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ABSTRACT
Replicating software performance experiments is difficult. A com-
mon obstacle to replication is that recreating the hardware and
software environments is often impractical. As researchers usually
run their experiments on the hardware and software that happens to
be available to them, recreating the experiments would require ob-
taining identical hardware, which can lead to high costs. Recreating
the software environment is also difficult, as software components
such as particular library versions might no longer be available.

Cheap, standardized hardware components like the Raspberry Pi
and portable software containers like the ones provided by Docker
are a potential solution to meet the challenge of replicability. In
this paper, we report on experiences from replicating performance
experiments on Raspberry Pi devices with and without Docker
and show that good replication results can be achieved for mi-
crobenchmarks such as JMH. Replication of macrobenchmarks like
SPECjEnterprise 2010 proves to be much more difficult, as they are
strongly affected by (non-standardized) peripherals. Inspired by
previous microbenchmarking experiments on the Pi platform, we
furthermore report on a systematic analysis of response time fluctu-
ations, and present lessons learned on dos and don’ts for replicable
performance experiments.
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1 INTRODUCTION
Replication of scientific work, in particular of experiments, is a
prerequisite for good scientific practice, as it allows independent
investigation of scientific claims [18]. Replicating experiments with
human subjects is inherently difficult as the subjects, their behavior,
and their opinions may differ from experiment to experiment. In
contrast, due to the different nature of the subjects, technical exper-
iments such as performance benchmarks appear to be better suited
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for replication. However, recent work indicates that different obsta-
cles also exist for such experiments. While in some experiments,
such as [14], distribution aspects of modern infrastructures were
identified as the main inhibitor to replicability, access to similar or
identical hardware prevented replication in other experiments [9].

The latter problem could be mitigated by establishing an afford-
able, common platform for a particular type of experiments. In our
previous work, we showed that cheap commodity hardware like
the Raspberry Pi allows for good replicability for the MooBench
microbenchmark [16]. However, one may also have to accept (so
far unexplained) high variances in response time.

The contribution of this paper is a discussion of experiences on
using Raspberry Pi devices for replicable performance experiments,
in particular, for different forms of benchmarks. Furthermore, we
provide an systematic analysis for possible causes of variance in
such experiments. We believe that our results and experiences can
contribute to a community effort in creating a common platform fa-
cilitating replicable performance experiments. We aim at answering
the following three research questions:

RQ 1 Which types of performance experiments can be appro-
priately replicated using the Raspberry Pi platform? We per-
form experiments of different scale on different devices and
discuss the effects, e.g., the technical setup and the typical
performance drop due to a low-cost compute platform.

RQ 2 Can component technologies be applied on a Raspberry Pi
to facilitate the replicability of performance experiments? Com-
bining a standardized platform with (technically) package-
able experiments as envisioned by Boettiger [2] would facili-
tate systematic replicability. Therefore, we analyze the per-
formance observations with and without using the Docker
container platform.

RQ 3 Can we identify reasons for the response time fluctuations
in microbenchmarks on the Raspberry Pi reported in [16]? In
particular, we wish to investigate whether the fluctuations
are caused by the devices themselves, i.e., may affect replica-
tion in general, or by (a part of) the software stack.

The paper is structured as follows: In Section 2, we introduce
the technical background for the used technologies. The overall
approach for setting up our experiments is described in Section 3.
In Section 4, we report on the results of different micro- and macro-
benchmark experiments on the Raspberry Pi platform. Driven by
the experiments, Section 5 investigates causes that may impact
performance experiments and their replication, in particular for the
fluctuations reported in [16]. Related work is discussed in Section 6,
and Section 7 concludes the paper.
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2 BACKGROUND
In the following paragraphs, we provide a short technical back-
ground on the Raspberry Pi platform as well as Docker. Although
there are other single-board computers available, we chose the Rasp-
berry Pi due to its popularity, software support, and widespread
availability for purchase.

2.1 Raspberry Pi
The term Raspberry Pi refers to a series of single-board computers,
developed by the Raspberry Pi Foundation.1 Originally conceived
as an affordable platform for students to learn programming and
computer science, the versatile devices have found many other uses
in recent years.

The first models of the Raspberry Pi, the Raspberry Pi 1 Models
A and B, were released in 2012. The Model A was designed for a
lower retail price, and lacks certain hardware features such as on-
board network connectivity. Both models have a single-core 32-bit
ARMv6 processor running at 700 MHz, 16KB L1 cache, 128KB L2
cache and originally had 256 MB of RAM shared between the CPU
and the GPU. In a later revision, the RAM size was increased to
512 MB. Both models use an SD card reader to host their primary
storage device. Peripherals can be attached via one (Model A) or
two (Model B) on-board USB 2.0 ports.

In 2015, the second generation of the Model B was released, the
Raspberry Pi 2 Model B. This model is based on a quad-core ARMv7
processor running at 900 MHz with 256 KB shared L2 cache. The
memory size was increased to 1 GB, and the number of on-board
USB ports was increased to 4. Furthermore, the primary storage
was changed from SD cards to MicroSDHC cards.

The current generation of the Model B, the Raspberry Pi 3 Model
B, was released in 2016. It is equipped with a quad-core 64-bit
ARMv8 processor running at up to 1.2 GHz with 512KB shared
L2 cache. However, the default firmware configuration currently
limits the CPU to running in 32-bit mode, and reports it to the
operating system as anARMv7CPU. In addition to the newCPU, the
Raspberry Pi 3 provides on-board wireless network and Bluetooth
connectivity. Shortly after the release of the Raspberry Pi 3, revision
1.2 of the Raspberry Pi 2 was released, which is also based on the
new ARMv8 CPU.

