUs

was four, TRL/Caffe was the fastest for all networks—in particu-

lar, it was 1.21, 1.04, and 1.21 times faster than BVLC/Caffe for

AlexNet, GoogLeNet-v1, and VGGNet-16, respectively. This shows

that TRL/Caffe consistently had a high efficiency (≥ 90%). Our

approach was the least effective for GoogLeNet-v1 and the most

effective for VGGNet-16. This is because the effectiveness of our

approach depends on the number of parameters for the network:

it makes the training of networks with more parameters faster

because it distributes the computation for collecting and accumu-

lating gradients, the number of which is the same as the number of

parameters for any minibatch size. The number of parameters in

GoogLeNet-v1 and VGGNet-16 are the least and the most, respec-

tively, so we obtained corresponding results.

5.2.2 Communication overhead. Reducing communication over-

head is our objective, and Table 3 shows the running time for

every phase in training AlexNet on four GPUs. We see that, for

BVLC/Caffe, the broadcast at the beginning took 20 ms and that the

collection and accumulation of gradients at the end of the backward

phase took 23 ms. For TRL/Caffe, these computations were hidden

behind the backward phase, and the communication overhead was

for only the ending layer of the backward phase. These computa-

tions took only 21.8µs in AlexNet. However, the time for backward

propagation in TRL/Caffe was longer than that in BVLC/Caffe.

This is reasonable because TRL/Caffe needs to do work to invoke

data copy functions and callback functions between two consecu-

tive layers during the backward phase. As for GoogLeNet-v1 and

VGGNet-16, the communication overheads of TRL/Caffe were the

same as the one for AlexNet (≈ 21.8µs). We thus do not show them

here.

5.2.3 Time for accumulation on host. It is important to deter-

mine whether the accumulation on the host can be overlapped with

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

63

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://gist.github.com/ksimonyan/211839e770f7b538e2d8
https://github.com/KaimingHe/deep-residual-networks

Table 2: Running time for one training iteration (ms).

AlexNet GoogLeNet-v1 VGGNet-16

no. of GPUs 1 2 4 1 2 4 1 2 4

BVLC/Caffe 157.2 174.3 202.7 140.0 151.7 163.4 345.6 383.7 445.6

TRL/Caffe 157.4 163.6 167.1 140.9 151.9 156.7 345.2 361.5 369.1

Table 3: Running time for phases in one iteration for AlexNet with four GPUs (in ms).

broadcast forward backward
broadcast remaining
gradients from CPUs grad-acc update-param total time

BVLC/Caffe 20 50.6 104 N/A 23 5.1 202.7

TRL/Caffe N/A 51.0 111 21.8µs N/A 5.1 167.1

Table 4: Communication time between GPUs and CPUs, and accumulation time on CPUs for AlexNet with four GPUs.

Layer 8 Layer 7 Layer 6 Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

no. of parameters (million) 4 16.8 37.8 0.4 0.7 0.9 0.3 0.03

GPU-to-CPU copy (ms) 0.760 3.156 12.146 0.133 0.174 0.275 0.066 0.014

accumulation time on CPUs (ms) 1.263 4.441 13.074 0.285 0.465 0.578 0.155 0.018

CPU-to-GPU copy (ms) 1.786 2.568 5.538 0.064 0.095 0.123 0.041 0.007

Table 5: Memory consumption in GPUs (in MB).

AlexNet GoogLeNet-v1 VGGNet-16

BVLC/Caffe 6863 6095 7274

TRL/Caffe 6359 5991 6191

the computations on the GPUs. Table 4 shows the time for accu-

mulation on the CPUs for each layers during the backward phase

and the communication time between the GPUs and the CPUs for

TRL/Caffe with AlexNet when using four GPUs. The communica-

tion and accumulation overlapped the backward phase. Note that

in the backward phase, processing is from the top layer (layer 8) to

the bottom layer (layer 1). It is clear that the accumulation time was

much shorter than the time for the backward phase. Furthermore,

because the ending layer in the backward phase, layer 1, had a small

number of parameters, the overhead for sending the gradients of

this layer to the GPUs was very small (≈ 7µs).

5.2.4 Memory consumption. By offloading gradient accumula-

tion onto the host, we can reducememory consumption in the GPUs,

which facilitates training with a larger batch size. Table 5 shows the

maximum sizes of the memories allocated on the GPUs during train-

ing. Note that the allocated memory size on the GPUs depends on

the size of the minibatch used for training, not the number of itera-

tions. The maximum size per GPU needed by TRL/Caffe was smaller

than that needed by BVLC/Caffe. This is because BVLC/Caffe al-

locates memory on the GPUs to collect and accumulate gradients

from different GPUs while TRL/Caffe does not need such memory

since the gradients are collected and accumulated on the host. Ac-

cordingly, TRL/Caffe consumed more memory on the host. This is

not a big problem because memory on host is generally cheaper

and easier to increase than that on the GPUs. As a result, we were

able to train VGGNet-16 with 103 images per minibatch per GPU

instead of 94, increasing the chance to adjust the hyperparameters

for the solver algorithms.

