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ABSTRACT
This paper deals with the problem of evaluating and testing re-
covery and adaptation frameworks (RAF) for distributed software
systems. We present TESS, a testbed for automatically generating
distributed software architectures and their corresponding runtime
applications, deploying them to the nodes of a cluster, running
many different types of experiments involving failures and adapta-
tion, and collecting in a database the values of a variety of failure
recovery and adaptation metrics. Using the collected data, TESS
automatically performs a thorough and scientific analysis of the
efficiency and/or effectiveness of a RAF. This paper presents a case
study on the use of TESS to evaluate DARE, a RAF developed by
our group.
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Software architectures; Software performance; Software reliabil-
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1 INTRODUCTION
Evaluating the performance of distributed software systems in the
presence of failures and adaptation is very challenging. This chal-
lenge is exarcerbated by the lack of global state knowledge, by the
possibility of multiple concurrent failures of networks and nodes,
and by message delays. This paper focusses on the performance
evaluation of self-healing and self-adaptation frameworks that de-
tect failures of distributed software systems, analyze their root
causes, devise plans to recover from these failures, and execute
these plans, according to the MAPE-K (Monitor, Analyze, Plan, and
Execute based on Knowledge) model for autonomic computing [7].
Self-healing is the capability of a software system to automatically
detect failures, recover to a consistent state, and resume normal ex-
ecution. Self-adaptation is the capability of the software system to
automatically adapt its architecture by adding, removing, or replac-
ing components seamlessly at run-time in response to changes in
operational environment or user requirements (see e.g. [10]). This
paper deals with the complex problem of performance testing and
measurement of distributed recovery and adaptation frameworks
for distributed software systems.

The work reported here was developed in the context of the
Resilient Autonomic Software Systems (RASS) project (www.cs.-
gmu.edu/~menasce/rass/) aimed at designing, developing, and eval-
uating a framework to support highly decentralized component-
based software systems. As part of the RASS project, we devel-
oped DARE (Distributed Adaptation and REcovery middleware),
an architecture-based, decentralized middleware that provides self-
configuration and self-healing properties to large and highly dy-
namic component-based software architectures [3]. We previously
described DARE using an emergency response system application
as an example. In that process we felt the need for a testbed that
would automatically generate distributed architectures and appli-
cations, deploy them in the nodes of a cluster, run many different
types of experiments, and collect the values of a variety of metrics
in a database. The data collected could then be used to automatically
perform a thorough and scientific analysis of the efficiency and/or
effectiveness of a recovery and adaptation framework (RAF), such
as DARE.

We designed and implemented such a testbed, called TESS, a
Testbed for Evaluation of Self-Healing and Self-AdaptiveDistributed
Software Systems. TESS was designed and developed so that it can
be used by other recovery and adaptation frameworks (RAF) besides
DARE. The focus of this paper is TESS, a testbed to automatically
and thoroughly evaluate autonomic systems such as DARE and
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similar RAFs. Thus, TESS is complimentary to DARE and DARE is
used here as a case study for demonstrating TESS’ capabilities.

The specific and unique contributions of this paper are: (1) design
and implementation of TESS, (2) metrics to evaluate recovery and
adaptation frameworks for distributed software systems, and (3)
discussion of the results of using TESS for the evaluation of DARE.

This paper is organized as follows. Section 2 discusses the func-
tionalities of RAFs and their interaction with TESS. Section 3 de-
scribes the design of TESS. Section 4 describes the DARE framework
and Section 5 describes the experimental procedure used to evaluate
DARE using TESS and the results of these experiments. Section 6
discusses related work and Section 7 provides concluding remarks.

2 RECOVERY AND ADAPTATION
FRAMEWORK

TESS is designed to work with RAFs that provide the services
described in this section and interface with TESS through two
metric logs (see Fig. 1). The first log, called Core Events Log, stores
data on (1) component and node failure events and (2) recovery and
adaptations events. TESS reads these event data from this log in
order to analyze and generate reports as described in Section 3.

