
To Adapt or Not to Adapt? Technical Debt and Learning Driven
Self-Adaptation for Managing Runtime Performance

Tao Chen
Department of Computing and
Technology, Nottingham Trent

University, UK;
CERCIA, School of Computer Science,

University of Birmingham, UK
t.chen@cs.bham.ac.uk

Rami Bahsoon, Shuo Wang
CERCIA, School of Computer Science,

University of Birmingham, UK
{r.bahsoon,s.wang}@cs.bham.ac.uk

Xin Yao
Department of Computer Science and
Engineering, Southern University of
Science and Technology, China;

CERCIA, School of Computer Science,
University of Birmingham, UK

x.yao@cs.bham.ac.uk

ABSTRACT
Self-adaptive system (SAS) can adapt itself to optimize various key
performance indicators in response to the dynamics and uncertainty
in environment. In this paper, we present Debt Learning Driven
Adaptation (DLDA), an framework that dynamically determines
when and whether to adapt the SAS at runtime. DLDA leverages the
temporal adaptation debt, a notion derived from the technical debt
metaphor, to quantify the time-varying money that the SAS carries
in relation to its performance and Service Level Agreements. We
designed a temporal net debt driven labeling to label whether it is
economically healthier to adapt the SAS (or not) in a circumstance,
based on which an online machine learning classifier learns the
correlation, and then predicts whether to adapt under the future
circumstances. We conducted comprehensive experiments to eval-
uate DLDA with two different planners, using 5 online machine
learning classifiers, and in comparison to 4 state-of-the-art debt-
oblivious triggering approaches. The results reveal the effectiveness
and superiority of DLDA according to different metrics.

CCS CONCEPTS
• Software and its engineering → Software performance;

KEYWORDS
Self-adaptive systems, performance, technical debt, learning

ACM Reference Format:
Tao Chen, Rami Bahsoon, ShuoWang, and Xin Yao. 2018. To Adapt or Not to
Adapt? Technical Debt and Learning Driven Self-Adaptation for Managing
Runtime Performance. In ICPE ’18: ACM/SPEC International Conference on
Performance Engineering, April 9–13, 2018, Berlin, Germany. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3184407.3184413

1 INTRODUCTION
Self-adaptive system (SAS) is capable of planning and adapting
itself at runtime, through a set of known control features (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184413

thread pool size and cache size, etc), to continually optimize for
different key performance indicators, e.g., response time and en-
ergy consumption, under changing environment such as dynamic
workload [16] [31]. SAS often operate under formally negotiated
legal binding [33][18], e.g., Service Level Agreements (SLA) [3],
especially in paradigms such as services and cloud computing. This
binding allows us to translate the performance of SAS into a more
intuitive monetary way, e.g., instead of saying the SAS’s response
time is 2s in average, we are able to state the SAS creates a total
of $54 profit (or debt) for the owner. The real money that the SAS
carries (either as profit or debt) determines its economic health.

While majority of SAS research has focused on the runtime
planning phase of the SAS that determines what and how to adapt
(e.g., rule-based [7], search-based [11][29][12] or control theoretic
planners [32]), there is little research that explicitly tackles the
challenge of when and whether to adapt the SAS, i.e., how to design
the trigger [31]. We argue that deciding on when adaptation should
be triggered is also non-trivial [31], because the effectiveness of
the diverse planners can vary with the changing circumstances,
i.e., SAS’s status and environment conditions. Even if we assume
perfect planning, it still comes with cost, e.g., planning delay and
extra resource/energy consumptions, etc. The key problem, which
we address in this paper, is how to make a binary decision at each
point in time: whether to adapt the SAS, considering dynamic and
uncertain monetary cost-benefit of adapting the SAS or not.

Existing work on SAS falls into one of the two categories when
dealing with the trigger: either adapt periodically [29][21] or adapt
upon some observed or predicted events1 (e.g., violation of require-
ment thresholds) at certain level of significance [18][13][36]. Adapt-
ing periodically is grounded on the principle that we constantly
adapt the SAS with the best possible adaptation solution, regardless
whether the SAS breaks (e.g., violate performance requirements). How-
ever, the problem with this method is obvious: since the adaptation
may not significantly improve the performance under all circum-
stances, adapting when it is better not to adapt would generate
unnecessary pressure, resulting additional costs and/or even degra-
dation in performance, especially when the problem is difficult to
solve, e.g., under heavy workload. Conversely, not adapting when it
is needed would reduce the ability of the SAS to react to the chang-
ing environment. In contrast, adaptation upon the events relies on
the principle that if the SAS works (e.g., no requirements violation),
do not change it; otherwise trigger adaptation. Yet, adaptation upon
1The occurrence of event is indicated by the observation (or prediction) of the case
when some fixed thresholds are hit.

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

48

https://doi.org/10.1145/3184407.3184413
https://doi.org/10.1145/3184407.3184413

Table 1: The elements of technical debt and net debt in the context of software development and SAS

Software Development (asset is the software) Running SAS (asset is the SAS itself)
If to improve software If not to improve software If to adapt SAS If not to adapt SAS

N
et
D
eb
t

Te
ch
ni
ca
lD

eb
t

Principal The case dependent cost for changing
the software, e.g., extra money paid
to employee for extra person/month.

N/A The case dependent cost of adapta-
tion, e.g., the rate per unit in SLA ×
the delay and extra resource/energy
consumption of planning, etc.

N/A

Interest Cost, e.g., money paid for work,
penalty of bad software quality, etc, in-
curred by old/new defects in the soft-
ware as a result of wrongly spent ef-
forts, flawed planning and bad code,
etc.

Cost, e.g., penalty of bad software
quality, etc, due to defects in the
software.

Penalty (e.g., rate per unit from SLA
× the units of violation) due to in-
effective, flawed, sub-optimal or de-
layed planning and adaptation, etc,
or too difficult environment, e.g.,
heavy and spiked workload.

Penalty (e.g., rate per unit from
SLA × the units of violation) due
to inability to react to the chang-
ing environment.

Revenue Bonus, e.g., more users are paying for
the software, from the improved soft-
ware as a result of wisely spent efforts,
optimized code, etc.

Bonus, e.g., more users are pay-
ing for the software, from the
software as a result of quick re-
lease, the expectation is met or ex-
ceeded, e.g., no defects reported.

Reward (e.g., reward per unit from
SLA × the units above expectation)
as a result of effective/optimized
planning and adaptation.

