
FOX: Cost-Awareness for Autonomic Resource
Management in Public Clouds

Veronika Lesch
University of Würzburg

Würzburg, Germany

veronika.lesch@uni-wuerzburg.de

André Bauer
University of Würzburg

Würzburg, Germany

andre.bauer@uni-wuerzburg.de

Nikolas Herbst
University of Würzburg

Würzburg, Germany

nikolas.herbst@uni-wuerzburg.de

Samuel Kounev
University of Würzburg

Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT

Nowadays, to keep track with the fast changing requirements of

internet applications, auto-scaling is an essential mechanism for

adapting the number of provisioned resources to the resource de-

mand. In the context of public clouds, there exist different natures

of cost-models for charging resources. However, the accounted

resource units and charged resource units may differ significantly

due to the applied cost model. This can lead to a significant increase

of charged costs when using an auto-scaler as it tries to match the

demand of the application as close as possible. In the literature,

several auto-scalers exist that support cost-aware scaling decisions

but they introduce inherent drawbacks.

In this work, this lack of existing cost-aware mechanisms is

addressed by introducing amediator between an application and the

auto-scaler. This cost-aware mechanism is called FOX. It leverages

knowledge of the charging model of the public cloud and reviews

the scaling decisions found by the auto-scaler to reduce the charged

costs to a minimum. More precisely, FOX delays or omits releases

of resources to avoid additional charging costs if the resource is

required in the future. Hereby, FOX is not restricted to use one

specific auto-scaler but offers interfaces to use any auto-scaler.

For an evalation under controlled conditions, FOX scales a multi-

tier application deployed in a private cloud that is stressed with two

real world workloads: BibSonomy and IBM CICS. As FOX provides

an interface for auto-scalers, we evaluate the cost-awaremechanism

with three state of the art auto-scalers: React, Adapt, and Reg. The

experiments show that FOX is able to reduce the charged costs by

34% at maximum for the Amazon EC2 charging model. According

to the cost model, FOX provisions more resources than required.

This results in a decreased SLO violation rate from 28% to 2% at

maximum. The accounted instance time increases at max. by 30%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’18, April 9–13, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184415

CCS CONCEPTS

• General and reference→ Cross-computing tools and tech-

niques; • Networks → Cloud computing; • Computer sys-

tems organization→ Self-organizing autonomic computing;

• Software and its engineering → Virtual machines;

KEYWORDS

Cloud Computing, Public Cloud, Auto-Scaling, Cost-Awareness,

Charging Model

ACM Reference Format:

Veronika Lesch, André Bauer, Nikolas Herbst, and Samuel Kounev. 2018.

FOX: Cost-Awareness for Autonomic Resource Management in Public

Clouds. In ICPE ’18: ACM/SPEC International Conference on Performance

Engineering, April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3184407.3184415

1 INTRODUCTION

In order to face the dynamic behavior respectively requirements

of internet applications, cloud computing emerged as computing

model that allows fast access to resources and has a high level of

scalability. Due to these benefits, the usage of auto-scalers arose in

cloud computing. The developed mechanisms try on the one hand

to adapt the supplied resources as close as possible to the demanded

resources; on the other hand they try to consider the predefined

service level objectives. When using auto-scalers in public clouds,

the desired effect of adapting the number of resources can lead to

high costs as the accounted costs and the charged costs can deviate

depending on the cloud. For example, if a virtual machine (VM) is

charged hourly, the hour has to be paid although the accounted

time is less than one hour. In order to minimize the charged costs, a

cost-aware mechanism is required. While taking the future demand

into account, the cost-aware mechanism modifies the auto-scaling

decisions.

In this work, a cost-aware mechanism, called FOX, is proposed.

FOX serves as mediator between an application deployed in a public

cloud and an auto-scaler. The working principle of FOX bases on the

MAPE-K control loop [16] and has additional knowledge of the cost-

models. The main idea is to proactively plan the resource allocation

and release. In order to reduce the charged cost, FOX modifies

the found scaling decisions of the auto-scaler. If the resource is

already charged and will be required in the future, FOX does not

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

4

stop the VM to avoid additional charging intervals. The design

of FOX provides an interface for auto-scalers, i.e., FOX is able to

add cost-aware functionality to any auto-scaler using this interface.

Additionally, there is also an interface for a forecasting mechanism

that allows to add different existing forecasters.

We evaluate FOX using a multi-tier application deployed under

controlled conditions in a private cloud. The application is stressed

using two real-world workloads: BibSonomy and IBM CICS. To

show that FOX can add cost-awareness to multiple auto-scalers,

three auto-scalingmechanisms are selected and evaluated: React [8],

Adapt [2], and Reg [13].

The results of the experiments with the Amazon EC2 cost model

show that FOX is able to decrease the charged costs, the cost you

have to pay, for all auto-scalers by 34% at maximum. In addition

to the cost reduction, the accounted instance time is increased

which results in 26% less SLO violation at maximum. The elasticity

metrics consider how well the supply curve fits the demand. FOX

actively decides not to stop resources if they will be required, thus

SLO improvements are achieved in trade for a slightly worse auto-

scaling performance considering the elasticity metrics.

In order to investigate the impact of cost-aware mechanism for

auto-scaling, we pose ourselves the following research questions:

RQ1What kind of cost models exist and what are the popular ones?,

RQ2 How can we modify the scaling decisions so that the charged

costs are reduced?, and finally, RQ3 How well does FOX perform in

the context of auto-scaling?

The contributions of this paper align with the three addressed

research questions and structure the paper as follows: in Section 2,

we survey existing cost models, i.e., we answer RQ1. In Section 3,

we address RQ2 by introducing the approach of FOX. Afterwards,

the used tools are introduced in Section 4. Section 5 discusses the

results of the experiments and addresses RQ3. In Section 6, we

summarize related work before concluding the paper.

2 PUBLIC CLOUD COST MODELS

Multiple public infrastructure cloud provider exist each offering

their own charging model. However, a classification into three

groups can be found: hourly charging, two phase charging and

minute-by-minute charging.

Hourly-based Charging. The first group, hourly charging,

charges for every started hour regardless of stopped instances be-

fore the full hour is over. By this rough granularity, a huge charging

overhead can occur, e.g., Amazon EC21, ORACLE Cloud2, IBM

Bluemix3, Digital Ocean4, and OHV5 charge on an hourly basis.

Two-Phase Charging. The Google Cloud Platform6 is a repre-

sentative providing the two phase charging model. The first phase

consists of a fixed interval of ten minutes, which has to be paid

regardless of a shorter runtime. Afterwards, the model switches to

the second phase, where a minute-by-minute charging is applied.

This cost model introduces overheads for the first ten minutes

1https://aws.amazon.com/de/ec2/pricing/on-demand/
2https://cloud.oracle.com/infrastructure/pricing
3https://www.ibm.com/cloud-computing/bluemix/de/pricing?lnk=hm
4https://www.digitalocean.com/pricing/#faq
5https://www.ovh.de/g677.informationen_zur_dedicated_cloud_abrechnung
6https://cloud.google.com/compute/pricing#machinetype

of a virtual machine but afterwards they do not introduce large

overheads.

Minute-Based Charging. The third group of public cloud

providers charge the used resources minute-by-minute. So, all in-

stance times are rounded to the next minute. This introduces a

small overhead that is negligible when looking at the minute price.