The second log, called RAF-specific Events Log, records infor-
mation about events specific to the RAF. Some examples of RAF-
specific metrics may include the number of messages sent and
received by the RAF to achieve its functionality as well as the time
taken to perform specific tasks related to failure recovery and adap-
tation. To enable TESS to have access to the RAF-specific log, a RAF
uses a file to be read by TESS to register the set of RAF-specific
events and the format of this log. TESS processes and enters the
information contained in the two logs into its Metrics DB, which is
later used by TESS to provide detailed analysis of the experiments.

Entries in both logs have the same common prefix: timestamp,
event type, event parameters. The core event types can be one of
{component failure (CF), node failure (NF), component recovery
(CR), node recovery (NR), adaptation start (AS), adaptation com-
pletion (AC)} and they have parameters associated with them that
depend on the event type as illustrated in Table 1. For example, a
component failure event has as parameters the id of the component
that failed and the id of the node in which the component was
running. Note that it is possible for a component to fail without the
node on which it is running to fail. A node failure event generates

TESS	

Recovery	and		
Adapta2on		

Framework	(RAF)	Core	Events	
Log	

RAF-specific	
Events	Log	

Metrics	
DB	

Architecture	
DB	

Figure 1: RAF Architecture and Interaction with TESS

Table 1: Example of parameters for core recovery and adap-
tation events.

Event type Parameters
Component Failure (CF) Component Id, Node Id
Node Failure (NF) Node Id
Component Recovery (CR) ComponentId, Node Id
Node Recovery (NR) Node Id
Adaptation Start (AS) AdaptationId, AdaptationGoal
Adaptation End (AE) AdaptationId

one component failure event for each component running on the
failed node in addition to the node failure event. All CF events
generated by a NF event have the same timestamp. A component
recovery event is generated by a RAF when a component is recov-
ered and instantiated on the same node, if the node did not fail, or
on another node, in case the node failed. The node id parameter for
the component recovery event indicates the node where the failed
component was re-instantiated after recovery. The adaptation start
event requires the RAF to generate a unique number to be used
as an adaptation id as well as the adaptation goal, which consists
of a set of one or more components and their interconnections
that need to be replaced by a set of one or more interconnected
components. Finally, the adaptation end event indicates when a
previously started adaptation ended.

All the events recorded by a RAF in the two logs are timestamped
so that they can be properly merged by TESS and stored into its
Metrics DB. As indicated in Fig. 1, TESS also keeps an Architecture
DB that stores all the architectures to be used during an experiment.

Table 2 illustrates a few entries of the Core Events Log: (a) Com-
ponent C1 failed at node N2 at time t=101 and recovered at N2
at t=120. (b) Node N4 failed at t=130 and components C2 and C3
running at that node also failed. (c) Component C2 recovered at
t=135 at node N5 and C3 recovered at node N6 at t=137. (d) Node
N4 recovered at t=152.

A RAF is assumed to exhibit the following functionalities: (a)
Recovery from component failures: creates a new instance of a failed
component and logs event data on component failure detection and
recovery events in the Core Metrics Log. (b) Recovery from node

Table 2: Example of a Core Events Log.

timestamp Event type Event Parameters
101 CF C1 N2
120 CR C1 N2
... ... ....
130 NF N4
130 CF C2 N4
130 CF C3 N4
... ... ....
135 CR C2 N5
137 CR C3 N6
... ... ....
152 NR N4
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failures: creates a new instance of each component that was execut-
ing on the failed node on a new node and logs event data on node
failure detection and corresponding recovery events in the Core
Events Log. (c) Adaptation: adapts the software architecture by re-
placing one or more interconnected components with one or more
interconnected components. Adaptation typically includes quiesc-
ing components to be disconnected from the application, removing
these components, adding new components and interconnecting
them with existing components [8].