Reward (e.g., reward per unit
from SLA × the units above ex-
pectation) for performing as ex-
pected or better than require-
ments without adaptation.

the events may still cause extra pressure on the software system,
providing little reward and/or worsening the performance, becuase
the dynamic and uncertain cost-benefit of planning, in terms of
real money, was not modelled explicitly.

In this paper, we propose the Debt Learning Driven Adaptation
(DLDA), an automated framework that combines technical debt [15]
and online learning [30] to determine when and whether to adapt a
running SAS. The principle of DLDA is that we adapt the SAS, if and
only if, it can make the SAS economically healthier (less debt) than
that of not adapting it. Particularly, our contributions include: (i)
We propose the temporal adaptation debt to quantify the net debt
of SAS, which expresses the extent to which the SAS can repay
its debt, if any, and create net profit from its decision (adapt or
not). (ii) The labeling data is then used to train a binary and online
classifier, which continuously classifies a re-emergent or unforeseen
circumstances into the class label (i.e., to adapt or not) that can bring
less debt, then inform the planner of SAS. (iii) DLDA is independent
to the online learning classifier and planner for adaptation, in which
DLDA also learns the effectiveness of a planner.

We evaluated DLDA on a complex SAS which contains the RU-
BiS [35] and a stack of software, under the FIFA98 trace [6] with
different conditions, and in comparison to existing approaches. The
results confirm the effectiveness and superiority of DLDA.

This paper is structured as follows. A high level mapping of
technical debt analogy in SAS is presented in Section 2. Section 3
provides an overview of DLDA. The temporal adaptation debt and
the related labeling are discussed in Section 4. Section 5 presents
the combination of labeling and classification process. In Section 6,
DLDA is extensively evaluated using a real-world SAS. Sections 7
and 8 discuss related work and conclude the paper, respectively.

2 THE TECHNICAL DEBT ANALOGY IN SAS
Technical debt for software engineering was coined by Cunning-
ham [15], to help deciding whether to improve the software con-
sidering the costs and benefits of improvement versus that of not
improving it. Like financial debt in the economic context, technical
debt and its net value are associated with three elements:
• Principal: an one-off investment to an asset, e.g., a software.
• Interest: the extra cost of the asset accumulated over time.
• Revenue: the benefit of the asset accumulated over time.
While technical debt equals to Principal + Interest , its net value
(net debt) is calculated as Principal + Interest −Revenue . Note that

the net debt can be smaller than zero, i.e., it represents net profit.
Those concepts in software development bear many similarities
with the problem of when and whether to adapt in SAS, but with
different meanings of asset, principal, interest and revenue. A high
level mapping of the analogy to the contexts is shown in Table 1.
In both contexts, the aim is to minimize the net debt.

Generally in the software development, the debt is calculated
based on real money, e.g., the salary for employing engineers to do
extra work and the monetary loss/profit generated by the software.
In SAS context, the debt is viewed from the monetary terms of
SAS and their interplay with the runtime performance. This can be
achieved by extracting the monetary rate per unit from SLA, which
is a formal legal binding negotiated between the software company
and the end users before the SAS is deployed [33][18]. For example,
suppose the SLA states that the rate for the cost of adaptation
is $0.345 per CPU second and an adaptation utilized 2s, then the
principal would be $0.69. Similarly, the SLA may contain a penalty
rate of mean response time violation as $0.043/s for a requirement
of 2s, and if there is a mean response time of 2.5s for a period, then
the penalty for it would be (2.5 − 2) × 0.043 = $0.0215. All those
results can be combined to form the net debt, which represents the
real money related to the SAS. The SLA negotiation can be achieved
using many well-established methods form the literature [37][3],
thus in this work, we assume that the SLA and its performance
related elements have been instrumented before using DLDA.
<wsag:GuaranteeTerm Name="ResponseTime">
<wsag:ServiceScope ServiceName="SAS"/>
<wsag:QualifyingCondition>

{"function" : "AVG EVERY 120s"}
</wsag:QualifyingCondition>
<wsag:ServiceLevelObjective>

<wsag:KPITarget>
<wsag:KPIName>MeanTime</wsag:KPIName>
<wsag:CustomServiceLevel>

{"constraint" : "MeanTime LESS THAN 0.05s"}
</wsag:CustomServiceLevel>

</wsag:KPITarget>
</wsag:ServiceLevelObjective>
<wsag:BusinessValueList>

<wsag:Penalty>
<wsag:AssessmentInterval>

<wsag:TimeInterval>120s</wsag:TimeInterval>
</wsag:AssessmentInterval>
<wsag:ValueUnit>USD_PER_SECOND</wsag:ValueUnit>
<wsag:ValueExpression>3.5</wsag:ValueExpression>

</wsag:Penalty>
<wsag:Reward>
<wsag:AssessmentInterval>

<wsag:TimeInterval>120s</wsag:TimeInterval>
</wsag:AssessmentInterval>
<wsag:ValueUnit>USD_PER_SECOND</wsag:ValueUnit>
<wsag:ValueExpression>3.5</wsag:ValueExpression>

</wsag:Reward>
</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

<wsag:GuaranteeTerm
Name="PlanningCPUTime">

<wsag:ServiceScope
ServiceName="SAS-Engine"/>

<wsag:ServiceLevelObjective>
<wsag:KPITarget>

<wsag:KPIName>
CPUTime

</wsag:KPIName>
<wsag:CustomServiceLevel>

{"constraint" :
"CPUTime LESS THAN 0s"}

</wsag:CustomServiceLevel>
</wsag:KPITarget>

</wsag:ServiceLevelObjective>
<wsag:BusinessValueList>

<wsag:Penalty>
<wsag:AssessmentInterval>

<wsag:Count>1</wsag:Count>
</wsag:AssessmentInterval>
<wsag:ValueUnit>

USD_PER_SECOND
</wsag:ValueUnit>
<wsag:ValueExpression>

0.01
</wsag:ValueExpression>

</wsag:Penalty>
</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

Figure 1: Example SLA fragment of a SAS
An example fragment of the possible SLA for SAS, derived from

the well-known WS-Agreement [3], is shown in Figure 1.

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

49

Sensor Actuator

Adaptation Engine

Planner

Debt Driven
Labeler

Classifier

DLDA

Adaptable Software (stack)

R(t-1)

v(t)

v(t)

v(t-1)

If adapt

plan

action

If not adapt,
do nothingv(t)

Environment,
e.g., dynamic
and uncertain
workload.

Optimize, e.g,
response time

and energy
consumption

Figure 2: Overview of the DLDA framework on SAS.