Example public cloud providers that charge on this basis are the

Open Telekom Cloud 7, Microsoft Azure8, and 1&19.

In this work, FOX considers the cost models of the first two

categories: hourly charging and two phase charging. For the hourly

charging, we expect that the costs can be lowered by a significant

amount when using FOX, as there is a large overhead when round-

ing runtimes to the next full hour. For the second group, the two

phase cost models, we expect that the cost savings are not as sig-

nificant as they are for the hourly charging, as the overhead by

rounding to the next full minute is very small.

Relation to SpotMarkets. In addition to these groupswhere

instances can be provisioned and released on demand, AmazonWeb

Services offer a Spot Market10. Here, the prices of instances vary

dependent on supply and demand. The customer can specify a max-

imum price he wants to pay for an instance. If the price for an

instance drops below this maximum, the instance is provisioned

for this customer. The instance is released if the price rises above

the maximum price the customer defined or if the customer stops

the instance by himself. The cost-aware mechanism of FOX also

supports a deployment with spot instances, as the logic how scaling

decisions are modified to save costs is not affected. The deployment

with spot instances introduces the risk that instances may not be

provisioned on demand or are terminated by the platform if the

actual price is higher than the bid. Thus, optimal bid placing could

be the responsibility of another independent component and is not

considered as a feature of FOX. To ensure reproducible results, the

scenario using spot instances is omitted in the evaluation of FOX.

In this section, we address the research question RQ1:What kind

of cost models exist and what are the popular ones? Among public

cloud environments available, multiple cost models exist that can

be classified into three groups: hourly charging, two phase charging

and minute-by-minute charging. Example cloud providers for these

cost models are Amazon EC2, Google Cloud Platform and Open

Telekom Cloud. In this paper, we consider only the first two groups

as the third group does not introduce large overheads that can be

optimized by a cost-aware mechanism.

3 APPROACH

The main idea of FOX is that it operates as mediator between

the auto-scaling mechanism and the application for adapting the

associated scaling decisions based on a predefined cost-model. To

this end, FOX contains a knowledge base, a forecast component and

the interface for the auto-scaler. The knowledge base holds all found

7https://cloud.telekom.de/fileadmin/CMS/Information/Kundenflyer/
Open-Telekom-Cloud_Pricing-Models.pdf
8https://azure.microsoft.com/pricing/details/virtual-machines/linux
9https://hosting.1und1.de/cloud-computing
10https://aws.amazon.com/ec2/spot/pricing/

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

5

Figure 1: MAPE-K model of the Cost-Component.

scaling decisions from the auto-scaler, the predicted future arrival

rates, and the knowledge about the cost model of the cloud platform

provider. An overview of existing cost models are explained in

Section 2. In our experiments, a simplistic forecaster returns the

arrival rates of the last observerd day as forecast for the current

day. As auto-scalers React, Adapt, and Reg are used (see Section 4).

The auto-scaler and the forecast component can be replaced with

other mechanisms. An example forecasting tool developed for auto-

scaling contexts in cloud computing is the hybrid, decomposition-

based approach called Telescope [28].

3.1 MAPE-K Adaptation

The approach of FOX is based on the MAPE-K control loop [16] as

depicted in Figure 1. In the first phase calledMonitor, FOX monitors

the application and gathers information such as arrival rates and

saves them into the knowledge base. As most of the existing auto-

scalers in the literature are designed for homogeneous requests, i.e.

single class case, FOX also holds this assumption. The monitoring

interval is set to two minutes. Then, during the Analyze phase FOX

fetches forecast values for the next 30 minutes from the forecast

component. Based on these forecasts, the auto-scaler makes scaling

decisions for all tiers for the next 15 intervals and saves them

also in the knowledge base. While the application can consist of

different resources, the resource types in each tier are assumed

to be homogeneous. In the Plan phase, FOX reviews the scaling

decisions based on the decisions found for the future forecasts and

changes them according to the cost model. That is, for instance, that

some scaling down decisions are delayed or cancelled according to

the charging interval. Finally, in the Execute phase, FOX scales the

application based on the adapted scaling decisions. The Analyze,

Plan and Execute phases are described in more detail below.

Analyze: In the Analyze phase, FOX sends the observed arrival

rate history to the forecaster component and receives the forecast

values for the next 30 minutes, i.e., 15 forecast values. This is done

every 15 minutes so that an overlap in forecasts exists. This overlap

is required since FOX evaluates future events to adapt the scaling

decisions. For each forecast value and each tier, the auto-scaler is

called for making scaling decisions. The auto-scaler receives the

forecast value via the interface, the amount of running VMs and

the request rate that a single VM can handle at the specific tier. The

amount of running VMs for the first forecast value is the amount

of current running VMs. For the following forecast values, the

planned amount from previous decisions are used. Based on this

information, scaling decisions for each forecast value are made per

tier and added to the knowledge base. From the second forecaster

call on, the overlap of the decisions appears. As the new decisions

have more recent information, the old decisions are omitted and

replaced by the new ones.

Plan: For our experiments, FOX takes two common cost models

into account: First, the Amazon EC2 model with an hourly charging,

and secondly, the Google Cloud Platform model where the first

ten minutes are charged fix and then the charging switches to a

minutely basis, see Section 2 for a more detailed explanation of

the cost models. The idea of FOX is to modify the current scaling

decisions based on planned decisions for the future. Hereby, a down-

scaling should be avoided when a VM will be required again in the

near future. In case an up-scaling should be processed, the decision

will not be modified. The decision logic how FOX changes the

decisions is depicted in Figure 2 and summarized in Algorithm 1.

First, FOX checks whether the current decision triggers a down-

scaling (Algorithm 1, L. 1). If this holds (r.t. two lower cases in Fig. 2),

all future decisions are fetched that are planned during the next

charging interval (Algorithm 1, L. 2), i.e., one hour for Amazon EC2

and ten minutes for Google Cloud Platform. Then, FOX iterates

over all future decisions (Algorithm 1, L. 3) and checks whether

the amount of the future decision is higher than the amount of the

current decision (Algorithm 1, L. 4), i.e., whether a down-scaling

should be processed even if the VM will be required in the future.

If this holds, the amount of the current decision is changed to

the number of running VMs or the amount of the future decision,

depending on which one is smaller (Algorithm 1, L. 5). In case the

amount of the future decision is smaller than the amount of the

current decision, the current decision is not modified. Finally, the

revised decision is returned.

Execute: The Execute phase is responsible for scaling the appli-

cation according to the found scaling decisions that are reviewed

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

6

Figure 2: Decision logic for comparison to future decisions.

Algorithm 1: Revising auto-scaler decisions

Input: Decision current, runningVms run, chargInterval ci

Result: revisedDecision

/* if running VMs > amount of cur. decision, revise (acc. to Fig. 2) */

1 if run > current.amount then

2 futures = getFutureDecisionsInInterval(ci);

3 foreach next in futures do

4 if next.amount > current.amount then

5 current.amount = min(run, next.amount);

6 return current

by the cost component. In this phase, the cost component is impor-

tant, again, as it can decide which VMs should be stopped in case

of down-scaling to minimize financial loss. The procedure of this

phase works as follows. First, the decisions for the current time

are given to the execution component. In case of an up-scaling

decision, the component provisions the required VMs. In case of

a down-scaling decision, the execution component requests the

VMs that introduce minimum financial loss if stopped from the

cost component. To determine the VMs that should be stopped, the

cost component takes the charging model into account. For the

Amazon EC2 charging model, the runtime of all VMs are gathered.