To start a set of experiments a user must launch the Start script
that interacts with the user to request (1) an id for the RAF (2)
the name of a configuration file used by TESS to drive the process
of generating architectures and conducting experiments (see Sec-
tion 3), (3) the name of the file that contains the Core Metrics Log,
and (4) the name of the file that contains the RAF-specific Metrics
Log. TESS starts the experiments upon receiving these parameters.

3 DESIGN OF TESS
Figure 2 depicts the design of TESS, which consists of three stages:
architecture generation, application generation, and application
execution and data collection. During the first stage, TESS auto-
matically generates a user-specified number of software architec-
tures, which are stored in a database (step 1). Users can also add
user-defined software architectures to the architecture database
through a user interface. Each architecture consists of a number of
components and connectors that interconnect components. Each
generated architecture specifies a set of static attributes for the
components. These attributes are used at run-time to determine
the behavior of components as explained later. For example, these
attributes determine if a component is enabled to send and/or re-
ceive messages and of which type (synchronous or asynchronous).
These attributes also specify the probability that the component
sends a message of a given type at set points during its execution
as well as the probability that a component fails at run-time.

The application generation step (step 2) uses a universal compo-
nent template, discussed in Section 3.3, and the static attributes of
the components generated in step 1 to generate the application to
be tested. The component template provides a probabilistic profile
for the runtime behavior of components. The generated application
is then deployed according to a deployment configuration map
that indicates how software components are mapped to nodes of a
distributed system (see step 3).

The third stage of TESS monitors the execution of the distributed
application (step 4), collects the values of a variety of metrics related
to failures and their recovery, as well as adaptation, and stores these
values in a relational database (step 5). This database is analyzed
during this stage and produces results based on all applications
executed during the experiment but also for specific clusters of
architectures based on their complexity (step 6). So, after metrics
are collected in step 5 for one of the architectures, TESS checks
if other applications need to be generated. In the affirmative case,
TESS goes back to step 2. After all experiments are run for the gen-
erated architectures, TESS proceeds to step 6 to perform a complete
statistical analysis of the results.

3.1 Architecture Generation
The architecture generation stage of TESS involves the dynamic
generation of random architectures represented as labeled directed
graphs [13]. Nodes are associated with component types; edges
correspond to connectors and indicate the types of communication
patterns between components. We consider three types of com-
munication patterns: (1) Component A sends a synchronous (SY)
message to another component and blocks while waiting for a reply.
(2) A sends an asynchronous (AS) message to a single destination
(SD) and can continue processing because no reply is expected. (3)
A sends an asynchronous (AS) message to multiple destinations
(MD); component A can continue processing after sending these
messages and no reply is expected from any of the recipients. Thus,
the three possible labels for an edge are: (SY, SD), (AS, SD), and (AS,
MD). The architecture generation algorithm enforces the folowing
constraints: (1) the architecture graph must be connected, (2) multi-
cast messages can only be asynchronous, and (3) a component type
can only send a multicast message in response to a message.

The generated architectures are stored in the Architecture DB
described next.

3.2 The Architecture DB
The Architecture DB consists of two tables: Architecture (contains
information for the generated architectures) and Components (con-
tains information for the individual components of each architec-
ture).

The Architecture table has the following columns:

• ArchitectureId: unique id for the architecture (primary key).
• NumComponents: number of components.
• NumEdges: number of edges (connections).
• NumSyncMessages: total number of synchronous connections.
• NumAsyncMessages: total number of asynchronous connections
• NumUnicastMessages: total number of unicast message interfaces.
• NumMulticastMessages: total number of multicast message inter-
faces.
• ArchComplexity: architecture complexity, inspired by the cyclo-
matic complexity for computer programs [9]:

Complexity = # components + # edges +
# edges/# components +
# synchronous messages/# edges +
# multicast messages/# edges.