3 DLDA OVERVIEW
As in Figure 2, a SAS generally has a feedback loop, with an adapt-
able software (e.g., a stack) that being managed at runtime, and an
engine that controls the adaptation. DLDA runs in the adaptation
engine and it has two components: Debt Driven Labeler and Classi-
fier. While DLDA works within any feedback controller, it could be
best placed in the Analysis phase of the MAPE-K loop [16].

The Debt Driven Labeler firstly analyzes the net debt for the past
interval using the data vector from the most recent time points, i.e.,
v(t) and v(t − 1), and the predefined SLA terms, it then produces a
result, R (t − 1), labeling whether ‘to adapt ’or ‘not to adapt ’under
the circumstance at time t-1 can lead to less net debt (see Section 4).

In Classifier, the class label from theDebt Driven Labeler, together
with the past status of SAS and the environmental factors in a vector
(v(t − 1), i.e., the circumstance), are used to train an online learning
classifier (see Section 5). The decision of whether to adapt or not
under the circumstance at the current point in time is then predicted
by the updated classifier using the current vector of information,
i.e., v(t). As such, DLDA can be used as an independent filter before
any planner, which decides what and how to adapt [12][29].

4 TEMPORAL ADAPTATION DEBT MODEL
We propose the temporal adaptation debt to quantify the net debt
for triggering the SAS at runtime. Like technical debt, adaptation
debt equals to Principal + Interest , and its net debt is Principal +
Interest − Revenue , i.e., how much money a SAS earns or costs.

Since the problem of when and whether to adapt SAS is a decision
to be made at every point in time that could exhibit different circum-
stances (i.e., SAS status and environment), at the low level, temporal
adaptation debt models the newly incurred net debt, including its
one-off principal, accumulated interests and revenue over a time
interval. This net debt expresses how the SAS performs, in terms
of monetary value ($), over that time interval. The idea is that, if
DLDA can predict whether adapt (or not) at each point in time can
lead to less net debt, and react accordingly, then globally the net
debt related to the SAS can be minimized. To this end, considering
temporal notion is important as our purpose is to correlate the past
circumstance of a given point in time to the class label (adapt or
not) that can lead to less net debt, which in turn, will serve as a
data sample to guide the learning classifier.

In the following, we transpose the high level notions from Table 1
into the low level, particularly in regards to the temporal notion.

4.1 Temporal Principal
At the low level, we use the temporal principal to describe the
temporally invested cost of planning andadaptation at aunit

of time. Intuitively, to influence the SAS for the interval between
time t-1 and t, the principal of adaptation invested at time t-1 is:

Principal (t − 1) = Cunit ×U (t − 1) (1)

where U (t − 1) is the utilized units of certain adaptation effort
(given by the engineers) measured at runtime, e.g., the delay of
planning, the extra resource/energy consumption for planning, etc;
and Cunit is the monetary rate per unit extracted from the SLA.

4.2 Subtracting Temporal Interest and Revenue
At the low level, the subtraction of temporal interest and revenue
observed at time t is the subtraction of accumulated interest and
revenue between t-1 and t, representing the temporal result of two
mutually exclusive cases: (i) the SAS did adapted at t-1; or (ii)
the SAS did not adapt at t-1. Formally, the subtraction is:

S (t) = Interest (t) − Revenue (t) =
n∑
i=1

(∆Qi ×Mi) (2)

∆Qi =

Qi (t , t − 1) − Ti if minimize Qi

Ti − Qi (t , t − 1) if maximize Qi

whereby Qi (t , t − 1) is the given accumulated function, from the
SLA, that returns the performance of the ith performance indi-
cator that accumulated over the time interval between t-1 and t,
e.g., mean, total, maximum or definite integral function, etc. Such
functions monitor the actual performance of SAS at runtime. Ti
is the corresponding requirement constraint for the accumulated
performance over a time interval from the SLA and n is the total
number of indicators.Mi is the given monetary penalty (if violating
requirement) or reward (if outperforming requirement) per unit
for the related indicator over a time interval in the SLA . We as-
sume that the reward and penalty share the same unit rate, but the
formula can be easily changed to handle different rates. Note that
we do not need to distinguish the interest and revenue, as what
we care is the subtraction of their accumulated results, which is
collectively reflected by the accumulated SAS performance.

4.3 Temporal Net Debt Driven Labeling
Suppose now we are at time t, the labeling process labels whether
the SAS should adapt or not for the past circumstance at time t-1
by comparing the net debt associated with “to adapt” and “not to
adapt”. Beside the formal discussion below, an intuitive illustration
of the different cases in the labeling process is shown in Figure 3.

1) True Class: the temporal net debt for the class of ‘the SAS
should adapt under the circumstance at t-1’ , Dadapt (t − 1), is:

Dadapt (t − 1) =

Principal (t − 1) + S (t) if adapted at t-1
0 otherwise

(3)

Now, in practice, there are two further cases to consider:

t-1

t-1 t

t

 Adapted
at t-1

Principal(t-1)
and S(t-1)

Did not
adapted at t-1

A
d

ap
t

a
t

t-
1

Dadapt(t-1) Dnot_adapt(t-1)

D
id

 n
o

t
a

d
a

p
t

a
t

t-
1

Principal(t-1)
+ S(t)

S(t-1)

S(t) 0

t-2

t-2

S(t)

S(t)

If Dadapt(t-1) <
Dnot_adapt(t-1),
label ' to adapt'
for circumstance
at t-1

Otherwise, label
'not to adapt' for
circumstance
at t-1

Circumstance at t-1

Figure 3: Different cases in the labeling process (now at t).

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

50

—(i) the SAS did adapted at t-1. If there was indeed an adap-
tation at time t-1, Dadapt (t − 1) can be computed directly because
the related S (t), which represents the subtraction of accumulated
interest and revenue between t-1 and t caused by the adaptation
made at t-1, is observable. In this case, adding the S (t) immediately
after adaptation to the invested principal is revealing, because adap-
tation may not lead to positive effects under some circumstances.
If S (t) < 0, then Dadapt (t − 1) would be rewarded for the positive
effects of adaptation on the performance of the SAS over the time
interval. Conversely, if S (t) > 0, then Dadapt (t − 1) would be pe-
nalized as the adaptation causes marginal change or degradation
on the SAS’s performance over the interval.

—(ii) the SAS did not adapted at t-1. If there was no adaptation
at time t-1, Dadapt (t − 1) becomes incomputable as we cannot
observe the S (t) resulted from adaptation. Thus, we set Dadapt (t −
1) = 0 since it is difficult to reason about the S (t) related to an
adaptation that has not been triggered.