In addition to the hardware, the Raspberry Pi foundation also
provides an official Linux distribution for all Raspberry Pi models,
named Raspbian. It is based on the well-known Debian distribution,
and offers a large number of software packages for the Raspberry Pi.
The Raspberry Pi is also supported by several third-party vendors.
In particular, Oracle provides a current Java Virtual Machine for
Linux on the ARM platform, and Docker, which is further described
below, added support for the Raspberry Pi in 2016 [19]. Furthermore,
operating system images from third-party vendors are available,
such as Ubuntu and a special edition of Windows 10.

2.2 Docker
Docker2 is a container-based virtualization solution. In contrast to
virtual machines, which use a hypervisor to provide a virtual hard-
ware environment for guest operating systems, containers employ
1http://www.raspberrypi.org
2https://www.docker.com/

virtualization capabilities of the host kernel to provide a virtual
system environment for applications. Scheduling and resource man-
agement for all containers is done by the host kernel, which is also
responsible for keeping the containers isolated from each other.

This approach makes containers more „lightweight” than virtual
machines in several ways. The absence of a guest kernel avoids
the resource consumption due to the additional scheduling and
resource management inside the virtual environment. Furthermore,
the containers do not have to provide an entire operating system,
but only their required programs and libraries, allowing for smaller
images. And since no guest operating system needs to be booted
or shut down, containers can usually be started and stopped very
quickly. Due to these properties, containers have become very pop-
ular in the industry, as they allow for rapid resource provisioning
for building highly elastic applications.

As discussed in [2], Docker has several features that make it also
a promising option for replicable research. The fact that a Docker
image contains all its required dependencies (except the underlying
operating system) greatly facilitates replicating a software environ-
ment, and avoids common pitfalls such as wrong library versions.
This enables separating individual experiments as well as running
variants of an experiment, e.g., the same experiment on different
operating systems or system versions. Although it is possible to
build Docker images interactively, it is common practice to create
images by means of a so-called Dockerfile. A Dockerfile specifies
the necessary steps to build an image using a simple syntax. Thus,
it provides a human-readable specification that can, for instance,
be used to create variants or other derivations of an experiment.

A particularly interesting property of Docker images is that
images are built „on top of” other images, i.e., Docker provides an
extensionmechanism for images. Thismechanism further facilitates
variants and extensions of experiments packaged as Docker images.
Every Dockerfile must specify its base image, i.e., the image it is
derived from, with its first instruction [8]. All operations specified
by the Dockerfile are then applied on top of the base image, and the
resulting image is saved at the end of the build process. To avoid
unnecessary data replication, Docker employs a layered file system.
Each image only stores the differences to its underlying base image,
and all layers are overlaid at runtime to form the complete file
system. Moreover, a command can be specified to be executed upon
starting a container, i.e., not only the software but also the execution
and even the analysis can be packaged in a repeatable manner. By
means of environment variables, specific settings can be applied to
a container without changing the image itself.

The overlay mechanism is also applied when starting a container
off an image. All changes made to the file system by a container are
stored in a container-specific layer atop the image, while all other
images are immutable. This allows to re-use an image for multiple
containers or experiments, at the cost of runtime performance due
to the overlay file system.

Docker images can be deployed manually or using a repository.
For the latter, Docker provides a mechanism for distributing images
over a network. Images can be „pushed” to a registry and „pulled”
by the Docker engine on request. By default, Docker interacts with
the public Docker Hub3 registry provided by Docker, Inc.

3https://hub.docker.com/
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3 APPROACH
In order to assess the viability of the Raspberry Pi platform for repli-
cable performance experiments, we conducted a series of different
experiments on multiple Pi devices in different configurations. The
general approach is presented below, while the actual experiments
are described in Section 4.

Each author bought a Raspberry Pi set from the same supplier
within a time frame of two weeks. Each set comprised a Rasp-
berry Pi 3 device by vendor element14, an 8 GB SanDisk class-4 SD
card and a power supply capable of delivering 2.5 A at 5 V. These
two devices will be referred to as D1 and D2 below; the SD cards
will be referred to as C1 and C2. The intention behind this was
to have two devices that were as similar as possible. To evaluate
whether a different production lot or a potential minor revision
might affect replicability, we bought a third device D3 with the
same specifications at a local electronics shop several months later.
This device was from a different vendor (Allied Electronics). All
three devices reported to have BCM2835 CPUs (revision a02082) in
/proc/cpuinfo.

In a second step, we prepared a master installation images for
all three devices4. This image is based on Raspbian Stretch Lite,
which was released shortly before we conducted our experiments.
Raspbian Lite is a minimal variant of the Raspbian distribution
without potentially influencing components such as a graphical
user interface, a virus scanner, or automated updates. We installed
all necessary software to run the experiments, in particular, Oracle
JDK 1.8.0_144 for the armhf platform, as the OpenJDK version pro-
vided by the distribution does not contain a just-in-time compiler.
For investigating performance fluctuations in Section 5, where we
needed a direct comparison to our previous Raspberry Pi experi-
ments from [16], we used the same Raspbian Jessie Lite image as
for the original experiments.5

In order to test the effect of different storage devices, we also
used two class-10 SD cards, a Transcend Premium 400x (16 GB,
C3) and a SanDisk Ultra (16 GB, C4) as well as three commodity
USB hard disks, a Toshiba STOR.E ALU 2S (500 GB, H1), a Hitachi
Z7K320 (320 GB, H2) and a TravelStar Z7K400 (500GB, H3).

4 EXPERIMENTAL EVALUATION
In order to evaluate the replicability of performance experiments
on different Raspberry Pi devices, we ran a selection of experiments,
which are described in detail below. Experiments 1 and 2 are based
on microbenchmarks and, thus, aim at replicability at a low level,
while Experiments 3 and 4 address replicability at higher levels. It
should be noted that the experiments are conducted with the aim
of assessing replicability, not achieving a particularly high score in
any of the benchmarks employed.