We consider component-type as opposed to component-instance
architectures and cluster them into simple, moderate, and com-
plex using k-means clustering [6].
• ClusterId: id of the cluster for this architecture.

The columns of the Component table are:

• ComponentId: unique id of a component (primary key).
• Type: type of component (e.g., sender, receiver, sender-receiver,
receiver-sender).
• ArchitectureId: unique id of the architecture (foreign key).
• FailureProbability: probability that a component fails after receiv-
ing a message.
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Figure 2: TESS Design

• AvgMessageProcessingTime: average time between a component
receiving a message and sending a reply.
• ProbSendSyncMessage: probability that a message sent by a com-
ponent is synchronous.
• ProbSendAsyncMessage: probability that a message sent by a com-
ponent is asynchronous.
• SendSync: Flag indicating if a component sends synchronous
messages.
• SendAsync: Flag indicating if a component sends asynchronous
messages.
• RecSync: Flag indicating if a component receives synchronous
messages.
• ProbSendUnicastMessage: probability that a message sent by a
component is unicast.
• ProbSendMulticastMessage: probability that a message sent by a
component is multicast.

3.3 Application Generation
The application generation phase of TESS uses a universal compo-
nent template to drive the runtime behavior of the components of
the architecture. The universal template component is instantiated
at runtime in many different and random ways based on the static
and probabilistic attributes of the component for a given architec-
ture stored in the Architecture DB (see Section 3.2). For example,
based on the static Type attribute, a component can be classified as
a sender , receiver , sender-receiver , or receiver-sender . As an exam-
ple of a probabilistic attribute, the FailureProbability attribute of a
component determines if it fails after receiving a message.

We now describe the universal component template from the
point of view of a component S that receives a messagem from
component C .

If a component is a sender , it sends an asynchronous message
with probability ProbSendAsyncMessage and/or a synchronous mes-
sage with probability ProbSendSyncMessage.

If component S is a receiver , it receives messagem and fails with
probability FailureProbability for that component as determined in
the Architecture DB. If the component does not fail, it waits for
a uniformly distributed time with average AvgMessageProcessing
Time, specified for component S in the Architecture DB, to simulate
the time taken by the component to process the message and act
on it. If messagem is synchronous, S replies to component C .

If component S is a sender-receiver , it sends an asynchronousmes-
sage with probability ProbSendAsyncMessage, sends a synchronous
message with probability ProbSendSyncMessage, receives message
m and fails with probability FailureProbability. If S does not fail,
it processes message m, and replies to it if m is a synchronous
message.

Finally, if S is a receiver-sender , it receives messagem and fails
with probability FailureProbability. If S does not fail, it processes
the received message, sends an asynchronous message with proba-
bility ProbSendAsyncMessage, sends a synchronous message with
probability ProbSendSyncMessage, processes the received message
m, and replies to it ifm is a synchronous message.

The mechanism for potentially sending an asynchronous mes-
sage works as follows. A uniformly distributed random number p
between 0 and 1 is generated. If this number is less than or equal
to the probability that the component sends an asynchronous mes-
sage, then the component will either send a unicast message or a
multicast message.

When sending an asynchronous message, component S sends
a unicast message with probability ProbSendUnicastMessage or a
multicast message with probability ProbSendMulticastMessage. In
the unicast case, a message is sent to a randomly chosen component
consistent with the generated architecture. Multicast messages are
sent to the multicast group prescribed by the architecure.

Therefore, different components behave differently from each
other because they have different static attributes generated during
the architecture generation phase and because of the random values
of the probability attributes generated at run-time.
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3.4 Application Execution and Data Collection
The various components of the generated application are deployed
to the various nodes of a distributed system (a computer cluster in
our experiments). Once the application starts to execute, the RAF
records core events and RAF-specific events in the logs described
above. These logs are then merged at the end of each experiment
into a single log at a master node that controls the experiments and
stores the master log into the databases used by TESS. From this
merged log, metrics are gathered and stored in the Metrics DB for
later analysis.