Then, the VMs that are closest to the next charging interval, i.e. one

hour, are selected for down-scaling. For the Google Cloud Engine,

the VMs are sorted descending by their overall runtime so that

the VM which ran longest is at the beginning of the list. Then, the

down-scaling amount of VMs is selected from the beginning of the

list. So, the VMs with longest overall runtime are selected.

3.2 Discussion

In this section, we address the research question RQ2: How can we

modify the scaling decisions so that the charged costs are reduced?

FOX is designed according to the MAPE-K control loop. Here, the

Plan phase consists the cost-aware mechanism where the knowl-

edge of the cost model is used to review the existing scaling deci-

sions from the auto-scaler to minimize costs. This mechanism is

two-fold: First, the mechanism reviews all down-scaling decisions

whether they are meaningful. That is, if a future decision defines

that the instances that should be stopped will be required in a few

minutes, the down-scaling is not executed or reduced executed.

Second, in case of a reviewed down-scaling decision that should

be executed, the VMs are stopped that reduce the lowest financial

loss, i.e., the instances that are closest to the next charging interval

are stopped in case of Amazon EC2. For the Google Cloud Platform

cost model the VMs with the longest runtime are stopped.

4 TOOLS

The following section introduces three categories of tools that are

used in this work: forecaster, auto-scaler and elasticity benchmark-

ing framework.

4.1 Forecaster

The forecast component of FOX is able to access multiple different

forecaster. In this work a simple forecaster is used where the values

of the last day are returned as forecast values for the next day.

So, the forecast value for the next interval is the observed value

24 hours earlier. Though, different forecasting approaches can be

used. Telescope, e.g., is a hybrid forecasting tool that is designed to

perform multi-step-ahead forecasts for univariate time series, while

maintaining a short runtime [28]. Besides Telescope, tBATS [9] or

ARIMA [1] can be used as forecaster as well.

4.2 Auto-Scalers

For the evaluation of FOX, we selected a subset of the most cited and

public available auto-scalers proposed in the survey of T. Lorido-

Botran et al. [17].

React: In 2009, Chieu et al. [8] present a reactive scaling algo-

rithm for horizontal scaling.

React provisions VM resources based on a threshold or scaling in-

dicator of the web application. The indicators consist of the number

of concurrent users, the number of active connections, the number

of requests per second, and the average response time per request.

React gathers these indicators for each VM and calculates the mov-

ing average. Afterwards, the current web application VMs with

active sessions above or below the given threshold are determined.

Then, if all VMs have active sessions above the threshold, new web

application instances are provisioned. If there are VMs with active

sessions below the threshold and with at least one VM that has no

active session, idle instances are removed.

Adapt: In 2012, A. Ali-Eldin et al. [2] propose a proactive auto-

scaler that supports horizontal scaling. It contains a model of each

service of the cloud based on a closed loop control system. Adapt

models the infrastructure using queueing theory as G/G/n stable

queue with variable number of servers n. Using this model the

authors build two adaptive controllers that are parameter indepen-

dent. Any performance metric can be used as controlled parameter.

Adapt estimates the future service capacity using a gain parameter

that determines the estimated change in the workload in the future.

The two controllers are built by using two different gain parame-

ters: the periodical rate of change of the system load and the ratio

between the change in the load and the average system service rate

over time.

Reg: In 2011, W. Iqbal et al. [13], introduce their proactive auto-

scaler that uses response times to find scaling decisions to remove

bottlenecks. A reactive model checks if the capacity is less than the

load, and makes a scale-up decision. For down-scaling, a proactive

mechanism decides when and how much to deprovision. Therefore,

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

7

a regression model is used to predict the number of VMs required

at each time. This model is updated every time a new observation

is added. The reactive mechanism feeds these observations to the

proactivemechanism at every observation interval. Then, themodel

is recalculated using the complete history of the workload. If the

current load is lower than the capacity, the model determines the

required amount of VMs that can fulfill this load.

4.3 Elasticity Benchmarking Framework

In order to evaluate the two approaches, we use the BUNGEE Cloud

Elasticity Benchmark controller [11]. The working principle is de-

picted in Figure 3. On the left side, the system under test (SUT) is

depicted. It contains the IaaS cloud that hosts the multi-tier appli-

cation and the scaling controller. On the right side, the experiment

controller (BUNGEE) with its four phases is illustrated. First, in the

System Analysis, the controller constructs a discrete mapping func-

tion for the SUT that determines the associated minimum amount

of resources required to meet the SLOs (Service Level Objectives)

for each load intensity. Then, the second phase, called Benchmark

Calibration, uses the mapping from step one to generate identical

changes in the curve of the demanded resource units on every plat-

form under comparison. Based on this mapping and a predefined

workload profile, the Measurement phase stresses the SUT while

BUNGEE monitors the supplied VMs. Finally, in the Elasticity Eval-

uation phase, the elasticity and user-oriented metrics based on the

collected monitoring data are calculated.

Figure 3: Elasticity Benchmarking Framework.

5 EVALUATION AND EXPERIMENT

DESCRIPTION

The evaluation is split into multiple parts. First, we explain the

elasticity metrics we use for evaluating the performance of the auto-

scaling mechanism. Second, we introduce the cost metrics. We use

these metrics to evaluate FOX and its cost saving potential. Third,

we describe the experiment environment. Fourth, we explain the

plots made for evaluating the scaling behavior of the auto-scaling

mechanism without and with FOX in the methodology section.

Fifth, we present the evaluation that contains detailed results for

the experiments using React on the BibSonomy trace. Due to space

limitations, we summarize the experiments for Adapt and Reg using

BibSonomy in a table and omit the plots. Afterwards, we present the

results of the experiment using React on the IBM workload using a

detailed metric evaluation. Finally, we summarize the assumptions

and limitations of the experiments and discuss whether the results

can be generalized.

5.1 Elasticity Metrics

We use system-oriented elasticity metrics endorsed by the Re-

search Group of the Standard Performance Evaluation Corporation

(SPEC) [12] for quantifying the performance of FOX in context of

auto-scaling. In particular, we use the provisioning accuracy and

the wrong provision time share.

For the following equations, we define:

• T as the experiment duration and time t ∈ [0,T]
• st as the resource supply at time t
• dt as the demanded resource units at time t
• n as the number of tiers

The demanded resource units dt are the minimal amount of VMs

required to meet the SLOs under the load intensity at time t . Δt de-
notes the time interval between the last and the current change

either in demand d or supply s . The curve of demanded resource

units d over time T is derived by BUNGEE, see Section 4. The

resource supply st is the monitored number of running VMs at

time t .

Provisioning accuracy θU and θO : The provisioning accu-

racy describes the relative amount of resources that are under-

provisioned, respectively, over-provisioned during the measure-

ment interval. In other words, the under-provisioning accuracy θU
is the amount of missing resources normalized by the current de-

manded resource units that are required to meet the SLOs nor-

malized by the experiment time. Similarly, the over-provisioning

accuracy θO is the amount of resources that the auto-scaler supplies

in excess. The range of this metric is the interval [0,∞), where 0

is the best value and indicates that the supply curve lays on the

demand curve during the entire measurement interval.