4.1 Experiment 1: Microbenchmarks using the
Java Microbenchmark Harness

The Java Microbenchmark Harness6 (JMH) is a test harness for run-
ningmicrobenchmarks on the Java VirtualMachine (JVM), provided
by the OpenJDK team. Due to the dynamic compilation performed

4All (raw) material is available on https://doi.org/10.5281/zenodo.1100975
5https://doi.org/10.5281/zenodo.1003075
6http://openjdk.java.net/projects/code-tools/jmh/

public void testMethod(final int depth) {
if (depth == 0) {

return;
} else {

this.testMethod(depth - 1);
}

}

Listing 1: Test method for JMH microbenchmark

by the JVM, carrying out such benchmarks can be difficult, and sub-
tle errors can happen easily. The JMH facilitates such benchmarks
by automatically inserting warmup phases, forking multiple VM
instances, measuring execution times, and calculating important
statistical figures at the end of a benchmark run. Furthermore, the
JMH provides facilities to conveniently influence the behavior of
the just-in-time compiler. For instance, methods can be prevented
from being inlined or even being compiled at all.

We used the JMH to conduct a total of sixmicrobenchmarks. Each
microbenchmark was executed 10 times with a freshly instantiated
JVM, with a warmup phase of 20 seconds and a measurement phase
of 20 seconds for each run. The first four benchmarks measured
the throughput of calling a simple recursive method (see Listing 1)
with a recursion depth of 10. This setup is similar to MooBench,
the micro-benchmark we evaluated in [16], which is also used in
Experiment 2 and in the analysis in Section 5. Benchmark 1 was run
with default compilation, Benchmark 2 explicitly requested inlining
of the test method, Benchmark 3 explicitly supressed inlining, and
Benchmark 4 suppressed any compilation of the test method.

The two remaining microbenchmarks aimed at a rough com-
parison of the input/output (I/O) behavior of the different devices.
Benchmark 5 measured the throughput of a method, which wrote
four bytes of data to a file in each invocation, and synced the writes
to disk every 100,000 invocations. Four bytes per invocation were
chosen as to prevent excessive growth of the test file, so that the
benchmarks could also be run on the SD cards. Benchmark 6 was
similar, but sent the data to a remote machine via TCP.

Selected results from the microbenchmarks are shown in Table 1.
As evident from comparing lines 1 and 4, there is no significant
difference between the two devices D2 and D3 in Benchmark 1 with
the same peripherals, as the confidence intervals overlap. The same
is true for Benchmarks 2 and 3 (lines 5 to 8). For Benchmark 4, the
confidence intervals do not overlap; however, the gap between the
intervals is almost neglegible. As evident from line 2, the benchmark
runs slightly slower under Docker, with a slightly higher variance.
Although not shown in Table 1, the results for D1 are rather similar.

As expected, the results from Benchmark 5 vary significantly
with the storage devices; none of the peripherals was able to saturate
the Pi’s storage interface. Again, exchanging only the Pi devices
yielded no significant difference in the results (see lines 11 and 17).
Surprisingly, hard disk H1 achieved a considerably higher mean
throughput when running under Docker, however, with a much
higher variance (see line 12). This behavior seems to be device-
specific as it did not occur with disk H2 (see lines 13 and 14), but
was replicable in other runs. Possibly, sync requests are handled
differently for the native file system and the overlay file system
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Line # Benchmark Mean Throughput
(in invocations / s)

99.9 % CI Throughput
(in invocations / s)

σ
(in invocations / s)

1 Benchmark 1 (D2 – H1, native) 12,322,204.022 [12,314,425.859 ; 12,329,982.186] 32,933.231
2 Benchmark 1 (D2 – H1, Docker) 12,299,546.551 [12,290,438.552 ; 12,308,654.549] 38,563.836
3 Benchmark 1 (D2 – H2, native) 12,299,680.408 [12,291,599.801 ; 12,307,761.015] 34,213.796
4 Benchmark 1 (D3 – H1, native) 12,314,181.630 [12,307,645.303 ; 12,320,717.957] 27,675.217
5 Benchmark 2 (D2 – H1, native) 12,323,493.925 [12,315,117.890 ; 12,331,869.960] 35,464.657
6 Benchmark 2 (D3 – H1, native) 12,328,094.938 [12,320,806.145 ; 12,335,383.730] 30,861.204
7 Benchmark 3 (D2 – H1, native) 6,416,150.780 [6,413,796.051 ; 6,418,505.508] 9,970.068
8 Benchmark 3 (D3 – H1, native) 6,417,104.725 [6,414,305.345, 6,419,904.106] 11,852.753
9 Benchmark 4 (D2 – H1, native) 410,968.302 [410,577.922 ; 411,358.681] 1,652.890
10 Benchmark 4 (D3 – H1, native) 411,604.745 [411,525.095 ; 411,684.395] 337.244
11 Benchmark 5 (D2 – H1, native) 553,927.284 [541,361.418 ; 566,493.149] 53,204.662
12 Benchmark 5 (D2 – H1, Docker) 882,408.673 [852,324.902 ; 912,492.445] 127,376.572
13 Benchmark 5 (D2 – H2, native) 773,246.941 [767,199.859 ; 779,294.023] 25,603.722
14 Benchmark 5 (D2 – H2, Docker) 699,276.759 [692,319.247 ; 706,234.271] 29,458.541
15 Benchmark 5 (D2 – C2, native) 491,016.010 [421,129.074 ; 560,902.946] 295,905.663
16 Benchmark 5 (D2 – C3, native) 682,755.400 [659,149.054 ; 706,361.746] 99,950.747
17 Benchmark 5 (D3 – H1, native) 548,804.364 [536,529.590 ; 561,079.138] 51,972.161
18 Benchmark 6 (D2 – H1, native) 195,719.580 [192,310.748 ; 199,128.413] 14,433.212
19 Benchmark 6 (D2 – H1, Docker) 188,548.713 [184,943.513 ; 192,153.912] 15,264.641
20 Benchmark 6 (D2 – H2, native) 202,397.887 [200,041.480 ; 204,754.293] 9,977.172
21 Benchmark 6 (D3 – H1, native) 195,727.533 [192,631.759 ; 198,823.306] 13,107.698

Table 1: Selected results from the JMH microbenchmarks (similar for device D1)

employed by Docker, evoking this maybe even erroneous behavior
of the drive.