5.2.5 Long-term runs. We conducted experiments using long-

term runs to evaluate the effectiveness of our approach for long-

term runs. The objective was to train AlexNet to achieve 50% accu-

racy using four GPUs. TRL/Caffe took 62 minutes while BVLC/Caffe

took 79 minutes (Fig. 4a). Both versions reached 50% accuracy at

around iteration 20, 000 (21, 000 iterations in total) and had the

same convergence curve (Fig. 4b). Note that this training included

a testing phase, in which the testing iteration was simply a forward

computation using validation data (50, 000 images) to verify net-

work accuracy. After 1000 training iterations, there was one test

comprising 1000 testing iterations. Hence, there were 21 tests in

total, and each test took about 14.7 seconds.

5.3 Effectiveness of runtime algorithm
To test the runtime algorithm (Algorithm 1) we used ResNet-152

instead of Resnet-1001, which is too large to fit in our GPU mem-

ory, we used Resnet-152 instead. We trained ResNet-152 for 1000

iterations using four GPUs with a real world setting in which the

validation phase was included. The maximum minibatch size we

were able to run for ResNet-152 was 12 (16 without the validation

phase). We set the value of interval to 10 to stabilize the elapsed

time stable. The effectiveness of each parameter in the runtime

algorithm was examined.

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

64

B
V

L
C

/C
af

fe
T

R
L

/C
af

fe

 0 20 40 60 80 100

Running time (in minute)

(a) Time to achieve 50% accuracy in AlexNet training.

 0

 10

 20

 30

 40

 50

 60

0 1000
2000

3000
4000

5000
6000

7000
8000

9000
10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

A
cc

u
ra

cy
 (

%
)

Iteration

BVLC/Caffe
TRL/Caffe

(b) Accuracy per iteration in AlexNet training.

Figure 4: Long-term run for AlexNet training (21, 000 iterations).

Wefirst fixed the value of range to 5 and varied the value of step.
Figure 5a shows the result. First, for a chunk size of 1 (OrigCGDP),

CGDP training was slower than the typical data parallel training.

We then changed the value of step because different values might

lead to a different best chunk size. However, once the runtime algo-

rithm finished, the trainings with different best chunk sizes looked

working similarly and ran faster than the typical data parallel train-

ing. Let’s analyze in detail the configuration “step = 10, range = 5”.

CGDP training had the best performance at iteration 90, where the

chunk size had a value of 9. After that, a better running time could

not be attained. Hence, the runtime algorithm stopped at iteration

150 (it ran six more times after the iteration 90), and used a chunk

size of 9 for the later iterations. Finally, we included the result of

single-GPU training. Although there was still overhead for CGDP

training with chunks, with a simple heuristics, it was much lower

than that for typical data parallel training and close to that for

single-GPU training.

Figure 5b shows the results of extending the search space for a

fixed value of step by increasing the value of range. A larger value

for the chunk size was found: 20, when range was 10. Nevertheless,
training with a chunk size of 20 had the same performance as the

ones with other best chunk sizes (3, 6, or 9). In all cases, the runtime

algorithm finished in at most 21 iterations, which shows that the

runtime overhead of the algorithm was small because the whole

training often had hundreds of thousands of iterations. Overall,

CGDP training was about 1.07 times faster than the typical data

parallel training for ResNet-152. For AlexNet, VGGNet-16, and

GoogLeNet-v1, the runtime algorithm could not find a chunk (> 1)

that produced a better result. This is because these neural networks

have a small number of layers, so the effect of synchronization is

small.