θU [%] :=
100

T
·

T∑
t=1

max(dt − st , 0)

dt
Δt

θO [%] :=
100

T
·

T∑
t=1

max(st − dt , 0)

dt
Δt

Wrong provisioning time share τU and τO : The wrong pro-
visioning time share captures the time in which the system is in

an under-provisioned, respectively over-provisioned, state during

the experiment interval, i.e., the under-provisioning time share τU
is the time relative to the measurement duration, in which the

system is under-provisioned. Similarly, the over-provisioning time

share τO is the time relative to the measurement duration in which

the system is over-provisioned. The range of this metric is the in-

terval [0, 100]. The best value 0 is achieved, when the system has

during the measurement no over- or under-provisioning.

τU [%] :=
100

T
·

T∑
t=1

max(sдn(dt − st), 0)Δt

τO [%] :=
100

T
·

T∑
t=1

max(sдn(st − dt), 0)Δt

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

8

Multi-tier Auto-scaling Deviation σn : In order to evaluate

the performance of FOX according the introduced system oriented

elasticity metrics, we propose to calculate the deviation of the scal-

ing behavior across each tier compared to the theoretically optimal

auto-scaler. The theoretically optimal auto-scaler is assumed to

know the future load. Therefore, it knows when and how much

the demanded resources change. For calculating the auto-scaling

deviation, the aforementioned metrics provisioning accuracy (θU ,

θO) and wrong provisioning time share (τU , and τO) are considered.

As these metrics calculate the deviation of the supplied resources

to the demanded, the vector of the theoretical optimal auto-scaler

is assumed to be the zero vector. For the determination of the devi-

ation, we use the Minkowski distance with these vectors. If FOX is

compared to the theoretically optimal auto-scaler, the Lp -norm can

be used as the Minkowski distance between a vector and the zero

vector is equal to the norm. We set p to the value 4 as we have four

dimensions. Thus, we define the multi-tier auto-scaling deviation

σn as follows, where n is the number of tiers:

σn [%] =

(
n∑
i=1

(
θ4U ,i + θ

4
O,i + τ

4
U ,i + τ

4
O,i

) n
4

) 1
n

SLO violation rate ϕ: In addition to the system oriented met-

rics provisioning accuracy and wrong provisioning time share, the

Service Level Objective (SLO) violation rate is taken into account.

This metric shows how many requests the application has handled

within the specified SLOs. Therefore, the requests violating the SLO

are divided by the amount of sent requests during the experiment.

In this work, the SLOs are specified using the response time: 95%

of all requests have to be handled within two seconds.

5.2 Cost Metrics

As FOX is a cost-aware mechanism, cost metrics are also taken into

account for the evaluation. To this end, we consider the instance

time, however, we have to distinguish between two different in-

stance times: accounted instance time and charged instance time. The

accounted instance time is the total runtime of all VMs of all tiers.

The charged instance time is the runtime, the public cloud provider

charges. Figure 4 shows both instance times for the Amazon EC2

pricing model. The red blocks represent the charged instance time

and the green blocks the accounted instance time. Resource in-

stance 1 has on the left an accounted instance time of 1.25 and

is charged for two hours as all started hours are charged full no

matter if the resource is stopped earlier. On the right the accounted

instance time matches the charged instance time of one hour. The

second resource instance is started three times and runs only for a

few minutes each time. However, it is charged for three full hours,

even if the previous charging interval is still running. The third

resource instance runs for a bit more than two hours but is charged

for three hours. So, all started hours are rounded to a full hour

charged instance time. In addition, each start of the same instance

is considered to be a completely new instance without recognition

of previous and still running charging intervals.

Cost saving rate Π: For a quantification of the cost savings

FOX can provide, we introduce the cost saving rate metric Π. This
metric compares the instance times of the auto-scaler (costAS) to the

Figure 4: This example shows which instance times are ac-

counted and which instance times are charged.

instance times of a naive approach (costNaive). The naive approach

is assumed to provision all available resources at the start of the

experiment and does not have any auto-scaling mechanisms, i.e., all

available resources are running throughout the experiment. Both

types of instance times are considered and a cost saving rate for

accounted instance times (Πa), respectively, charged instance time

Πc is calculated. The range of this metric is in the interval (−1,∞).

If the value is negative, costs are saved. The lower the value is in

the negative range the more costs are saved. If the value is greater

or equals zero, the mechanism spends more or equal cost than the

naive approach.

Πx [%] = 100 ·

(
costAS

costNaive
− 1

)

5.3 Experimental Description

For the experimental evaluation, we designed a multi-tier applica-

tion. It consist of three tiers with a standard workflow: The pre-

sentation tier (pt) receives requests and sends them to the business

tier. An instance of the presentation tier has a processing rate of 17

requests per second. The business tier (bt) processes the forwarded

requests but has a predefined number of serving units. This intro-

duces a limitation of the number of parallel executions per instance

to ten requests per second. Afterwards, the results are sent to the

database tier (dt), that persists the results. The number of parallel

database accesses per instance is limited to 25 per second. Finally,

the results are sent back to the presentation tier that sends the

response to the client. The tiers of the application are configured

individually. There are different amounts of VM instances that can

be provisioned per tier. At the presentation tier, 15 VMs can be pro-

visioned. The business tier can be scaled to 25 VMs and the database

tier can have 10 VMs. This configuration is made due to hardware

limitations of the servers of our private cloud environment. Based

on the request rates that can be served per tier and VM, 17 (pt),

10 (bt) and 25 (dt), the maximum arrival rate the application can

handle with all VMs provisioned is 250 per second.

In order to stress the application with authentic workloads with

time-varying behavior, we choose two real world traces: (i) Bib-

Sonomy and (ii) IBM. The BibSonomy represents HTTP requests to

servers of the social bookmarking system BibSonomy (see the paper

of Benz et al. [4]) during April 2017. The IBM Customer Information

Control System (CICS) transactions trace captures four weeks of

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

9

recorded transactions on a z10 mainframe CICS installation. Each

trace was sampled in 15 minute intervals, i.e., one day consists of

96 data points. For our experiments, we accelerate each trace by

the factor of 7.5. That is, one data point for each two minutes. For

having an internal repetition, we select two days for each trace.

The experiments are conducted in our private cloud infrastruc-

ture. The cloud consists of eleven homogeneous, virtualized Xen-

Server hosts. Eight of them are managed by Apache CloudStack11.

The distributed application is deployed on the CloudStack envi-

ronment. The last three servers are not part of the CloudStack

environment and are used for hosting (i) the load-balancer (Citrix

Netscaler12) and the cloud management for CloudStack, (ii) the

auto-scaling mechanisms and FOX, and (iii) the load driver and the

experiment controller. The specification of each physical machine

and worker VM can be found in Table 1.

Table 1: Specification of the Servers.

Criteria Server Worker VMs

Model HP DL160 Gen9 –

Operating System Xen-Server Ubuntu 16.06

CPU 8 cores 1 vcore

Memory 32 GB 2 GB

5.4 Methodology

All shown figures in the following have the same structure: a de-

mand versus supply graph for each tier at the top and a request

evaluation at the bottom. All graphs have the experiment duration

of about 385 minutes at the x-axis. The y-axis shows the number of

VMs for the demand supply plot, and the requests per second for

the request evaluation. The demand and supply graph shows the

demand as black dashed line and the supply as a blue solid line. If

the supply line falls below the demand line there are too less VMs

provisioned. In case the supply line exceeds the demand line, too

many VMs are instantiated. So, the optimal auto-scaler would result

in a supply line matching the demand line during the experiment.