For Benchmark 6, there were again no signficant differences
between the Pi devices (see lines 18 and 21). The throughput un-
der Docker was significantly lower (see line 19), which was to be
expected due to the additional network stack of the container.

Summary: The Raspberry Pi devices show highly replicable behavior
in all microbenchmarks. In I/O-related benchmarks, the storage devices
had a high influence on replicability, and one even showed highly
unexpected behavior when used with Docker.

4.2 Experiment 2: MooBench
MooBench [23] is a microbenchmark for measuring the runtime
overhead of (instrumenting) monitoring frameworks such as Kieker
and SPASS-meter, which inject so-called probes into an application
to collect statistical data at runtime. By default, MooBench executes
2,000,000 calls of a recursive test method (recursion depth 10) and
iterates the test 10 times. As baseline, MooBench performs a ’dry’
run on the test method without any instrumentation. In [16], we
applied MooBench to Kieker and SPASS-meter on a Raspberry Pi 3
platform and concluded that replicating results is possible. Here,
we extend these experiments to compare benchmarks running in a
Docker container against ’native’ runs without Docker. To allow for
comparisons of the collected data, we used the specific MooBench
setup for Kieker as reported in [16], i.e., a recursion depth of 5 and
1,000,000 calls in 10 iterations.

Table 2 summarizes the collected measurements results, more
precisely the data produced during the second half of the runs
where the executing JVM is expected to have reached a steady

state [23]. As the response time is measured by MooBench in terms
of nanoseconds, which is typically rather imprecise on Java (some
technical reports state fluctuations of about 400ns for Linux), we
report the results here with one significant decimal place Within
one type of experiment (a row in Table 2), the confidence intervals
are close to the mean and differ only in a range of at maximum 11
µs for all experiments, even for Docker. In our previous work, we
achieved similar results for the experiments using the external hard
drive and for the corresponding class-4 SD card with a spread of
21 µs for SPASS-meter and 64 µs for Kieker. However, the narrow
confidence intervals and partially high deviations also indicate
fluctuations, which we will analyze in more detail in Section 5.
Regarding the specific variances in Table 2, we observe that the
deviations differ between native execution (6 µs for SPASS-meter,
373 µs for Kieker) and Docker (174 µs for SPASS-meter, 491 µs
for Kieker). For Kieker, the deviations between native and Docker
execution are rather similar. Moreover, in our previous experiment,
the differences for SPASS-meter on the external hard drive were
around 17 µs and 1,126 µs for Kieker, and even more than 20,000
µs for runs on the SD card. Thus, we classify the deviations for the
I/O intensive Kieker experiments to be within the normal range
(probably dominated by the hard drive), while for the less I/O-
intensive SPASS-meter experiments, the differences may be caused
by the Docker virtualization.

Summary: The Raspberry Pi devices allow for good replication of
microbenchmarks for instrumenting monitoring frameworks. This
also applies to running inside Docker containers, provided that we
accept a certain deviation in response time.
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Experiment D1, C1, H3 D2, C3, H2 D3, C3, H2
mean 95% CI σ mean 95% CI σ mean 95% CI σ

Baseline 0.5 [0.5; 0.5] 0.3 0.5 [0.5; 0.5] 0.2 0.5 [0.5; 0.5] 0.4
SPASS-meter native 153.5 [153.5; 153.5] 48.9 145.0 [145.0;145.0] 50.4 151.6 [151.6; 151.7] 44.8
SPASS-meter Docker 152.0 [152.0; 152.0] 43.4 147.7 [147.6;147.8] 186.0 155.2 [155.0; 155.4] 326.5
Kieker native 121.5 [118.8; 124.3] 3,090.6 115.9 [113.6; 118.3] 2,717.2 118.6 [116.2; 121.1] 2,795.2
Kieker Docker 131.4 [128.7; 134.2] 3,142.1 123.3 [120.8; 125.8] 2,872.9 120.5 [118.2;122.8] 2,651.3

Table 2: Summary of MooBench stable state response times in µs with confidence intervals (CI) and standard deviation (σ ).

4.3 Experiment 3: JPA RESTful Web Services
In order to evaluate the replicability of macroscopic experiments
with multiple interacting Raspberry Pi devices, we created a simple,
RESTful web service which interacts with a relational database via
the Java Persistence API (JPA). We decided to build this service
using Spring Boot,7 a platform currently popular in the industry for
implementing so-called microservices. For the underlying database,
we used PostgreSQL 9.6.5, and Spring Data JPA was used to access
the data.

The web service provided three operations, which emulated
a very simplistic customer database. The first method generated
a random customer entry and returned it without accessing the
database at all. This method was intended to serve as a baseline to
compare the results of the database-enabled operations against. The
second method read an existing customer by his customer number,
and the third operation changed the first and last name of a given
customer in the database.

For this experiment, we used a pair of devices D2 and D3 with
hard disks H1 and H2. Both Pi devices were connected to the same
Gigabit ethernet switch, as was the test driver, a notebook with an
Intel Core i7-4500U processor, 8 GB of RAM and a Gigabit ethernet
interface. The experiment was conducted in six configurations:

(1) Web server running natively on D2 with hard drive H1, data-
base running natively on D3 with hard drive H2

(2) Same as (1), but both services running in Docker containers
(3) Web server running natively on D3 with hard drive H1, data-

base running natively on D2 with hard drive H2
(4) Same as (3), but both services running in Docker containers
(5) Web server running natively on D2 with hard drive H2, data-

base running natively on D3 with hard drive H1
(6) Same as (5), but both services running in Docker containers

The database was pre-loaded with about 1 GB of data (10 million
records) to prevent the server from keeping the whole dataset in
memory. For the experiment, the test driver then invoked each
method 200,000 times using a pool of 16 threads, and measured the
response times. The first 100,000 invocations were disregarded as
warm-up. Table 3 summarizes the results.