2) False Class: the temporal net debt for the class ‘the SAS should
not adapt under the circumstance at t-1’, Dnot_adapt (t − 1), is:

Dnot_adapt (t − 1) =

S (t − 1) if adapted at t-1
S (t) otherwise

(4)

Again, in practice, there are two further cases to consider:
—(i) the SAS did adapted at t-1. On contrary to Dadapt (t − 1),

Dnot_adapt (t−1) is only computable when there was no adaptation
at time t-1 as this is the only case that the related S (t), which
represents the subtraction of accumulated interest and revenue
between t-1 and t as a result of not adapting at t-1, is observable.
if there was indeed an adaptation at time t-1, we assume that the
accumulated performance of the indicators between t-1 and t is
similar to that between t-2 and t-1, as a result of not adapting the
SAS at t-1; in other words, we assume Dnot_adapt (t − 1) = S (t − 1).
This assumption is reasonable because the sampling interval of SAS
can be tuned, as what we have done in this work, such that the
local environment changes for two adjacent intervals are similar.

—(ii) the SASdidnot adapted at t-1. In this case,Dnot_adapt (t−
1) can be computed via S (t) directly.

When the Dnot_adapt (t − 1) (or Dadapt (t − 1)) is smaller than
zero, it means that the SAS did not adapt (or the SAS adapted) at
t-1 creates net profit over the time interval.

Finally, we produce a class label R (t − 1), indicating whether it
was economically healthier to adapt (or not to adapt) the SAS under
the past circumstance at time t-1:

R (t − 1) =

true, (to adapt) if Dadapt (t − 1) < Dnot_adapt (t − 1)
false, (not to adapt) otherwise

(5)

Overall, the adaptation debt model is able to quantify the tempo-
ral debt increment related to the decision of “to adapt” or “not”, and
can help to label which decision tends to have less debt on a past
circumstance. Net debt is the most intuitive and important criteria
for the practitioners of SAS, as it shows how much money the SAS
earns or costs. Further, it fully exploits the domain knowledge em-
bedded in the SLA and it is highly interpretable; this is the benefit of
analytical model over other black-box ones, e.g., regression model,
which ignore existing knowledge and is hard to understand.

5 DEBT AWARE LEARNING AND
PREDICTION TO TRIGGER ADAPTATION

Next, to predict whether we should adapt the SAS at the current
and possibly unforeseen circumstance, we feed the information of
past circumstances, i.e., SAS’s status and environment (as features),
together with their class labels from the Debt Driven Labeler, into
an classifier (in Classifier) for learning the correlation between
the circumstance and the class (to adapt or not) that leads to less
net debt. As such, given the current unforeseen circumstance, the
classifier decides whether to adapt in favor of less net debt.

5.1 Features of Circumstance As Training Data
Features represent the characteristics of a circumstance. Note that
these features should not be confused with the functionality of
software; they are quantifiable properties of the SAS in machine
learning. Here, we have used the status of SAS (i.e., control features
and requirement features) and environmental features as training
data to describe the circumstance when training the classifier:

Control Features: This refers to different control knobs that
can be adjusted to affect the SAS, e.g, number of threads.

Environmental Features: This refers to the uncontrollable yet
important stimuli that cause dynamics and uncertainties. Examples
include the workload, order of requests, size of incoming jobs, etc.

Requirement Features: This calculates the extents to which a
requirement is violated or its satisfaction is outperformed for each
performance indicator i.e., −∆Qi in Eq. (2).

5.2 Online Machine Learning Classifiers
In DLDA, we train the classifiers following standard online learning
paradigm [26]: instead of completely retraining a classifier when
a new sample becomes available, we update the existing classifier
with the new sample, after which the sample is discarded. Online
learning is particularly fit for SAS: it eliminates the need to store
data samples and significantly shortens training time without much
degradation on accuracy [30]. In this work, we perform updates
for every new sample, i.e., only one sample to learn each time. It is
worth noting that Eq. (2) has aggregated all performance indicators
into a single formula, thereby the classification is only concerned
with a binary decision based on that formula, which is scalable
and SAS agnostic. This design, together with the fact that only one
sample to learn for the classifier, has providedwide applicability and
great efficiency for the classifier to make decision at SAS runtime.

As for initial training, the classifier can be trained at design time
using any readily available data, or it can be directly constructed at
runtime. In both cases, it will gradually improve its accuracy using
the most up-to-date data. This follows the standard online learning
approach [30]. Specifically, since DLDA works with a wide range of
classifiers, in this work, we have combined our temporal net debt
driven labeling and 5 widely used classifiers from the literature
with setups tailored to our subject SAS (see Table 2).

Table 2: The studied online learning classifiers

Classifier Setting
Hoeffding Tree (HT) [17] N/A
Naive Bayes (NB) [24] N/A

Stochastic Gradient Descent (SGD) [9] N/A
k -Nearest Neighbors (kNN) [1] k = 3

Multi-Layer Perceptron (MLP) [23] Sigmoid function and 3 layers

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

51

Table 3: The inputs and SLA terms for the subject SAS

Input Setting Description
Control features N/A 10 control knobs, e.g.,maxThread and Memory etc.
Environmental features N/A The workload (number of requests) for each of the 26 services in RUBiS (i.e., 26 environmental features) under the FIFA98 trace [6].
Performance indicators and
functions in Eq. (2)

N/A Functions and sensors that return accumulated mean response time and energy consumption between time t and t-1. The response
time is the time between a request and the response [11] while energy consumption is measured by PowerAPI [10].

Adaptation effort N/A The measured utilized CPU time of planning. This can be replaced by other types of effort, e.g., energy used by planning, etc.
Cunit in Eq. (1), from the SLA $0.01 Monetary rate per second of the CPU time utilized by planning.
T1 in Eq. (2), from the SLA 0.05s Requirement of mean response time of an interval.
M1 in Eq. (2), from the SLA $3.5 Monetary rate of penalty/reward per second differences between mean response time and T1 .
T2 in Eq. (2), from the SLA 5watt Requirement of mean energy consumption of an interval.
M2 in Eq. (2), from the SLA $0.5 Monetary rate of penalty/reward per watt differences between mean energy consumption and T2 .