As mentioned before, metrics are classified into core metrics and
RAF-specific metrics. The core metrics gathered during experimen-
tation include: (a) Component Recovery Time: time elapsed since a
component failure was detected until it recovered. (b) Node Recov-
ery Time: time elapsed since a node failure was detected until the
components running at that node are recovered to a new node. (c)
Adaptation Time: time elapsed from start to finish of an adaptation
procedure.

The Metrics DB consists of a single table, called Experiment,
which contains the values of the metrics gathered from each run of
an experiment. The columns of this table are:
• ExperimentId: unique id of the experiment (primary key).
• ArchitectureId: unique id for the architecture (foreign key).
• StartTime: start time of the experiment.
• Duration: duration of the experiment.
• ComponentRecoveryTime: average component recovery time.
• NodeRecoveryTime: average node recovery time.
• AdaptationTime: adaptation time.
• NumCompFailures: number of component failures.
• NumNodeFailures: number of node failures.
• NumAdaptations: number of adaptation events.

The Architecture table has a single entry for each generated
architecture and the Components table has a single entry for each
component of a particular architecture. The Experiments table has
multiple entries for metrics associated with a given architecture.
In other words, for each architecture, multiple experiments are
conducted and numerous values for each type ofmetric are collected
and stored for later analysis. Because an architecture is associated
with an experiment by its ArchitectureId, one may run queries
to obtain metrics (e.g., average, coefficient of variation, range and
other statistical measures) for either a specific architecture or for
all architectures of a specific type.

4 THE DARE MIDDLEWARE
DARE is based on a decentralized version of the MAPE-K loop
model. Every node in the distributed system runs an identical in-
stance of the DARE middleware, which is responsible for:
• Keeping track of the current configuration map of the software
system, including the mapping of components to nodes and main-
taining the current configuration map of the software system.
• Automatically discovering the current architecture of the soft-
ware system and rediscovering the architecture after dynamic
adaptation. DARE relies on gossiping and message tracing tech-
niques for discovering and disseminating the current software
architecture (consisting of components and connectors) in a de-
centralized fashion [13].

• Monitoring and detecting node failures.
• Analyzing the cause of node failures.
• Planning for dynamically adapting the architecture and recovery
of failed nodes.
• Executing a reconfiguration template consisting of reconfigura-
tion commands that handle instantiating components on healthy
nodes and establishing the connections between application com-
ponents.
• Adapting and recovering components after run-time node and/or
component failures.
• Communicating with recovery and adaptation connectors (RACs)
that handle the recovery of failed transactions and steer appli-
cation components to a quiescent state in order to carry out
dynamic adaptation [1] [2].

5 EXPERIMENTAL PROCESS
Figure 3 depicts the deployment of TESS in a computer cluster that
consists of a master node, which acts as a gateway and is connected
to the other nodes. The master node hosts the main components of
the testbed: a MySQL database for TESS databases, the architecture
and application generation modules and the data collection module.
Additionally, the master node stores the merged log used to collate
all the events from the event logs for all experiments. All other
nodes host the RAF and components of the distributed application
generated by the application generation module, and local copies
of the core and RAF-specific events logs.

We conducted detailed experiments on the use of TESS to au-
tomatically evaluate DARE. TESS, which was implemeted in Java,
generated 100 random architectures and clustered them according
to complexity as complex, moderate, and simple. The experiments
were then conducted on 10, 15, and 20 nodes of a computer cluster,
where for complex architectures each node hosted approximately
three components, for moderate architectures each node hosted
approximately two components and for simple architectures each
node hosted a single component. Connectors were hosted on sepa-
rate nodes.