As evident from the table, switching the Raspberry devices only
leads to minor changes in response time (e.g., Lines 1 and 3). Al-
though some of the differences (e.g., Lines 7 and 9) are statistically
significant, we consider them small enough to speak of good repli-
cability regarding this experiment. The same applies to switching

7https://projects.spring.io/spring-boot/

from running natively to running inside Docker containers. Ap-
parently, the overhead of the virtualization is outweighed by other
factors in this experiment.

As expected, swapping the hard drives has a major effect on the
results on this benchmark, as the drives are heavily utilized by the
database due to the size of the table and the random access pattern.
This dependency on the peripherals severely limits the replicability
for I/O-heavy experiments. However, we wish to highlight that this
is still an improvement to replicating experiments on common PC
hardware, as much fewer components are interchangeable. Thus,
specifying the execution environment is greatly facilitated.

Summary: Provided that the peripherals are identical, good repli-
cation of macroscopic experiments is possible even for I/O-heavy ex-
periments. Although this can pose a severe limitation to replicability,
the limited number of interchangeable components at least facilitates
specifying the execution environment of such experiments.

4.4 Experiment 4: SPECjEnterprise 2010
Our second experiment for assessing the replicability of macro-
scopic experiments on the Raspberry Pi used SPECjEnterprise
2010,8 a well-known Java EE benchmark. Similar to our previous
experiment, we used one of the Pis as the database server, while
the other ran the application server. Deviating from the run rules,
we deployed the supplier emulator on the same application server
as the actual benchmark application. The test driver was run on
the same notebook as before.

Again, we used PostgreSQL 9.6.5 as the underlying RDBMS.
Before each run, all tables were dropped, re-created, and loaded
with the same data. For the Docker experiments, a new database
container was started for each run.

For the application server, we used GlassFish 5.0 (Build 25). Simi-
lar to the database, the server was freshly configured and deployed
for each run. Due to a connectivity issue, the GlassFish Docker
containers had to be run using the host’s network stack instead of
an own one. Apparently, the application server resolves its own
host name locally and transfers the resulting IP address to the client.
By default, the host name resolves to a loopback address, and the
client fails to connect. The resolution can be corrected by editing
the /etc/hosts file, however, the application server also tries to
bind to the interface with the resolved IP address. This attempt
always fails, as the desired ports are also claimed by the Docker
daemon to forward them to the container.

8http://www.spec.org/jEnterprise2010/
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Line # Operation Configuration Mean Response Time
(in µs)

99% CI Resp. Time
(in µs)

σ
(in µs)

1

Read customer

Web: D2 + H1, DB: D3 + H2, native 168,914.4 [167,197.2 ; 170,631.7] 210,817.8
2 Web: D2 + H1, DB: D3 + H2, Docker 165,467.7 [163,736.3 ; 167,199.1] 212,555.3
3 Web: D3 + H1, DB: D2 + H2, native 170,284.3 [168,447.3 ; 172,121.3] 225,524.0
4 Web: D3 + H1, DB: D2 + H2, Docker 179,067.3 [177,265.1 ; 180,869.4] 221,244.0
5 Web: D2 + H2, DB: D3 + H1, native 283,504.3 [280,914.7 ; 286,094.0] 317,924.2
6 Web: D2 + H2, DB: D3 + H1, Docker 275,709.3 [272,882.2 ; 278,536.4] 347,072.5
7

Create random
customer

Web: D2 + H1, DB: D3 + H2, native 11,164.6 [11,081.2 ; 11,248.1] 10,241.8
8 Web: D2 + H1, DB: D3 + H2, Docker 12,368.8 [12,276.1 ; 12,461.4] 11,375.3
9 Web: D3 + H1, DB: D2 + H2, native 11,832.8 [11,744.1 ; 11,921.6] 10,897.0
10 Web: D3 + H1, DB: D2 + H2, Docker 14,136.2 [14,025.4 ; 14,247.0] 13,602.9
11 Web: D2 + H2, DB: D3 + H1, native 12,840.9 [12,743.1 ; 12,938.6] 11,999.0
12 Web: D2 + H2, DB: D3 + H1, Docker 11,674.5 [11,584.7 ; 11,764.3] 11,024.1
13

Change customer
name

Web: D2 + H1, DB: D3 + H2, native 356,194.7 [354,663.2 ; 357,726.3] 188,019.6
14 Web: D2 + H1, DB: D3 + H2, Docker 354,837.6 [353,323.9 ; 356,351.3] 185,830.1
15 Web: D3 + H1, DB: D2 + H2, native 353,910.2 [352,360.9 ; 355,459.6] 190,211.0
16 Web: D3 + H1, DB: D2 + H2, Docker 381,395.7 [379,798.5 ; 382,993.0] 196,090.5
17 Web: D2 + H2, DB: D3 + H1, native 551,412.8 [549,424.2 ; 553,401.5] 244,138.3
18 Web: D2 + H2, DB: D3 + H1, Docker 551,034.6 [548,759.9 ; 553,309.2] 279,250.8

Table 3: Results of the RESTful service experiment

All tests were run with the default configuration, which consists
of a 10-minute warmup phase, a measurement phase of 60 minutes,
and 5 minutes of cooldown. Table 4 provides information on the
response times measured for the five operations performed by the
benchmark; the configurations are the same as for the previous
experiment (see Section 4.3).

As evident from the table, considerable replicability of the re-
sults was achieved only in specific cases. While the response times
of the Enterprise Java Beans (EJB)-based operation „Create vehi-
cle” indicate good replicability (Lines 1–6), the response times of
the web service (WS)-based variant (Lines 7–12) show substantial
differences between the configurations. This also applies to the re-
maining, web service-based operations. It is particularly remarkable
that the response times already differ significantly when swapping
the Pi devices, a change which did not have any impact on the
previous experiment with RESTful services. As the differences be-
tween EJB and web services were much smaller when running the
database server on a desktop machine, we assume that the differ-
ence is due to different types of database accesses, but are unable
to provide an explanation at this point.