5.3 Training and Prediction Procedure
As shown in Figure 4, at time t, once the temporal net debt driven
labeling is completed (step 1-2), we use the vector of features mea-
sured at time t-1, e.g., F(t − 1) = ⟨Workload_o f _search = 19 req/s,
cacheMode = o f f , ...⟩, as inputs and the class label R (t − 1) (via
(5) from the Debt Driven Labeler) as output to update the classifier
(step 3-4). Therefore, the class label is reasoned and corrected by
the labeling process in favor of less debt. While a deep discussion
of training classifiers online is beyond the scope of this paper, in-
terested readers can refer to [26][30] for details. Next, the vector of
features at the current time t, e.g., F(t) = ⟨Workload_o f _search =
54 req/s, cacheMode = o f f , ...⟩, are entered into the classifier for
prediction—the classifier outputs a decision as to adapt or not (step
5-6). Following online learning paradigm, it is easy to see that the
classifier predicts once it is updated by the new data. The classifier
is reinforced and thus it can be continually consolidated.

6 EXPERIMENTAL EVALUATION
We run comprehensive experiments to evaluate DLDA variants with
all classifiers (or simply called DLDA) and to compare them with
state-of-the-art triggering approaches under different metrics.2

1) Experiments Settings and Verifiability: The subject SAS has
a complex software stack that contains RUBiS [35], which is a
well-known software benchmark for SAS, and a set of real-world
software including Tomcat [19], MySQL [14] and Ehcache [20] run-
ning on an adaptable guest virtual machine. To emulate a realistic
workload within the capacity of our testbed, we vary the number
of clients according to the compressed FIFA98 workload [6] (from
June to July), which can dynamically generate up to 600 parallel
read-write requests. The SAS provides 10 important control fea-
tures that influence its performance3, which are complex since the
2All code and data can be accessed at GitHub: https://github.com/taochen/ssase
3The control features are, e.g.,maxThread ,Memory , etc. A complete specification
can be found at https://github.com/taochen/ssase/blob/master/misc/DLDA-SAS.pdf

Sensor
Debt Driven

Labeler
Classifier

Inputs: F(t-1)

Label: R(t-1) via (5)

F(t) feature values at t for prediction

Adapt at t

v(t)

A
da

pt
ab

le
 S

of
tw

ar
e

1

2 3

5

6

Planning

Do
nothing

Not adapt at t

4v(t)

<Workload_of_search=78 req/s;
cacheMode=off; maxThread=97; ...>

True (“to adapt”): Dadapt(t-1)
=$3.1 < Dnot_adapt(t-1)=$7.2

<Workload_of_search=18 req/s;
cacheMode=Zipped; maxThread=53; ...>

False (“not to adapt”): Dadapt(t-1)
=$1.5 > Dnot_adapt(t-1)= -$0.56

F(1)

F(t-1)

R(1)

R(t-1)

Class LabelFeatures of Circumstances

Example of Past Training Data Samples

Given the current features of circumstances at t, F(t), as <workload_of_search=103 req/s;
cacheMode=off; maxThread=81; …>, what is the decision (class) now?

...

Figure 4: Combining labeling and online classification.

variability of SAS is around 1.3 × 1016 alternatives. The SAS would
adapt those control features, as the workload changes, to optimize
for its response time and energy consumption.

To separate the adaptation engine and the adaptable software,
we used Xen [27] to create a virtualized environment on a dedicated
server. We have implemented DLDA using Java, and it is deployed
on the Dom0 of Xen. The SLA terms of experiments are given in
Table 3, which are fair settings tailored to fit with the subject SAS.
In Section 6.4, we will discuss the critical parameters of DLDA.

To evaluate the generality of DLDA, we use it with two planners
from the literature: one is theMulti-Objective Optimizer (MOO) that
exploits pareto-dominance based, keen-point driven optimization to
SAS at runtime [12][28][11]; the other relies on an equally weighted
Single Objective Optimizer (SOO), in which we use equal weights
to aggregate all objectives [29][21]. The objective functions are
created using ensemble learning [11]. These planners are chosen
as they are widely-adopted and capable to make effective, black-
box planning under highly-variable SAS as the one we consider.
Under each planner, we run DLDA with each of the 5 classifiers
mentioned in Section 5 using their implementations in WEKA [22]
and MOA [8]; we have used default settings unless otherwise stated.
For all experiments, the sampling interval of the SAS is 120s for a
total of 102 time points, which leads to around 5 system running
hours per experiment run including end-users’ thinking time.

2) Triggering Approaches in SAS:We compare DLDA with the fol-
lowing state-of-the-arts and debt-oblivious triggering approaches:

—Event-driven (Event).This is a typical category of approaches
(e.g., in [18][4][7]) where adaptation is triggered upon certain event.
In this work, we have used the SLA requirement violation as the
event, which is the most commonly used setup (as in Table 3).

—Prediction-based (Pred). This category represents the work,
e.g., in [5][36][2], that predicts the occurrence of an event, i.e.,
violation of performance requirement. The prediction results is then
further analyzed by statistical inference; thus only the significant,
reliable and persistent violations would trigger adaptation.

—High-frequency (Hiдh-f). This category represents the work
(e.g., in [29][21]) that adapts the SAS based on high frequency, i.e.,
it triggers adaptation at every time point.

—Low-frequency (Low-f). This is similar to Hiдh-f but with
low frequency, i.e., one adaptation every 10 time point.

—Ground Truth (GT). To determine whether it is indeed better
to adapt (or not) at every time point under each planner, for each
time point, we manually collected the decision (adapt or not) that
leads to the smaller net debt by the end of the interval. Finally, the
results of all those data points and their decisions together serve as
an approximate ground truth in our evaluation.

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

52

0 1 2
2

3

4

5

Mean Response Time (s)

M
ea
n
En

er
gy

Co
ns
um

pt
io
n
(w

at
t)

Event
Pred
High-f
Low-f
GT

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(a) MOO Planner

0 2 4 6
2

4

6

Mean Response Time (s)

M
ea
n
En

er
gy

Co
ns
um

pt
io
n
(w

at
t)

Event
Pred
High-f
Low-f
GT

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(b) SOO Planner

MOO SOO

10

20

30

Co
st
s o

fA
da
pt
at
io
ns

($
) Event

Pred
High-f
Low-f
GT

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(c) Total Costs of Adaptations

Figure 5: Comparing the overall performance and total costs of adaptations betweenDLDAandother state-of-the-art triggering
approaches using MOO and SOO in the planning over 102 timesteps.

3) Metrics: The metrics we considered in the experiments are:
—Accuracy. The accuracy of the labels produced by labeling

and the prediction against the actual classes from ground truth. In
online learning, accuracy is often calculated as c/n: c is the number
of correctly labeled/classified sample when there are n samples.