Figure 3: TESS Deployment on a Cluster
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We conducted self-healing (component and node failures) and
self-adaptation experiments. For component failures, each com-
ponent randomly fails during execution according to its failure
probability, specified in the Components table. With regards to node
failures, a random node was selected and then taken down accord-
ingly [3]. Component recovery is done by the RAC instantiating
the failed component at another node and replaying the messages
(stored in the RAC’s message queues) that were in transit to/from
that component. The self-adaptation experiments involved remov-
ing a randomly selected component and replacing it with a load
balancing architectural pattern. This entailed adding a load bal-
ancing component along with 2 or more replicas of the original
component. See [3] for more details on DARE’s approach to failure
recovery and adaptation.

5.1 Experimental Results
The experiments reported in this section are related to the core
metrics (component recovery time, node recovery time, and com-
ponent adaptation time). TESS gathered 30 observations of each
metric for each architecture complexity type (complex, moderate,
and simple) for three node counts (10, 15, and 20). This data was
then used by TESS to calculate the mean and 95% confidence in-
tervals (CI) for these metrics. Also, for each metric a two-factor
statistical ANOVA procedure [6] was conducted. The factors are
architecture complexity with three levels (simple, moderate, and
complex) and node count with three levels (10, 15, and 20 nodes).
The hypotheses for the ANOVA experiments are:

H0: (a) the architecture complexity has no impact on the given
metric (i.e., the metric average is the same for all complexity levels),
(b) node count has no impact on the given metric (i.e., the metric av-
erage is the same for all node counts), and (c) there is no interaction
between architecture complexity and node count.

H1: (a) the architecture complexity has an impact on the given
metric (i.e, the metric average is not the same for all complexity
levels), (b) node count has an impact on the given metric (i.e., the
metric average is not the same for all node counts), and (c) there is
interaction between architecture complexity and node count.

Tables 3 and 4 show statistics (average, 95% Confidence Interval
(CI), and range) for the number of components and number of
connections between components for each architecture complexity
type. The values in these tables help explain the observed behavior
when we analyze the metrics described in what follows.

Table 3: Mean, 95% CIs and Range for No. of Components

complexity mean 1/2 CI range
complex 26.2 ± 0.88 21-30
moderate 20.9 ± 0.69 17-25
simple 13.8 ± 0.91 10-20

5.2 Core Metrics
The metrics reported here are: component recovery time, node
recovery time, and component adaptation time.

Table 4: Mean, 95% CIs and Range for No. of Connections

complexity mean 1/2 CI range
complex 109.9 ± 4.1 94-151
moderate 83.5 ± 2.6 69-95
simple 50.3 ± 3.5 32-65

5.2.1 Component Recovery Time. This experiment assessed the
impact of both architecture complexity and different node counts
on component recovery time. Tables 5, 6 and 7 show the mean and
95% confidence intervals for component recovery time for each
architecture complexity for 10, 15 and 20 nodes, respectively. Ta-
ble 8 shows the results of the two-factor ANOVA for architecture
complexity and node count for component recovery time. For ar-
chitecture complexity, F > Fcrit results in the rejection of the null
hypothesis and acceptance of the alternative hypothesis that the
average component recovery time is impacted by architecture com-
plexity. This happens because as architecture complexity increases,
a component will communicate with a larger number of neigh-
boring components, resulting in a larger number of reconnections
required after recovery. For node count, F > Fcrit results in the
rejection of the null hypothesis and acceptance of the alternative
hypothesis that the number of nodes impacts the average compo-
nent recovery time. This is due to the fact that for smaller node
counts, more components would be hosted per node for the same
architectures than for a larger node count. As a consequence, there
would be more recovery overhead per node for smaller node counts.
For factor interaction, F < Fcrit results in a failure to reject the null
hypothesis that there is no interaction between the two factors. In
other words, we fail to prove the alternative hypothesis that there
is interaction between architecture complexity and node count.