The request evaluation graph shows the sent requests as a black

dashed line, the requests processed conform to the SLO as green

solid line and the requests that violate the SLOs as red dashed and

dotted line. The sum of the SLO conform and SLO violation lines

result in the sent request line. That is, if the green line matches

the black line and the red line is zero during the experiment all

requests have been served within the SLO. If the red line is not equal

to zero and the green line drops below the black line, more SLO

violations occured. An user-oriented auto-scaler tries to configure

the application so that all requests can be served within the SLO

and therefore, the green line should match the black line.

5.5 Experiment Results

As mentioned earlier, the evaluation of FOX is based on two dif-

ferent workload traces: BibSonomy and IBM. In addition, three

different auto-scalers are used to show that FOX can improve the

behavior of multiple auto-scalers. Due to space limitations, detailed

11Apache CloudStack: https://cloudstack.apache.org/
12Citrix Netscaler: https://www.citrix.de/products/netscaler-adc/

evaluations are presented only for React without and with FOX for

both workload traces. Additionally, for the BibSonomy workload

trace plots are shown where the scaling behavior with and without

FOX can be observed. Due to space limitations, the evaluation for

the other auto-scalers is limited to the BibSonomy workload and

the results are shown in summary in Table 3.

React on the BibSonomy workload: The scaling behaviors

of React without, respectively with FOX are shown in Figure 5,

respectively Figure 6. Figure 5 shows that React performs many

adaptations to match the current demand. In some up-scaling cases,

React starts the instances too late and under-provisioning occurs

that results in increasing SLO violation rates at the bottom of the

figure. However, Reactmatches the current demandmost of the time.

Figure 6 shows the behavior of React with FOX using the Amazon

EC2 cost model. At the top three plots, the unstable behavior of

React is smoothed when using FOX. The supply curve tends to over-

provision the amount of VMs. That is, the supply curve stays above

the demand curve most of the time. However, some scaling actions

are performed to reduce the amount of unused VMs if meaningful.

As the supply curve lies above the demand curve most of the time,

the SLO violations are reduced to a minimum as can be seen at

the bottom of the figure. This is the behavior, we expected, as FOX

performs down-scaling only if the instances that should be released

will not be used in the future.

Table 2: Elasticity metrics results for React on the BibSon-

omy trace.

Tier Metric React FOXA FOXG

1 θU 2.65% 0.45% 0.62%

1 θO 33.29% 66.08% 57.91%

1 τU 16.48% 3.04% 3.92%

1 τO 68.05% 93.57% 91.01%

2 θU 6.10% 0.99% 1.53%

2 θO 20.80% 54.79% 47.25%

2 τU 35.34% 6.67% 8.17%

2 τO 52.18% 88.54% 85.45%

3 θU 2.22% 0.15% 0.47%

3 θO 27.93% 82.97% 62.66%

3 τU 13.45% 1.12% 2.65%

3 τO 57.97% 96.03% 91.71%

overall ϕ 12% 3% 3%

overall σ3 89% 144% 134%

The evaluation of the elasticity metrics show the same results

as observed in the figures. Table 2 shows the elasticity metrics for

React without and with FOX for Amazon EC2 and Google Cloud

Platform cost model on the BibSonomy workload. At the first tier,

the provisioning accuracy for under-provisioning of React is about

2% while the provisioning accuracy for the experiments with FOX

is about 0.5%, so the under-provisioning at the first tier is reduced

by 75%. However, the over-provisioning accuracy for React is about

33% and for the experiments with FOX it is 66%, respectively 58%

for Amazon EC2, respectively, Google Cloud Platform cost model.

In addition, the under-provisioning time share of React without

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

10

FOX is 16% and for the experiments with FOX it is reduced to 3%

and 4%. The over-provisioning time share for React is 68% and for

the experiments with FOX larger than 90%. The scaling behavior

at the other tiers is comparable to the one at the first tier. The

SLO violation rate of React is 12% and for the experiments with

FOX the violation rate is 3%. So, the SLO violation rate is reduced

by 75% when using FOX. However, the auto-scaling deviation for

React is 89% and for the experiments with FOX the deviation is

larger than 100%. For comparison, the auto-scaling deviation for the

Naive approach is 221%. So, a trade-off between SLO violation rate

and auto-scaling deviation can be accessed. This is the expected

behavior of FOX. It reduces under-provisioning phases by delaying

or cancelling scaling down actions if future decisions state that the

instances will be required. Hereby, the auto-scaler performance

becomes worse in trade for a reduced SLO violation rate.

The evaluation based on the cost aspects is summarized in Table 3.

For the BibSonomy workload all three auto-scalers are evaluated.

First, the results of React are discussed. The cost saving rate for

charged costs (Πc) compares the charged instance time of the auto-

scaler run with the naive scenario. The value of -5% shows that the

charged costs are reduced by 5% when using React without FOX

for the Amazon EC2 cost model. FOX is able to reduce the costs

by 26% for the Amazon EC2 cost model. So, FOX saves 21% more

costs than the experiment without FOX. This gain is caused by the

down-scaling logic of FOX, as a down-scaling is only executed if

the instances are not required in the near future. In the run without

FOX, many instances are stopped due to the actual request rate

but are again provisioned when the load increases. This introduces

additional charging intervals to start with the Amazon EC2 cost

model as described earlier. This behavior is reduced when using

FOX and the charged costs are lowered. The cost saving rate for

accounted instance times (Πa) compares the accounted instance

times to the naive approach where all instances run throughout

the experiment. The value -45% for React with the Amazon EC2

cost model shows that the accounted instance time is reduced by

45% when using React in comparison to the naive approach. When

using FOX the accounted instance time is only reduced by 28%, i.e.,

FOX supplies more instance time than React without FOX. This

also results in a significantly reduced SLO violation rate from 12%

when using React to 3% when using FOX for the Amazon EC2 cost

model. However, this can only be achieved in trade for a worse auto-

scaling performance in terms of elasticity metrics. In summary, for

the Amazon EC2 cost model, the costs can be reduced by FOX while

the accounted instance time is increased. When comparing React

without FOX to React with FOX for the Google Cloud Platform cost

model, it can be seen that the charged costs saving rate matches the

accounted cost saving rate. So, there is no significant cost savings

when using the Google Cloud Platform cost model for FOX. This

can be explained by the cost model, as every minute is charged

separately and there is no rounding to the next full hour as seen

for the Amazon EC2 cost model.

Adapt on the BibSonomyworkload: During the evaluation

of Adapt with the BibSonomy workload the results show similar

behavior as seen for React. When looking at the values of Adapt

without FOX for the Amazon EC2 cost model, it can be seen that the

SLO violation rate is 28% and the auto-scaling deviation is 86%. The

accounted costs are reduced by 57% compared to the naive approach

and the charged costs are only reduced by 40%. In comparison to

the run with FOX, the SLO violation shows a significant decrease

to 2% but with a doubled auto-scaling deviation. When looking

at the cost saving rates, the accounted costs are reduced less, so

FOX manages to supply more accounted instance time. In addition,

the charged costs are reduced by 43%. The increased amount of

accounted instance time results in a significant decrease of SLO

violation rate from 28% to 2% in trade for auto-scaling performance.