—Performance. The measured mean value of each performance
indicator over time. While DLDA works with any quantifiable in-
dicators, we used response time and energy consumption as the
performance indicators for simplicity of exposition.

—Total costs of adaptations. This is the total principal in order
to achieve the measured performance level of SAS. Recall from
Section 4, the total cost is calculated as

∑n
t=2 Principal (t − 1) =∑n

t=2Cunit ×U (t − 1). The more adaptations, the higher total cost.
—Total net debt. We report on the total net debt incurred

throughout the experiment run, in which the temporal net debt
between t-1 and t is calculated as Principal (t − 1) + S (t) where
Principal (t − 1) = 0 if no adaptation at t-1; the total net debt is
simply

∑n
t=2 Principal (t − 1) + S (t), as explained in Section 4.

—SLA compliance. The average values of performance of each
indicator exceeding its SLA threshold over all intervals.

—Overshoot. The worst value of a performance indicator ex-
ceeding the SLA threshold during the transient.

—Overhead. The average training and prediction time of DLDA.

6.1 Accuracy
To evaluate accuracy, we compare the results of the labels produced
by temporal net debt driven labeling and the predictions of classi-
fiers against the actual classes in ground truth (see Section 6). As
from Table 4, in general, both the labeling and prediction processes
in DLDA exhibit high accuracy under both MOO and SOO planners.
The results, range from 75% to 90%, clearly beat a random guess,
which is likely to produce an accuracy around 50% for binary clas-
sification. Notably, DLDA-NB exhibits the best accuracy for both
prediction and the labeling process that guides the learning.

We will examine, in contrast to the other triggering approaches,
if the good accuracy can help DLDA to improve self-adaptation.

Table 4: The accuracy of DLDA with different classifiers
against the ground truth over 102 timesteps (best is in bold)

HT NB SGD kNN MLP
(MOO) Labeling 83% 88% 86% 87% 83%
(MOO) Prediction 89% 89% 81% 79% 77%
(SOO) Labeling 84% 90% 87% 80% 82%
(SOO) Prediction 81% 88% 84% 75% 88%

6.2 Performance and Adaptation Costs
We now report on the mean performance values of all approaches
over all time points, together with the total costs of adaptation. To
validate statistical significance of the performance comparisons, we
applied Wilcoxon Signed-Rank test (two-tailed) when comparing
DLDA variants with the others. The results have confirmed statis-
tical significance (p < 0.05) on at least one performance indicator
with non-trivial effect sizes following the guidance in [25] .

As we can see from Figure 5a and 5b, under both planners, DLDA
of all classifiers dominates Event , Pred , Hiдh-f and Low-f on both
performance indicators. The only exception is that DLDA-NB tends
to have slightly higher energy consumption than Pred when using
MOO planner, which we have found to be statistically insignificant.
As for the total costs of adaptations in Figure 5c, we note that DLDA
with all classifiers and both planners achieve the superior perfor-
mance by using remarkably smaller costs of adaptations, as when
compared with Event , Pred and Hiдh-f . DLDA’s costs however, as
expected, is higher than that of Low-f . When comparing DLDA
with the ground truth (GT) under both planners, there is still room
for DLDA to improve on both performance indicators, but it is
clearly closer to the performance of ground truth than the state-of-
the-art triggering approaches. Further, its costs of adaptations (on
all classifiers and planners) is similar to that of GT . These results
also reveal that our temporal debt model is effective in guiding
the classifiers, as DLDA significantly outperforms the others on
performance and adaptation costs regardless the classifier used.

When comparing the DLDA variants on both planners from
Figure 5, although DLDA-NB has higher energy consumption on
the MOO planner, it generally has the best performance overall
with relatively lower costs of adaptations, which can be attributed
to the facts that it has the best prediction accuracy and the labeling
process generates the most accurate labels to guide the classifier.
However, the differences between DLDA variants are marginal.

6.3 Net Debt, SLA Compliance, Overshoot and
Overhead

Next, we compare DLDA with the others on the total net debts, SLA
compliance and overshoot. We have also illustrate the overhead of
DLDA under different classifiers. The comparisons between DLDA
and others under all metrics have been validated using Wilcoxon
Signed-Rank test (two-tailed); the results have revealed statistical
significance (p < 0.05) with non-trivial effect sizes.

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

53

MOO Planner
−200

0

200

400

600

800

T o
ta
lN

et
D
eb
t(
$)

Event
Pred
High-f
Low-f
GT

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(a) MOO Total Net Debt

SOO Planner

0

500

1,000

1,500

2,000

2,500

T o
ta
lN

et
D
eb
t(
$)

Event
Pred
High-f
Low-f
GT

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(b) SOO Total Net Debt

MOO SOO
0

2

4

6

Re
sp
on

se
Ti
m
e
Co

m
pl
ia
nc
e
(s
)

Event
Pred
High-f
Low-f

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(c) Response Time SLA

MOO SOO

1

2

3

4

5

En
er
gy

Co
ns
um

pt
io
n
Co

m
pl
ia
nc
e
(w

at
t)

Event
Pred
High-f
Low-f

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(d) Energy SLA

MOO SOO

0

50

100

150

200

Re
sp
on

se
Ti
m
e
O
ve
rs
ho

ot
(s
)

Event
Pred
High-f
Low-f

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(e) Response TimeOvershoot

MOO SOO

14

16

18

20

22

24
En

er
gy

Co
ns
um

pt
io
n
O
ve
rs
ho

ot
(w

at
t) Event Pred

High-f Low-f
DLDA-HT DLDA-NB
DLDA-SGD DLDA-kNN
DLDA-MLP

(f) Energy Overshoot

Training

0

20

40

60

T r
ai
ni
ng

Ti
m
e
(m

s)

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(g) Training Overhead

Prediction
0.1

0.2

0.3

0.4

0.5

Pr
ed
ic
tio

n
Ti
m
e
(m

s)

DLDA-HT
DLDA-NB
DLDA-SGD
DLDA-kNN
DLDA-MLP

(h) Prediction Overhead

Figure 6: Comparing total net debt, SLA compliance, overshoot and overhead over 102 timesteps.
Figures 6a and 6b show the total net debt of the approaches.

We can see that, under both planners, DLDA with different classi-
fier produces much less net debts than that of the state-of-the-art
triggering approaches, and remarkably, up to three orders of magni-
tude less under the SOO planner. In particular, the total net debt of
DLDA-NB and DLDA-MLP are smaller than zero under SOO plan-
ner, which means that they have created some net profit overall.