Table 5: Component Recovery Time (10 Nodes)

complexity mean (sec) 1/2 CI (sec)
complex 31.2 ± 2.83
moderate 28.9 ± 4.30
simple 23.0 ± 2.39

Table 6: Component Recovery Time (15 Nodes)

complexity mean (sec) 1/2 CI (sec)
complex 22.0 ± 1.32
moderate 21.2 ± 1.13
simple 18.5 ± 1.05

Table 7: Component Recovery Time (20 Nodes)

complexity mean (sec) 1/2 CI (sec)
complex 18.0 ± 0.91
moderate 16.9 ± 0.95
simple 15.2 ± 0.98
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Table 8: Two-Factor ANOVA for Component Recovery Time

Source of Variation F P-value F crit
Architecture Complexity 16.702 1.49E-07 3.030
Node Count 82.306 1.93E-28 3.030
Interaction 2.065 0.0858 2.406

5.2.2 Node Recovery Time. This experiment assessed the im-
pact of architecture complexity and node count on node recovery
time. Tables 9, 10 and 11 show the mean and 95% confidence in-
tervals for node recovery time for each architecture complexity
for 10, 15 and 20 nodes, respectively. Table 12 shows the results
of the two-factor ANOVA for architecture complexity and node
count for node recovery time. For architecture complexity, F > Fcrit
results in the rejection of the null hypothesis and acceptance of
the alternative hypothesis that architecture complexity impacts
the average node recovery time. This is due to the fact that more
complex architectures consist of a higher number of components
(see Table 3) being hosted per node resulting in larger node recov-
ery times. For node count, F > Fcrit results in the rejection of the
null hypothesis and acceptance of the alternative hypothesis that
the number of nodes impacts the average node recovery time. As
mentioned in the previous experiment, smaller node counts host
more components per node than larger node counts for the same
architectures. This is due to fact that if the number of components
within an architecture is fixed, but the number of nodes used to
host the architecture is reduced, more components will have to be
hosted per node to enable the reduced node count. This in effect
results in longer recovery times for smaller node counts. For factor
interaction, F > Fcrit results in the rejection of the null hypothesis
and acceptance of the alternative hypothesis that there is interac-
tion between architecture complexity and node count. This is due
to the fact that: (a) more (less) complex architectures implies more
(less) components hosted per node for the same node count and
(b) a larger (smaller) node count implies less (more) components
hosted at a node for the same architectural complexity.

Table 9: Node Recovery Time (10 Nodes)

complexity mean (min) 1/2 CI (min)
complex 6.4 ± 0.85
moderate 4.9 ± 0.59
simple 2.9 ± 0.45

Table 10: Node Recovery Time (15 Nodes)

complexity mean (min) 1/2 CI (min)
complex 3.5 ± 0.22
moderate 2.6 ± 0.32
simple 1.6 ± 0.20

Table 11: Node Recovery Time (20 Nodes)

complexity mean (min) 1/2 CI (min)
complex 1.7 ± 0.18
moderate 1.3 ± 0.09
simple 0.8 ± 0.09

Table 12: Two-Factor ANOVA for Node Recovery Time

Source of Variation F P-value F crit
Architecture Complexity 74.0 3.48E-26 3.030
Node Count 214.642 7.56E-56 3.030
Interaction 11.256 1.93E-08 2.406

5.2.3 Component Adaptation Time. This experiment assessed
the impact of architecture complexity and node count on compo-
nent adaptation time. Tables 13, 14 and 15 show the mean and
95% confidence intervals for component adaptation time for each
architecture complexity for 10, 15 and 20 nodes, respectively. Ta-
ble 16 shows the results of the two-factor ANOVA for architecture
complexity and node count for component adaptation time. For
architecture complexity, F > Fcrit results in the rejection of the null
hypothesis and acceptance of the alternative hypothesis that archi-
tecture complexity impacts average component adaptation time.
This is a consequence of the fact that a component that has a higher
number of interactions with other components will take longer to
complete these interactions and then transition to the quiescent
state [8], thereby allowing it to be removed and replaced. For node
count, F < Fcrit results in a failure to reject the null hypothesis
that node count does not impact component adaptation time. In
other words, we failed to prove the alternative hypothesis that node
count impacts the average adaptation time. From Tables 13 and 14
it can be seen that an increase in node count from 10 to 15 nodes
results in an increase in component adaptation time, and from 15
to 20 nodes there is a decrease in component adaptation time (see
Tables 14 and 15). However, these differences are not statistically
significant because the F value for node count (2.438) is less than
Fcrit (3.030) (see Table 16). For factor interaction, F < Fcrit results
in a failure to reject the null hypothesis that there is no interaction
between the two factors. In other words, we failed to prove the al-
ternative hypothesis that there is interaction between architecture
complexity and node count.