The run with the Google Cloud Platform cost model shows similar

behavior. The SLO violation rate is reduced significantly from 28%

to 3% when comparing Adapt without and with FOX. However, the

auto-scaling deviation is doubled. The accounted instance time is

reduced by 57% for the run of Adapt without FOX and the charged

costs are reduced by 56%. The evaluation with FOX shows that the

accounted instance time and charged costs are reduced only slightly

but the SLO violation rate is reduced by a significant amount.

Reg on the BibSonomy workload: The third auto-scaler we

evaluated is called Reg. The experiment using Reg without FOX

shows specific characteristics of Reg. At random points of the ex-

periment, drops in the supply curve can be detected, where all VMs

are stopped and immediately provisioned in the next interval. The

plots of the experiment using Reg with FOX show that these drops

in the supply curve are removed by FOX. The results for elasticity

metrics and cost saving rates are summarized in Table 3. The run

of Reg without FOX for the Amazon EC2 cost model shows a SLO

violation rate of 22% and an auto-scaling deviation of 77%. The

accounted instance time is reduced by 54% in comparison to the

naive approach and the charged costs are reduced by 5%. When

using FOX, the SLO violation rate is reduced to 4% but the auto-

scaling deviation increases. The accounted saving rate is 35%, so

more accounted instance time is supplied in comparison to the run

of React without FOX. The charged cost saving rate is 35% that is

30% higher than without FOX. So, for the Amazon EC2 cost model,

FOX is able to supply more accounted instance time while reduc-

ing the charged costs. This also results in a significant lower SLO

violation rate of only 4%. The evaluation of React without and with

FOX using the Google Cloud Platform cost model shows that React

without FOX has a SLO violation rate of 22% while the run with

FOX has a reduced SLO violation rate of only 11%. The auto-scaling

deviation of the run without FOX is 77% and slightly increased for

the run with FOX. The accounted cost saving rate is 53% for the

run without FOX and 39% for the run with FOX. The charged cost

saving rate is reduced by React by 54% and for the run with FOX

by 39%. So, FOX supplies more accounted instance time that results

in a significant lower SLO violation rate.

React on the IBMworkload: In order to evaluate FOX with

different workloads, the IBM workload is selected in addition to

the BibSonomy trace. Due to space limitations, only the evaluation

of React using the elasticity metrics in Table 4 and the cost saving

rates summarized in Table 3 are presented and the plots are omitted.

First, the elasticity metrics are discussed. The under-provisioning

accuracy is reduced for the first tier from about 2% to 1% with FOX.

The over-provisioning accuracy is slightly increased from 86% to

91%, respectively 89%. The under-provisioning time share at the

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

11

Table 3: Cost metrics results for the BibSonomy trace.

BibSonomy IBM

React Adapt Reg React

Metric ReactA FOXA ReactG FOXG AdaptA FOXA AdaptG FOXG RegA FOXA RegG FOXG ReactA FOXA ReactG FOXG

ϕ 12% 3% 12% 3% 28% 2% 28% 3% 22% 4% 22% 11% 12% 4% 12% 5%

σ3 89% 144% 89% 134% 86% 209% 86% 187% 77% 121% 77% 100% 143% 168% 143% 156%

Πa -45% -28% -45% -32% -57% -43% -57% -11% -54% -35% -53% -39% -59% -51% -59% -53%

Πc -5% -26% -44% -32% -40% -43% -56% -10% -5% -35% -54% -39% -42% -51% -59% -53%

Figure 5: Scaling behavior of React without FOX on the BibSonomy trace with Amazon EC2 cost model.

first tier is reduced when using FOX from about 8% to 5%. The over-

provisioning time share is increased from 86% to 90%, respectively

89%. A similar behavior for the other tiers can be derived from the

metrics in the table. The SLO violation rate of React is 12% while

the rate for the experiments using FOX is reduced significantly

to 4%, respectively 5%. The auto-scaling deviation shows a slight

increase when using FOX. So, FOX focuses on a trade-off between

auto-scaler performance and SLO violation rate.

The cost saving rates shown in Table 3 show for the run with

Amazon EC2 cost model that React reduces the charged instance

times by 42% compared to the naive approach. When using FOX the

charged costs are reduced by 51%. The accounted instance time for

React without FOX is reduced by 59% in comparison to the naive

approach. FOX only reduces the accounted instance times by 51%.

So, FOX supplies more accounted instance time while reducing the

costs in comparison to the run of React without FOX. This increased

accounted instance time results in a reduction from 12% to 4% SLO

violations. However, this can only be achieved in trade for a worse

auto-scaling performance in terms of elasticity metrics. When com-

paring the charged costs for the Google Cloud Platform charging

model, For the Google Cloud Platform, the results show, that FOX

supplies more accounted instance time, as the saving rate is lower

as in the run without FOX, while the charged costs remain stable

when using FOX. This can be explained by the charging interval

of one minute, as the rounding overheads to the next charging

intervals are very small. Though, the SLO violation rate is reduced

from 12% to 5% when using FOX. Again, the auto-scaling deviation

is increased when using FOX.

5.6 Threats to Validity

In order to perform the above discussed measurements several

assumptions had to be made. These assumptions may reduce the

expressiveness of the results. All assumptions and their effect on

the results are discussed in the following. First, the set of experi-

ments is run in a private cloud environment under controlled con-

ditions for reproducible performance-related results. The cost and

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

12

Figure 6: Scaling behavior of React with FOX on the BibSonomy trace with Amazon EC2 cost model.

Table 4: Elasticitymetrics results for React on the IBM trace.

Tier Metric React FOXA FOXG

1 θU 1.93% 1.11% 1.02%

1 θO 86.31% 90.91% 88.61%

1 τU 8.33% 5.59% 5.32%

1 τO 85.87% 90.11% 88.86%

2 θU 4.76% 2.07% 1.91%

2 θO 66.11% 112.59% 80.56%

2 τU 16.43% 8.29% 9.08%

2 τO 78.67% 88.62% 87.41%

3 θU 5.82% 0.97% 0.75%

3 θO 96.04% 105.07% 103.92%

3 τU 13.61% 3.97% 2.94%

3 τO 79.49% 93.62% 93.36%

overall ψ 12% 4% 5%

overall σ3 143% 168% 156%

elasticity-related mechanisms work independent of an experienced

performance variability of a public environment. Thus, the obtained

results shall be meaningful for the public cloud environments. Sec-

ond, the results are strongly dependent on the used auto-scaling

mechanism. Therefore, three different auto-scalers that are intro-

duced in the literature are used and compared. However, several

other auto-scaler exist and the experiments could be expanded to

include more auto-scalers. However, this work does not focus on

optimal auto-scaling decisions. Third, the results of the cost-aware

mechanism FOX depend on the quality of the forecast approach

that is used. We used a simple forecasting method that returns the

values of the last day as forecast. We proposed multiple alterna-

tive forecaster that could be included in the experiments to reduce

variations in the results. Fourth, the experiments are conducted

using one multi-tier application with homogeneous request types

per tier. Other applications could behave in a different way and the

results would be changed. Finally, only two workloads, BibSonomy

and IBM are used to stress the application. The experiments should

be expanded to use multiple other real world workload traces to

show that FOX has similar results on many workloads. The results

proposed in this paper cannot be generalized as there are too many

assumptions and restrictions made for the experiments. However,

the results have shown that FOX behaves as desired and is able to

reduce the charged costs while increasing the accounted instance

time and hereby reducing the SLO violation rate in the public cloud

scenario.