As shown in Figures 6c and 6d , under both planners, DLDA vari-
ants generally outperform state-of-the-art triggering approaches
on the SLA compliance for both performance indicators. In partic-
ular, when comparing with the others, DLDA’s improvements for
the SLA compliance on response time is much greater than that
of the energy consumption (DLDA-HT and DLDA-MLP is even
worse than Pred). This is because the two performance indicators
are conflicting, and DLDA has learned that favoring response time
more would help to better reduce the total net debt, as evident in
Figures 6a and 6b. Similarly, in Figures 6e and 6f, the overshoot of
response time in DLDA is much smaller than that of the others.
However, in general, its superiority on the overshoot of energy
consumption is less obvious due to the same reason stated above.

The temporal net debt driven labeling in DLDA has negligible
running time of less than 0.1ms and thus we focus on the training
and prediction time required for the classification. As we can see
in Figures 6g and 6h, most of the DLDA variants are very efficient
in training, generating an overhead less than 3ms only. The only
exception is DLDA-MLP, which requires 60ms, as the complex
MLP needs more computation to converge to a good training error.
In general, the high efficiency is enabled by the online learning
paradigm where the data samples are learned one by one as they
become available, thus the overhead is not sensitive to the size of
training samples. As for prediction, DLDA has negligible overhead.

6.4 Discussion on the DLDA Parameters
As shown, DLDA can be affected by the settings of the requirement
thresholds and rates per unit in the SLA. In this work, the settings
in Table 3 are tuned w.r.t. to our testbed to create reasonable and
fair comparisons. In particular, as in most of the practical scenarios,

the requirement thresholds were reasonably tailored according to
the SAS studied, i.e., they are neither too strong nor too relax. In
contrast, the rates per unit on planning, reward and penalty in
DLDA are more subjective, as they can be in any scales depending
on the business purpose. Given an effective planner, those rates
can influence the trade-off between adaptivity and stability of the
SAS, i.e., increase the penalty rate implies more intensive adaptivity
while increase the planning rate and/or reward rate favor stability.

In general, as mentioned in Section 2, these parameters can
be tailored using many well-established methods form the litera-
ture [37][3] during the normal SLA negotiation process.

7 RELATEDWORK
Existing work often fall into one of the two categories on designing
trigger of SAS: either adapt periodically or adapt upon the events
(e.g., violation of requirement thresholds). Adapting the SAS period-
ically has been the default method for many planning mechanisms
from the literature. The PLATO [29] framework is one example
that adapts the SAS on every point in time, within which it relies
on genetic algorithm to search for the optimal (or near-optimal)
adaptation solution. Other examples that rely on the same trigger
include FEMOSAA [12] and VAIKYRIE [21], etc. These approaches
often do not require predefined requirement thresholds, instead,
they intend to optimize the SAS at every circumstances without
considering net debt. In contrast, DLDA triggers adaptation only
when it tends be economically healthier than not adapting.

Control theory is also another popular paradigm for engineering
SAS [32]. However, most control theoretic approaches focus on the
planning problem, i.e., what and how to adapt, and they adapt the
SAS at predefined frequency of signaling cycle. In contrast, DLDA
tackles explicitlywhen and whether to adapt, creating greater benefit
over the others. Further, DLDA works with, e.g., rule-based [7],
search-based [11][29][12] and control theoretic [32] planner, etc.

Event-based triggers are vast, e.g., Prometheus [4] and FUSION [18]
are frameworks that trigger adaptation when they detect require-
ments violation. Other types of event also exists [7][34]: for example,
Bencomo et al. [7] triggered adaptation based on the violation of

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

54

design claim, e.g., the claim of Redundancy prevents networks par-
titions is invalid if two or more network links fail simultaneously.
Note that the utility functions in the defined events from above
work is different from DLDA as they do not declare monetary value,
i.e., there is no model about the profit/debt that the SAS generates.

While an event is often used in a reactive manner, proactive and
event driven adaptation can be achieved by using limited predic-
tion [36][5][2]. For example, Wang and Pazat [36] adapted the SAS
when it is predicted that there is a violation of requirements, and
such violation is indeed significant after it is verified by an online
learning classifier. However, adaptations are still triggered by the
detected/predicted occurrences of predefined events and it is not
related to the monetary cost-benefit of adapting and not adapting.

8 CONCLUSION AND FUTUREWORK
This paper presents DLDA, a novel framework that combines tech-
nical debt and online learning, to determine when and whether to
adapt the SAS at runtime. We proposed a temporal adaptation debt
model to quantify the net debt for the decision of adapting and
not adapting the SAS, based on which we design a temporal net
debt driven labeling that labels whichever leads to less net debt
for a given circumstance. By formulating the problem of when and
whether to adapt as a binary classification problem, we combine the
labeling process and online learning classifier in DLDA to determine
whether to adapt or not upon unforeseen circumstances, in favor
of reducing net debt. We conducted comprehensive evaluations on
DLDA with 5 classifiers and in comparison to 4 state-of-the-art
debt-oblivious triggering approaches. The results reveal that DLDA
is effective and better than the other on various SAS metrics.

Our future work includes investigating the possibility of predict-
ing for the long-term adaptation triggers, and how short-/long-term
prediction could affect the trigger of adaptation. We also plan to
apply DLDA on extreme domains of SAS, e.g., mobile environment.

ACKNOWLEDGMENT
This work is supported by the DAASE Programme Grant from the
EPSRC (Grant No. EP/J017515/1).

REFERENCES
[1] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonpara-

metric regression. The American Statistician 46, 3 (1992), 175–185.
[2] Ayman Amin, Alan Colman, and Lars Grunske. 2012. Statistical detection of qos

violations based on cusum control charts. In Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering. ACM, 97–108.

[3] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. 2007.
Web services agreement specification. In Open grid forum, Vol. 128. 216.

[4] Konstantinos Angelopoulos, Fatma Başak Aydemir, Paolo Giorgini, and John
Mylopoulos. 2016. Solving the next adaptation problem with prometheus. In
Research Challenges in Information Science, International Conference on. 1–10.

[5] Konstantinos Angelopoulos, Alessandro V Papadopoulos, Vítor E Silva Souza,
and John Mylopoulos. 2016. Model predictive control for software systems
with CobRA. In Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 35–46.