Another notable observation is that the response times are con-
siderably lower for the Docker-based Configuration 6 than for the
native Configuration 5, while it is the other way around for the
other configurations. This may be another occurrence of the disk-
related anomaly discussed in Experiment 1, as the respective disk
H1 is used for the database in these configurations.

Besides the unexpected differences in response times, the actual
throughput achieved on the Raspberry devices does not meet the re-
quirements of the benchmark. Consequently, all runs are considered
as failures by the test driver. We therefore conclude that although
running enterprise benchmarks on current Raspberry devices is
technically possible, the validity of the results may be questionable.
However, this may change with future, more powerful models.

Summary: Although it is technically possible to run enterprise-
oriented benchmarks like SPECjEnterprise on the Raspberry Pi, the
results are questionable. The devices are not powerful enough to meet
the minimum requirements of the benchmark, although the bench-
mark is already six years old. Furthermore, the replicability of the
results was very limited in our experiments.

5 FLUCTUATION CAUSE ANALYSIS
While our micro-benchmarking experiments from Section 4.2 and
[16] indicate good replicability, even the measures of the baseline
show significant deviations (0.2 of 1,6 µs for the base line, factor 3
times for SPASS-meter, factor 25 for Kieker) as well as high maxi-
mum values (65 times of the mean for the baseline, 125 times for
SPASS-meter, more than 13,160 times for Kieker). The raw data
contains massive response time peaks as illustrated for one out of
ten experiment runs from [16] in Figure 1.

We may consider these fluctuations as system-immanent, but
in the context of evaluating the Raspberry Pi for replicability of
experiments, it is worth performing an analysis of potential causes.
Moreover, the measurements from [9]9 indicate only some dedi-
cated response time peaks on a server machine rather than a fusil-
lade of peaks as in our Pi experiments. However, the fluctuations
that we observed did not exhibit any kind of regular pattern that we
could focus on. In order to identify candidates for root causes, we
performed a systematic enumeration of potential reasons. Figure 2
illustrates the mind map we obtained from analyzing the system ar-
chitecture and the involved software stack. For each potential cause,
we changed the setup accordingly, re-executed the MooBench ex-
periments for SPASS-meter on D1 and analyzed the measurements.

9https://doi.org/10.5281/zenodo.165513
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Line # Operation Configuration Mean Response Time
(in s)

99% CI Resp. Time
(in s)

σ
(in s)

1

Create vehicle (EJB)

Web: D2 + H1, DB: D3 + H2, native 0.235 [0.228 ; 0.242] 0.031
2 Web: D2 + H1, DB: D3 + H2, Docker 0.243 [0.236 ; 0.251] 0.030
3 Web: D3 + H1, DB: D2 + H2, native 0.266 [0.256 ; 0.275] 0.039
4 Web: D3 + H1, DB: D2 + H2, Docker 0.259 [0.250 ; 0.267] 0.036
5 Web: D2 + H2, DB: D3 + H1, native 0.293 [0.284 ; 0.303] 0.041
6 Web: D2 + H2, DB: D3 + H1, Docker 0.310 [0.300 ; 0.319] 0.041
7

Create vehicle (WS)

Web: D2 + H1, DB: D3 + H2, native 0.447 [0.411 ; 0.484] 0.156
8 Web: D2 + H1, DB: D3 + H2, Docker 0.718 [0.641 ; 0.795] 0.328
9 Web: D3 + H1, DB: D2 + H2, native 0.910 [0.807 ; 1.012] 0.436
10 Web: D3 + H1, DB: D2 + H2, Docker 1.303 [1.190 ; 1.417] 0.483
11 Web: D2 + H2, DB: D3 + H1, native 1.550 [1.457 ; 1.643] 0.396
12 Web: D2 + H2, DB: D3 + H1, Docker 0.960 [0.851 ; 1.069] 0.463
13

Purchase

Web: D2 + H1, DB: D3 + H2, native 0.750 [0.653 ; 0.847] 0.412
14 Web: D2 + H1, DB: D3 + H2, Docker 1.502 [1.273 ; 1.731] 0.972
15 Web: D3 + H1, DB: D2 + H2, native 1.991 [1.706 ; 2.276] 1.212
16 Web: D3 + H1, DB: D2 + H2, Docker 3.177 [2.844 ; 3.510] 1.417
17 Web: D2 + H2, DB: D3 + H1, native 3.830 [3.555 ; 4.106] 1.173
18 Web: D2 + H2, DB: D3 + H1, Docker 2.012 [1.708 : 2.315] 1.289
19

Manage

Web: D2 + H1, DB: D3 + H2, native 0.576 [0.522 ; 0.630] 0.229
20 Web: D2 + H1, DB: D3 + H2, Docker 0.930 [0.819 ; 1.041] 0.473
21 Web: D3 + H1, DB: D2 + H2, native 1.139 [1.004 ; 1.275] 0.576
22 Web: D3 + H1, DB: D2 + H2, Docker 1.661 [1.502 ; 1.819] 0.675
23 Web: D2 + H2, DB: D3 + H1, native 1.954 [1.817 ; 2.091] 0.582
24 Web: D2 + H2, DB: D3 + H1, Docker 1.189 [1.037 ; 1.341] 0.648
25

Browse

Web: D2 + H1, DB: D3 + H2, native 1.194 [1.066 ; 1.321] 0.543
26 Web: D2 + H1, DB: D3 + H2, Docker 2.231 [1.950 ; 2.513] 1.197
27 Web: D3 + H1, DB: D2 + H2, native 2.814 [2.451 ; 3.178] 1.546
28 Web: D3 + H1, DB: D2 + H2, Docker 4.425 [4.004 ; 4.847] 1.792
29 Web: D2 + H2, DB: D3 + H1, native 5.190 [4.845 ; 5.535] 1.466
30 Web: D2 + H2, DB: D3 + H1, Docker 2.823 [2.426 ; 3.220] 1.688

Table 4: Results of the SPECjEnterprise experiment

Figure 1: Response time fluctuations observed in [16].