5.7 Discussion

In this section, we address the research question RQ3: How well

does FOX perform in the context of auto-scaling? The results of the

evaluation show that FOX is able to decrease the charged costs

significantly while increasing the accounted instance time for the

Amazon EC2 cost model compared to the plain auto-salers. This

results in reduced SLO violation rates but higher values for the

metrics reflecting over-provisioning. However, this can only be

achieved in trade for a higher auto-scaling deviation. For the Google

Cloud Platform cost model, smaller improvements are measured.

This can be explained by the nature of this cost model. All results

are summarized in the following.

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

13

React on BibSonomy workload.

• React performs many scaling operations to match the de-

mand as close as possible.

• With FOX, the supply curve is smoothed, tends to over-

provision, and the oscillations are removed.

• FOX reduces the charged costs by 21% for the Amazon EC2

cost model.

• FOX provisions 17% more accounted instance time for the

Amazon EC2 costmodel and the SLO violation rate is reduced

from 12% to 3% for the Amazon EC2 cost model.

• The auto-scaling deviation increases in trade for lowered

costs for the Amazon EC2 cost model.

• The costs are not lowered for the Google Cloud Platform

cost model.

• The accounted instance time is increased for the Google

Cloud Platform cost model and the SLO violation rate is

reduced.

Adapt and Reg on BibSonomy workload.

• When using FOX the charged costs are reduced by 3% for

Adapt, respectively 30% for Reg with the Amazon EC2 cost

model.

• The accounted instance times are increased by 14%, respec-

tively 19%. This results in a decrease in the SLO violation

rates of 26%, respectively 18% for the Amazon EC2 cost

model.

• The results for the auto-scaling deviation for the Amazon

EC2 cost model and the evaluation for the Google Cloud

Platform cost model are similar to the results of React.

React on IBM workload.

• The charged costs can be reduced by 9% for the Amazon EC2

cost model, respectively 6% for the Google Cloud Platform

cost model, when using FOX.

• The accounted instance time is increased when using FOX by

8%, respectively 6%. This results in a significant decrease of

SLO violation rate from 12% without FOX to 4%, respectively

5% with FOX.

6 RELATEDWORK

The survey of T. Lorido-Botran et al. [17] gives a broad overview of

existing auto-scalers and a classification into five groups with exam-

ple implementations are proposed: (i) threshold-based rules [8, 10],

(ii) queueing theory [23, 26], (iii) control theory [2, 15], (iv) rein-

forcement learning [19, 22], and (v) time series analysis [7, 13].

In the literature, many auto-scalers exist that can be assigned

to the groups mentioned above. However, only a few auto-scalers

support cost-aware scaling. The cost-awareness of the existing

auto-scalers can be classified into three groups: (i) general cost opti-

mization by using heterogeneous VM image sizes, (ii) limiting costs

by defining a budget or run-time constraint, and (iii) optimization

of the scaling logic with knowledge of the charging models.

The first group consists of auto-scalers that find scaling deci-

sions and select the heterogeneous VM image size combination

that introduces lowest cost while still fulfilling the specified SLAs.

Example auto-scalers for this group are AutoMAP [3] and the one

from Sharma et al. [21]. AutoMAP calculates the required amount

of resources to satisfy the SLAs and then searches for a heteroge-

neous configuration. This configuration should have low costs for

the end user while still fulfilling the desired average response time.

The auto-scaler introduced by Sharma et al. greedily searches for

a configuration with low costs that has a high utilization. There-

fore, first a homogeneous configuration is calculated and then, this

configuration is translated into a heterogeneous solution. In the

paper of Brataas et al. [5], a systematic search over vertically and

horizontally scaled deployments is conducted to find cost-optimal

configurations. This information could be leveraged by an auto-

scaling mechanism to better support heterogeneous resources for

distributed applications.

The auto-scalers of the second group have budget or runtime

constraints that are specified by the user. Example auto-scalers of

this group are introduced by Vaquero et al. [24], Jiang et al. [14],

Xiong et al. [25], and Zhu and Agrawal [27]. The auto-scaler of

Vaquero et al. requires a specified maximum runtime of all VMs.

If this runtime is exceeded the application is no more scaled. The

one from Jiang et al. requires a predefined budget constraint and

SLA. It performs a trade off between cost and SLA satisfaction to

find a minimum amount of resources while still satisfying the SLAs.

Xiong et al. introduced an auto-scaler for a multi-tier application. It

first determines the required amount of resources to satisfy the SLA

on an overall basis and then it splits the new provisioned resources

based on the budget constraints to the tiers. The auto-scaler of

Zhu and Agrawal have predefined time-limit and resource budget

constraints. Within these constraints, the Quality of Service (QoS)

is optimized using control theory.

The auto-scalers of the third group have knowledge about the

charging models of the public cloud where the application is de-

ployed. The approach presented in this paper can be assigned to

this group. Example auto-scalers for this group are the ones from

Cardellini et al. [6], Naskos et al. [18], and Roy et al. [20]. The

auto-scaler introduced by Cardellini et al. has knowledge about the

costs per VM instance per time interval, here the charging inter-

val, e.g. 60 minutes for the Amazon EC2 cloud, is used. With this

knowledge the VMs are shut down immediately before the next

charging interval starts. In case a new VM should be allocated at

this time, the interval of the already running VM is renewed so that

it is not stopped and runs for another charging interval. Naskos

et al. introduce an auto-scaler for noSQL databases that is aware

of the VM charging model and knows the runtimes of all VMs. In

case of downscaling, it stops the VMs that are closest to the next

charging interval. The auto-scaler introduced by Roy et al. handles

a multi-dimensional cost-function. Besides the leasing costs of the

VMs, it includes the distance between the estimated response time

and the SLA and the reconfiguration costs. Different weights can

be assigned to the three components that may result in different

scaling decisions. The auto-scaler optimizes this function and finds

the optimum strategy with minimum costs.

FOX belongs to the third group of the cost-aware auto-scaling

classification. It combines and extends the approaches of the exam-

ple auto-scalers of this category: First, it supports more complex

charging models like the two-phased one as applied at the Google

Cloud Platform, instead of one charging interval as presented in

the paper from Cardellini et al. Second, FOX has knowledge of all

running VMs and their runtimes. With this information and the

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

14

knowledge of the charging models, the VM that is nearest to the

next charging interval can be selected in case of downscaling. A

similar mechanism is presented in the paper of Roy et al. Third,

FOX finds proactive decisions for the future. Based on these future

decisions and the knowledge of the charging model, a decision

logic is presented when a downscaling is meaningful and when

the already running VMs should stay running. None of the men-

tioned auto-scalers support future decisions and reviews the actual

decision using them and the knowledge of the charging model.

7 CONCLUSION

In this paper, we examine the problem of increasing costs when

using an auto-scaling mechanism in the public cloud environment.

Our approach, called FOX, operates as a mediator between the

application and the cloud to reduce the charged costs while still sat-

isfying the specified SLOs. Therefore, FOX is based on the MAPE-K

control loop: It monitors the application and analyzes future ar-

rival rates using a forecaster. Based on these forecasts, the future

configurations of the application are determined using the auto-

scaling mechanism. Afterwards, the cost-aware mechanism reviews

all found scaling decisions and modifies them to reduce the costs.