Table 13: Component Adaptation Time (10 Nodes)

complexity mean (min) 1/2 CI (min)
complex 4.5 ± 1.31
moderate 3.7 ± 0.78
simple 2.6 ± 0.61

6 RELATEDWORK
There are two main areas related to our work. The first is the
performance evaluation of distributed systems. In [11] Mohamed et
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Table 14: Component Adaptation Time (15 Nodes)

complexity mean (min) 1/2 CI (min)
complex 5.1 ± 1.07
moderate 4.1 ± 0.80
simple 3.4 ± 0.71

Table 15: Component Adaptation Time (20 Nodes)

complexity mean (min) 1/2 CI (min)
complex 3.9 ± 2.31
moderate 3.1 ± 0.69
simple 2.5 ± 0.71

Table 16: Two-Factor ANOVA for Component Adaptation
Time

Source of Variation F P-value F crit
Architecture Complexity 6.194 0.0024 3.030
Node Count 2.438 0.0893 3.030
Interaction 0.085 0.987 2.406

al. describe the performance evaluation of distributed event-based
systems. Sachs et al. [15] describe the performance evaluation of
distributed message-oriented middleware.

Also related to our work is the performance evaluation of self-
adaptive systems and self-healing systems. Becker et al. [4] describe
an approach to the performance evaluation of self-adaptive systems
while Pereira et al. [12] describe the performance evaluation of self-
healing systems.

In contrast to the previous works, TESS focuses on both self-
healing and self-adaptation frameworks for distributed software
systems. To the best our knowledge there does not exist another
testbed that provides an automated approach to the performance
evaluation of both self-adaptive and self-healing distributed soft-
ware systems.

7 CONCLUDING REMARKS
Several recovery and adaptation frameworks have been proposed
for self-healing and self-adaptation of distributed software systems.
In most cases, these frameworks are evaluated with one or two
distributed system application examples and in many cases little
or no quantitative evaluation is conducted [5]. For that reason, we
decided to design and implement TESS, described above and inmore
detail in [14], to assist in the quantitative evaluation of recovery and
adaptation frameworks. TESS was designed and implemented as a
tool that can be used to evaluate a variety of self-adaptive and self-
healing frameworks such as DARE. Thus, TESS is complimentary to
DARE, which was used as a case study to demonstrate and evaluate
TESS.

TESS follows well-known principles of experimental design [6]
by generating random architectures that are clustered into complex,
medium, and simple architectures, and running experiments where
node and component failures and component adaptations occur

randomly. The metrics gathered by TESS are stored in a database
and stored procedures are used to generate a variety of metrics
such as averages, confidence intervals, and statistical procedures
such as ANOVA [6]. TESS can also be used to evaluate a RAF on a
user-define architecture.

Our use of TESS to evaluate DARE illustrates how TESS can be
used for detailed experimental evaluation of recovery and adapta-
tion frameworks. TESS could be extended to automatically track
and report on detailed elements of the recovery and/or adaptation
times as long as that information is available in the logs generated
by RAFs. This would allow users to obtain a better understanding of
the major sources of delay in each case. Additionally, it is possible
to extend TESS to consider additional core metrics such as the ones
proposed in [5] for adaptation.
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