We focused on SPASS-meter, assuming that identified causes will
finally also improve the Kieker results.

We discuss now in separate sections the cause categories shown
in Figure 2 starting with the ’hardware’ category, and then follow a

clockwise order. Within each category, we discuss the causes shown
in a top-down fashion. We base our discussion on previous experi-
ments from [16]10, but also on the new experiments. For pragmatic
reasons, we performed the experiments in a different sequence,
focusing first on those experiments that we considered most likely
for explaining the peaks. Table 5 details the experiment sequence,
the respective (incremental) base cases, descriptive statistics for the
baseline and and the SPASS-meter runs, both also indicating the
number of peaks. For illustrating our discussion, we count a value
as a peak if it is larger than than 5 times the mean value. For the
whole data set underlying Figure 1 we identified 1,155 such peaks.

5.1 Hardware
The hardware of the different Raspberry types is rather standardized
as detailed in Section 2.1, i.e., the configuration spectrum for a
Raspberry Pi is rather restricted compared with desktop, laptop
or server machines. This restricted configuration space eases the
identification of variation causes.

10https://doi.org/10.5281/zenodo.1003075
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Figure 2: Cause-tree for response time fluctuations.

• The CPU of a Pi allows for changing clock speeds, in particular
to save energy. On the Raspberry Pi platform, the Raspbian
operating system takes active control over the CPU clock
speed as we will detail in Section 5.2.

• The network link used to control the experiments was active
during the experiments and may have caused superfluous
interrupts. However, benchmark runs10 with disconnected
network link, background execution of the benchmarks or
even an operating network connection during foreground
execution showed similar response times and deviations.

• The operating system of a Raspberry device is typically in-
stalled on an exchangeable SD-card. The Pi sets we obtained
contained class-4 SD cards supporting a minimum sequen-
tial write speed of 4MByte/s11. Previous experiments10 were
also run with a class-10 SD card. For SPASS-meter, the faster
card led to an increase of the average response time of 5%
as well as an increase of factor 7 of the response time and
similar deviations. In contrast, for the I/O intensive Kieker
benchmarks, the average response time dropped by 50%, the
deviation by factor 2 and the maximum response time by
factor 2.6. As a result, a faster SD card can lead to improve-
ments for response time, but may not significantly influence
response time peaks (similar to Table 5, Id 1).

• Instead of running the benchmarks on an SD card, we con-
sidered a potentially faster external USB hard disk. Although
Raspberry 3 devices ship only with USB 2.0 ports, previous
results [16] show that an external USB hard disk can lead to
significant speedup for I/O intensive benchmarks, e.g., for
Kieker around factor 4.5, but also to a slowdown, e.g., for

11https://www.sdcard.org/developers/overview/speed_class/

SPASS-meter by roughly 5%. In case of speedups, deviation
and maximum response time dropped, e.g., for Kieker by
around 95%, but the response time peaks did not disappear
(similar to Table 5, Id 1).

• The Raspberry Pi needs at least 700 mA of electrical cur-
rent12. Power adapters just fulfilling this specification may
affect stability and performance if additional USB devices are
connected. We experienced this when replacing the shipped
power adapters (2.5 A) with a 2.0 A adapter. For example,
in case of the SPEC benchmark in Section 4.4 the results
differed significantly. However, we can exclude this cause
as the SPASS-meter experiments were conducted with the
shipped adapters.

Although the storage device may significantly impact the per-
formance, in particular for I/O intensive benchmarks, the hardware
category did not lead to a clear cause for the response time peaks.

5.2 Operating system
Nowadays, an operating system consists of several layers including
kernel, drivers and services, whereby each of these layers may cause
fluctuations in a benchmark experiment.

• System services may allocate resources that cause fluctua-
tions in the measurements. Therefore, unneeded services like
window system, virus scanner or automated updates should
be disabled. Such services are not included in the Raspbian
versions we used for our experiments. For identifying further
problematic services, we analyzed the running processes and

12https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md
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Figure 3: Interrupts during MooBench executions for base-
line (left) and SPASS-meter (right).

disabled in subsequent experiments services, such as blue-
tooth, service discovery (avahi-daemon), extended keyboard
handling (triggerhappy), regular task scheduling (cron), or
the network service. Table 5, Id 6 is a representative example
illustrating that this did not lead to significant changes.

• To reduce the impact of I/O operations during the bench-
marks, we created a RAM drive with a capacity 100 MBytes
so that the JVM could still operate with a 512 MByte heap
as described in [16]. However, the RAM drive was too small
to store all benchmark results. Therefore, we modified the
benchmark script so that the results were moved from the
RAM drive to the SD card after completing an individual
benchmark step. As shown in Table 5, Id 5, this did not sig-
nificantly change the results.

• Swapping memory pages from/to CPU caches or storage
devices may cause response time fluctuations. We disabled
swapping for a benchmark run (Table 5, Id 13), but without
significant effect on the response time results.

• The Raspbian versions that we used in our experiments ad-
just the CPU clock speed dynamically to the system load. The
default mode is ondemand, i.e., for a Pi 3, the operating system
switches the CPU clock speed between minimum (600 MHz)
and maximum (1.2 GHz) clock speed. Such abrupt frequency
changes may cause response time fluctuations. In our ex-
periments, we fixed the CPU frequency either to powersave
mode (600 MHz) or performancemode (1.2 GHz). While the
powersave mode increased the response time by a factor of
2 and caused an increase of the standard deviation as well as
more response time peaks (Table 5, Id 12), the performance
mode did not significantly change the results (Table 5, Id 11).