Finally, the modified decisions are executed. FOX has a knowledge

base, where observed and future arrival rates, as well as, the scaling

decisions are stored. The cost-aware mechanism has knowledge

about two different charging strategies: Amazon EC2, where a

hourly charging is defined, and Google Cloud Platform, where the

first ten minutes are charged fix and then, the charging switches to

a minute-by-minute charging.

The evaluation of FOX is based on a multi-tier application de-

ployed in the private cloud environment. This application is stressed

using two real world workloads: BibSonomy and IBM CICS trace.

To show that FOX can handle multiple auto-scaling mechanisms,

three auto-scalers from the literature are used for evaluation: React,

Adapt, and Reg. The results of all experiments show, that FOX is

able to reduce the charged costs significantly, while increasing the

accounted instance time for the Amazon EC2 charging model. This

results in a significant decrease of SLO violation rate in trade for

a slightly worse auto-scaling performance. For the Google Cloud

Platform charging model, smaller (6%) cost savings are achieved.

This can be explained due to the nature of the charging model, as

there are no rounding overheads charged as for the Amazon EC2

charging model.

In the future, we plan to evaluate FOXwithmore real world work-

load traces and for different applications. In addition, other forecast-

ing mechanisms like Telescope [28] will be integrated. Moreover,

the experiments of all considered auto-scalers will be expanded to

evaluate all of them at all workloads. For the future, it is planned

to publish FOX as a tool on our website13.

ACKNOWLEDGEMENTS

This work was funded by the German Research Foundation (DFG)

under grant No. KO 3445/11-1. This research has been supported

by the Research Group14 of the Standard Performance Evaluation

Corporation (SPEC).

13http://descartes.tools/
14SPEC Research: http://research.spec.org

REFERENCES
[1] R. Adhikari and R. Agrawal. 2013. An introductory study on time series modeling

and forecasting. arXiv preprint arXiv:1302.6613 (2013).
[2] A. Ali-Eldin, J. Tordsson, and E. Elmroth. [n. d.]. An Adaptive Hybrid Elasticity

Controller for Cloud Infrastructures. In IEEE NOMS 2012. IEEE, 204–212.
[3] M. Beltrán. 2015. Automatic provisioning of multi-tier applications in cloud

computing environments. The Journal of Supercomputing 71, 6 (2015), 2221–
2250.

[4] D. Benz and more. 2010. The social bookmark and publication management
system BibSonomy. VLDB 19, 6 (2010), 849–875.

[5] G. Brataas, N. Herbst, S. Ivansek, and J. Polutnik. 2017. Scalability Analysis of
Cloud Software Services. In Companion Proceedings of the 14th IEEE ICAC 2017,
Self Organizing Self Managing Clouds Workshop (SOSeMC 2017). IEEE.

[6] V. Cardellini, E. Casalicchio, F. Presti, and L. Silvestri. 2011. Sla-aware resource
management for application service providers in the cloud. In First International
Symposium on Network Cloud Computing and Applications (NCCA). IEEE, 20–27.

[7] G. Chen andmore. 2008. Energy-Aware Server Provisioning and LoadDispatching
for Connection-Intensive Internet Services.. In NSDI, Vol. 8. 337–350.

[8] T. C Chieu, A. Mohindra, A. A Karve, and A. Segal. 2009. Dynamic scaling of
web applications in a virtualized cloud computing environment. In E-Business
Engineering, 2009. ICEBE’09. IEEE International Conference on. IEEE, 281–286.

[9] A. De Livera, R. Hyndman, and R. Snyder. 2011. Forecasting time series with
complex seasonal patterns using exponential smoothing. J. Amer. Statist. Assoc.
106, 496 (2011), 1513–1527.

[10] R. Han and more. 2012. Lightweight Resource Scaling for Cloud Applications. In
IEEE/ACM CCGrid 2012. IEEE, 644–651.

[11] N. Herbst, S. Kounev, A. Weber, and H. Groenda. 2015. BUNGEE: An Elasticity
Benchmark for Self-Adaptive IaaS Cloud Environments. In SEAMS 2015. IEEE
Press, 46–56.

[12] N. Herbst and more. 2016. Ready for Rain? A View from SPEC Research on the
Future of Cloud Metrics. CoRR abs/1604.03470 (2016).

[13] W. Iqbal, M. Dailey, D. Carrera, and P. Janecek. 2011. Adaptive Resource Provi-
sioning for Read Intensive Multi-tier Applications in the Cloud. Future Generation
Computer Systems 27, 6 (2011), 871–879.

[14] J. Jiang, J. Lu, G. Zhang, and G. Long. 2013. Optimal cloud resource auto-scaling
for web applications. In 13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2013. IEEE, 58–65.

[15] E. Kalyvianaki, T. Charalambous, and S. Hand. 2009. Self-adaptive and Self-
configured CPU Resource Provisioning for Virtualized Servers Using Kalman
Filters. In ACM ICAC 2009. ACM, 117–126.

[16] J. O. Kephart and D. M. Chess. 2003. The Vision of Autonomic Computing.
Computer 36, 1 (Jan. 2003), 41–50. https://doi.org/10.1109/MC.2003.1160055

[17] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano. 2014. A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments. Journal of
Grid Computing 12, 4 (2014), 559–592.

[18] A. Naskos, A. Gounaris, and P. Katsaros. 2017. Cost-aware horizontal scaling of
NoSQL databases using probabilistic model checking. Cluster Computing (2017),
1–15.

[19] J. Rao and more. [n. d.]. VCONF: a Reinforcement Learning Approach to Virtual
Machines Auto-configuration. In ACM ICAC 2009. ACM, 137–146.

[20] N. Roy, A. Dubey, and A. Gokhale. 2011. Efficient autoscaling in the cloud using
predictive models for workload forecasting. In IEEE International Conference on
Cloud Computing (CLOUD), 2011. IEEE, 500–507.

[21] U. Sharma, P. Shenoy, and D. Towsley. 2012. Provisioning multi-tier cloud ap-
plications using statistical bounds on sojourn time. In Proceedings of the 9th
international conference on Autonomic computing. ACM, 43–52.

[22] G. Tesauro, N. K Jong, R. Das, and M. Bennani. 2006. A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation. In IEEE ICAC 2006. 65–73.

[23] B. Urgaonkar and more. 2008. Agile Dynamic Provisioning of Multi-tier Internet
Applications. ACM TAAS 3, 1 (2008), 1.

[24] L. Vaquero, D. Morán, F. Galán, and J. Alcaraz-Calero. 2012. Towards runtime
reconfiguration of application control policies in the cloud. Journal of Network
and Systems Management 20, 4 (2012), 489–512.

[25] P. Xiong and more. 2011. Economical and robust provisioning of n-tier cloud
workloads: A multi-level control approach. In 31st International Conference on
Distributed Computing Systems (ICDCS), 2011. IEEE, 571–580.

[26] Q. Zhang, L. Cherkasova, and E. Smirni. 2007. A Regression-based Analytic
Model for Dynamic Resource Provisioning of Multi-tier Applications. In IEEE
ICAC 2007. IEEE, 27–27.

[27] Q. Zhu and G. Agrawal. 2010. Resource provisioning with budget constraints
for adaptive applications in cloud environments. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing. ACM, 304–
307.

[28] M. Züfle and more. 2017. Telescope: A Hybrid Forecast Method for Univariate
Time Series. In Proceedings of the International work-conference on Time Series
(ITISE 2017).

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

15