6 RELATEDWORK
There are several ways to accelerate deep learning: data parallelism,

model parallelism, and pipeline parallelism. Data parallelism is im-

plemented in many frameworks such as Google’s TensorFlow [5],

Torch [8], and Microsoft’s CNTK [25]. It is mainly used for deep

convolutional neural networks. Model parallelism has been used

for large-scale unsupervised learning [18]. Many distributed frame-

works, such as MXNet [6], Mariana [28], the COTS HPC system [7],

and the DistBelief software framework [9], support both data par-

allelism and model parallelism so that users can use either one. For

single-machine training, both TensorFlow and MXNet support gra-

dient accumulation on the host, but the accumulation is performed

at the end of the back-propagation computation instead of layer-

by-layer as in our CGDP training. Krizhevsky proposed a hybrid

parallelism [16], in which model parallelism is applied to layers

with a large number of learnable parameters (e.g., fully connected

layers), and data parallelism is applied to the ones with a small

number of learnable parameters (e.g., convolutional layers). This

hybrid parallelism scales better than model and data parallelism

when applied to modern convolutional neural networks. In pipeline

parallelism, each layer of a neural network is executed on a differ-

ent GPU and communicates its activations to the next GPU [23].

Pipeline optimization is used in Mariana [28]: a three-stage pipeline,

consisting of data reading, data processing, and neural network

training, is used for training. Our mechanism should also be effec-

tive for hybrid parallelism and pipeline parallelism because both

require collection and accumulation of gradients on different GPUs.

A closer approach to ours is Poseidon [26], a distributed deep

learning framework, in which there is overlap between backward

computation and communication among distributed machines. Be-

cause communication overhead is very high in a distributed en-

vironment, it is difficult to hide communication overhead behind

the backward phase. It can be done with our approach because

our target is training on a single machine coupled with multiple

GPUs. Another approach that is close to ours is one developed at

Google [19] in which a method learns to predict a set of device

placements for layers in a neural network. It is targeted at hetero-

geneous distributed environments with a mix of hardware devices

such as CPUs, and GPUs. In our CGDP training, the layers are

always computed in the GPUs, so device placement is not needed.

Another approach to accelerating deep neural network training

is to parallelize the solver algorithm, such as the SGD algorithm.

BVLC/Caffe implements the synchronous SGD algorithm so that

parameters are updated when all gradients have been collected

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

65

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

1 11 21 31 41 51 61 71 81 91

R
un

ni
ng

 ti
m

e
pe

r 1
0

ite
ra

tio
ns

(in

 se
co

nd
)

Iteration (x 10)

TypDP OrigCGDP CGDP(5,5,3) CGDP(10,5,9) CGDP(15,5,6) 1GPU

(a) step ∈ {5, 10, 15}, range = 5.

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

1 11 21 31 41 51 61 71 81 91

R
un

ni
ng

 ti
m

e
pe

r 1
0

ite
ra

tio
ns

(in

 se
co

nd
)

Iteration (x 10)

TypDP CGDP(5,5,3) CGDP(5,10,20) CGDP(5,15,3)

(b) step = 5, range ∈ {5, 10, 15}.

Figure 5: Effectiveness of parameters in runtime algorithm for ResNet-152 with minibatch size of 12 per GPU. Plotted are
CGDP values for (step, range, best_chunk), where best_chunk is the best chunk size found by the algorithm. “TypDP” refers to
the typical data parallel training. “OrigCGDP” refers to the naive CGDP training with the chunk size of 1.

from all GPUs [15]. Asynchronous SGD is a parallelized variant of

SGD in which the parameters are updated after a certain number

of gradients have been collected from a certain number of GPUs.

It is very effective in a distributed environment where different

machines run at different speeds [14, 27], but it changes the learning

accuracy, and it is sometimes difficult to exactly reproduce the result.

Therefore, the asynchronous SGD is not our target.

7 CONCLUSION AND FUTUREWORK
Deep learning is an emerging tool for signal processing and is

mainly sped up by accelerators such as GPUs. This means that pow-

erful CPUs are redundant in deep learning. Some frameworks, such

as TensorFlow and MXNet, have been utilizing CPUs for gradient

accumulation, but the objective is to make the frameworks flexible

instead of improving performance. We have shown here for the

first time to our knowledge that utilizing free CPUs on a host ac-

celerates GPU-based data parallel training of deep neural networks

on a single machine. In our CGDP training approach, CPUs collect,

accumulate, and broadcast gradients produced during the backward

phase. The key idea is that those operations can be performed in

parallel with the backward phase, resulting in a reduction in time

for each training iteration. We also presented a cost model for data

parallel training of neural networks and demonstrate its power

by using it to identify a bottleneck in training very deep neural

networks. Finally, we presented a runtime algorithm using simple

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

66

heuristics to optimize one of the deepest neural networks, ResNet-

152. Future work includes extending the CGDP training to support

recurrent neural networks, which consist of cyclic links among

layers. An additional mechanism is needed for such networks to

determine which layer gradients are kept in the GPUs for the cyclic

links, and when to send them to the host. Additionally, it is open to

investigate what kind of computation is suitable for being offloaded

onto the host.