[6] Martin Arlitt and Tai Jin. 2000. A workload characterization study of the 1998
world cup web site. IEEE network 14, 3 (2000), 30–37.

[7] Nelly Bencomo, Amel Belaggoun, and Valerie Issarny. 2013. Dynamic Decision
Networks for Decision-making in Self-adaptive Systems: A Case Study. In Pro-
ceedings of the 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. 113–122.

[8] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. Moa:
Massive online analysis. Journal of Machine Learning Research 11 (2010), 1601–
1604.

[9] Léon Bottou. 1998. Online Algorithms and Stochastic Approximations. In Online
Learning and Neural Networks, David Saad (Ed.). Cambridge University Press,
Cambridge, UK. http://leon.bottou.org/papers/bottou-98x revised, oct 2012.

[10] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Seinturier.
2013. PowerAPI: A Software Library to Monitor the Energy Consumed at the
Process-Level. ERCIM News 92 (Jan. 2013), 43–44.

[11] Tao Chen and Rami Bahsoon. 2017. Self-Adaptive Trade-off Decision Making for
Autoscaling Cloud-Based Services. IEEE Transactions on Services Computing 10, 4
(July 2017), 618–632.

[12] Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao. 2018. FEMOSAA: Feature Guided
and Knee Driven Multi-Objective Optimization for Self-Adaptive Software. ACM
Transactions on Software Engineering and Methodology (2018). in press.

[13] Shang-Wen Cheng, Vahe V. Poladian, David Garlan, and Bradley Schmerl. 2009.
Improving Architecture-Based Self-Adaptation Through Resource Prediction, in
Software Engineering for Self-Adaptive Systems. Springer-Verlag, 71–88.

[14] Oracle Corporation. 1995. MySQL. https://www.mysql.com/. (1995).
[15] Ward Cunningham. 1993. The WyCash portfolio management system. ACM

SIGPLAN OOPS Messenger 4, 2 (1993), 29–30.
[16] Rogério de Lemos et al. 2013. Software Engineering for Self-Adaptive Systems: A

Second Research Roadmap. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–32.
[17] Pedro Domingos and Geoff Hulten. 2000. Mining High-speed Data Streams. In

Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’00). ACM, New York, NY, USA, 71–80.

[18] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. 2013. A learning-based
framework for engineering feature-oriented self-adaptive software systems. IEEE
transactions on software engineering 39, 11 (2013), 1467–1493.

[19] Apache Software Foundation. 1999. Tomcat. http://tomcat.apache.org/. (1999).
[20] Apache Software Foundation. 2003. Ehcache. http://www.ehcache.org/. (2003).
[21] ErikM. Fredericks. 2016. Automatically Hardening a Self-adaptive SystemAgainst

Uncertainty. In Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 16–27.

[22] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18.

[23] Simon S Haykin. 2001. Neural networks: a comprehensive foundation. Tsinghua
University Press.

[24] George H. John and Pat Langley. 1995. Estimating Continuous Distributions in
Bayesian Classifiers. In Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence (UAI’95). 338–345.

[25] Vigdis By Kampenes, Tore Dybå, Jo E Hannay, and Dag IK Sjøberg. 2007. A
systematic review of effect size in software engineering experiments. Information
and Software Technology 49, 11-12 (2007), 1073–1086.

[26] Leandro L Minku and Xin Yao. 2012. DDD: A new ensemble approach for dealing
with concept drift. IEEE transactions on knowledge and data engineering 24, 4
(2012), 619–633.

[27] University of Cambridge Computer Laboratory. 2013. Xen: a virtual machine
monitor. http://www.xenproject.org/. (2013).

[28] Gustavo G. Pascual, Roberto E. Lopez-Herrejon, MÃşnica Pinto, Lidia Fuentes,
and Alexander Egyed. 2015. Applying multiobjective evolutionary algorithms to
dynamic software product lines for reconfiguring mobile applications. Journal of
Systems and Software 103 (2015), 392 – 411.

[29] Andres J. Ramirez, David B. Knoester, Betty H. C. Cheng, and Philip K. McKinley.
2011. Plato: a genetic algorithm approach to run-time reconfiguration inăauto-
nomic computing systems. Cluster Computing 14, 3 (2011), 229–244.

[30] Jesse Read, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. 2012. Batch-
incremental versus instance-incremental learning in dynamic and evolving data.
In International Symposium on Intelligent Data Analysis. Springer, 313–323.

[31] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive Software: Landscape
and Research Challenges. ACM Trans. Auton. Adapt. Syst. 4, 2 (2009), 14:1–14:42.

[32] Stepan Shevtsov and Danny Weyns. 2016. Keep it SIMPLEX: Satisfying multiple
goals with guarantees in control-based self-adaptive systems. In Proceedings of the
24th International Symposium on Foundations of Software Engineering. 229–241.

[33] James Skene, Franco Raimondi, and Wolfgang Emmerich. 2010. Service-level
agreements for electronic services. IEEE Transactions on Software Engineering 36,
2 (2010), 288–304.

[34] C. Stier and A. Koziolek. 2016. Considering Transient Effects of Self-Adaptations
in Model-Driven Performance Analyses. In 2016 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA). 80–89.

[35] Rice University. 2009. RUBiS. http://rubis.ow2.org/. (2009).
[36] ChenWang and Jean-Louis Pazat. 2012. A Two-Phase Online PredictionApproach

for Accurate and Timely Adaptation Decision. In Proceedings of the 2012 IEEE
Ninth International Conference on Services Computing. 218–225.

[37] Farhana H Zulkernine and Patrick Martin. 2011. An adaptive and intelligent SLA
negotiation system for web services. IEEE Transactions on Services Computing 4,
1 (2011), 31–43.

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

55

http://leon.bottou.org/papers/bottou-98x

	Abstract
	1 Introduction
	2 The Technical Debt Analogy in SAS
	3 DLDA Overview
	4 Temporal Adaptation Debt Model
	4.1 Temporal Principal
	4.2 Subtracting Temporal Interest and Revenue
	4.3 Temporal Net Debt Driven Labeling

	5 Debt Aware Learning and Prediction to Trigger Adaptation
	5.1 Features of Circumstance As Training Data
	5.2 Online Machine Learning Classifiers
	5.3 Training and Prediction Procedure

	6 Experimental Evaluation
	6.1 Accuracy
	6.2 Performance and Adaptation Costs
	6.3 Net Debt, SLA Compliance, Overshoot and Overhead
	6.4 Discussion on the DLDA Parameters

	7 Related Work
	8 Conclusion and Future Work
	References