REFERENCES
[1] 2016. IBM Power System S822LC for High Performance Computing. (Oct. 2016).

http://www-03.ibm.com/systems/power/hardware/s822lc-hpc/.

[2] 2016. Torch. (Oct. 2016). http://torch.ch/.

[3] 2017. NVIDIA NCCL. (2017). https://developer.nvidia.com/nccl.

[4] 2017. Torch. (2017). https://luna16.grand-challenge.org.

[5] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). http://tensorflow.org/ Software available from tensorflow.org.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A Flexible

and Efficient Machine Learning Library for Heterogeneous Distributed Systems.

arXiv preprint arXiv:1512.01274 (2015).
[7] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng

Andrew. 2013. Deep Learning with COTS HPC Systems. In International Confer-
ence on Machine Learning, Vol. 28. JMLR Workshop and Conference Proceedings,

1337–1345.

[8] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A

Matlab-like Environment for Machine Learning. In BigLearn, NIPS Workshop.
[9] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, MarcĄfAurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,

and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In International
Conference on Neural Information Processing Systems. 1232–1240.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/

abs/1512.03385

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep

into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

CoRR abs/1502.01852 (2015).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings
in Deep Residual Networks. Springer International Publishing, 630–645.

[14] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.

Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More Effective

DistributedML via a Stale Synchronous Parallel Parameter Server. In International
Conference on Neural Information Processing Systems. 1223–1231.

[15] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional

Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).
[16] Alex Krizhevsky. 2014. One Weird Trick for Parallelizing Convolutional Neural

Networks. arXiv preprint arXiv:1404.5997v2 (2014).
[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-

fication with Deep Convolutional Neural Networks. In International Conference
on Neural Information Processing Systems. 1097–1105.

[18] Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg

Corrado, Jeff Dean, and Andrew Ng. 2012. Building High-Level Features Us-

ing Large Scale Unsupervised Learning. In International Conference in Machine
Learning.

[19] Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio,

Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean.

2017. Device Placement Optimization with Reinforcement Learning. https:

//arxiv.org/abs/1706.04972

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,

ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision 115, 3 (2015), 211–252. https://doi.org/

10.1007/s11263-015-0816-y

[21] George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas,

Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny,

Lynn-Li Lim, Bergul Roomi, and Phil Hall. 2017. English Conversational Tele-

phone Speech Recognition by Humans and Machines. CoRR abs/1703.02136

(2017).

[22] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).
[23] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence

Learningwith Neural Networks. In International Conference on Neural Information
Processing Systems. 3104–3112.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. 2015. Going Deeper with Convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition. 1–9.

[25] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu

Zhang, Frank Seide, Zhiheng Huang, Brian Guenter, Huaming Wang, Jasha

Droppo, Geoffrey Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey,

Malcolm Slaney, Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac,

Alexey Kamenev, Vladimir Ivanov, Scott Cypher, Hari Parthasarathi, Bhaskar

Mitra, Baolin Peng, and Xuedong Huang. 2014. An Introduction to Computational
Networks and the Computational Network Toolkit. Technical Report.

[26] Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, and

Eric Xing. 2015. Poseidon: A System Architecture for Efficient GPU-based Deep

Learning on Multiple Machines. arXiv preprint arXiv:1512.06216 (2015).
[27] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-aware async-

SGD for Distributed Deep Learning. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’16). AAAI Press, 2350–2356.

[28] Yongqiang Zou, Xing Jin, Yi Li, Zhimao Guo, Eryu Wang, and Bin Xiao. 2014.

Mariana: Tencent Deep Learning Platform and Its Applications. Proceedings of
VLDB Endow. 7, 13 (Aug. 2014), 1772–1777.

High Performance Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

67

http://www-03.ibm.com/systems/power/hardware/s822lc-hpc/
http://torch.ch/
https://developer.nvidia.com/nccl
https://luna16.grand-challenge.org
http://tensorflow.org/
http://www.deeplearningbook.org
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.04972
https://arxiv.org/abs/1706.04972
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

	Abstract
	1 Introduction
	2 Data Parallelism for Deep Learning
	2.1 Training Deep Neural Networks
	2.2 Back-propagation Algorithm Used to Compute Gradients
	2.3 Typical Data Parallel Training

	3 CPU-GPU Data Parallel Training
	3.1 Algorithm
	3.2 Cost model

	4 Chunk-size optimization
	4.1 CGDP training using chunks
	4.2 Heuristic algorithm for finding chunks

	5 Experimental results
	5.1 Configurations
	5.2 Results for CGDP training
	5.3 Effectiveness of runtime algorithm

	6 Related work
	7 Conclusion and future work
	References