• Hardware and software can cause interrupts that suspend
normal program execution. A comparison of the system
interrupt table before and after a benchmark execution indi-
cated a high number of timer, USB (representing correlated
SD-card and direct memory access) and rescheduling inter-
rupts. Figure 3 illustrates the aggregated results for all CPU
cores running the baseline and SPASS-meter. The baseline
produced fewer interrupts than the SPASS-meter benchmark.
This is reasonable as SPASS-meter applies scheduled execu-
tion of some probe collections. While we analyze modifica-
tions to SPASS-meter in this regard in Section 5.4, we focus
here on the rescheduling interrupts To analyze the effects,

we ran the experiments while pinning the benchmarks to
specific CPU cores. Utilizing only one core increased the
timer and work interrupts by a factor of 2 and avoided more
than 98% of the rescheduling interrupts, but also caused a
significant performance drop and more response time peaks
(Table 5, Id 9). Running the benchmark on two cores reduced
the timer interrupts by 37% and led to a similar performance
as utilizing all cores (Table 5, Id 10).

Despite some effort and applying typical benchmark preparations
such as disabling system services, we did not find a clear root cause
for the peaks in the operating system category.

5.3 Java Virtual Machine
The next layer that can influence Java benchmark results is the JVM
itself. As described in Section 3, we used an Oracle JVM for ARM
in our experiments.

• By default, the Oracle JVM for ARM utilizes a sequential
garbage collector, while the JVM for Intel processors relies on
parallel garbage collection. We forced parallel garbage collec-
tion through a command line switch during the benchmark
experiments, but this increased the mean response time by
15% as shown in (Table 5, Id 3).

• The fluctuations could be caused by properties of the specific
JVM implementation. However, the alternative OpenJDK
JVM for ARM does not provide a just-in-time compiler and
was, thus, in our trials by orders of magnitude slower, making
direct comparisons unfeasible.

Although the JVM or the JVM settings could be a reason for the
fluctuations, we were not able to identify a clear root cause.

5.4 Benchmarks
The final layer is the program running within a JVM, in our case
MooBench, SPASS-meter, and Kieker. Regarding SPASS-meter, we
identified four different potential causes:

• In the originalMooBench setup, information on all supported
resources is collected. In particular, monitoring the memory
usage is a resource-consuming task [10] that stresses the
internal event-processing. In this experiment (Table 5, Id 4),
we changed the monitoring scope to observe response time
as the only resource. This improved the average response
time for SPASS-meter by 11% (we classify the change of
the average response time of the baseline as an outlier) and
reduced the extreme peaks by factor 2.

• As discussed in [9], the initialization of internal object pools
for instance reuse may have significant impact on the per-
formance. We re-visited (and adjusted) the object pools of
SPASS-meter, which caused only a minor improvement of
the mean response time (Table 5, Id 2), while also increasing
the maximum (peak) response time and the number of peaks.

• SPASS-meter uses a timer to regularly pull process and
system-level resource consumptions. We disabled this timer,
which is not relevant for the benchmarking results here. Re-
considering the interrupts discussed Section 5.2, we recorded
roughly the same number of USB/SD card interrupts and
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Figure 4: Response time with recursion-depth 1 instead.

work interrupts, while the number of timer interrupts in-
creased by 14% and the number of context switches decreased
by 17%. As indicated in (Table 5, Id 7), the mean response
time slightly improved by 2.7% and the number of peaks
dropped by 39% for most of the following experiments.

• SPASS-meter uses a producer-consumer pattern to asyn-
chronously process collected probe information. For exper-
iments, synchronous event processing can be used [10],
which may increase the response time but also reduce thread-
ing effects in the timer interrupts. Using this mode, mean
and median response time did not change significantly (Ta-
ble 5, Id 8), the standard deviation increased by factor 4 and
the maximum response time by factor 31. As expected, the
number of timer interrupts decreased, while the amount of
rescheduling and work interrupts did not change.

MooBench itself could also be a cause for the fluctuations. In
particular, the parts of the benchmark running during the test
could influence the results. We therefore changed the recursion
depth in the benchmark from 10 to 1. Although this did not affect
the baseline measures (Table 5, Id 14), it did reduce the number
of peaks by 67%. Even if smaller peaks remained, the huge peaks
disappeared as illustrated by the response time graph in Figure 4.
Moreover, the average response time, standard deviation as well as
minimum and maximum response time improved significantly.

One important observation is that the baseline, i.e., the execution
of the benchmark test case without any monitoring, contains a high
number of (relative) peaks. This fact remained irrespective of all
experiments that we conducted.

5.5 Summary
We identified the recursive benchmark test as a trigger for the
massive response time peaks we observed. However, the underlying
reason is still unclear. In comparison, the results in [9] (Intel Core
i5-2500, 3,3 GHz, 6MB cache, kernel 3.2) only contained few solitary
peaks using the sameMooBench and SPASS-meter versions without
changing the recursion depth. We can imagine that the peaks are
caused due to different CPUs/caches, operating systems/kernels or
JVMs. As mentioned in Section 5.3, we observed similar fluctuations
in the laptop trial (CPU i7-4500U, 1,8 GHz, 4MB cache, kernel 4.8).

Although the cache sizes of the Pi are much smaller (cf. Section 2),
we do not believe the CPU/cache to be the reason, as the cache sizes
of the non-Pi machines are of roughly the same size. However, the
Linux kernel versions and the JDK versions differ between the setup
used in [9] (JDK 1.7) and our experiments (all kernel 4.x and JDK 1.8).
Therefore, it seems more probable that either the kernel or the JVM
apply different scheduling/optimization strategies. Confirming this
hypothesis would require more cross-platform experiments, which
are out of scope of this paper. Furthermore, we identified some
optimizations opportunities regarding the application of SPASS-
meter (focusing on the relevant resources to be monitored) as well
as its implementation (avoiding unused timers, better initialization
of shared instance pools). We also identified potential issues of
a benchmark setup that can impact the results such as using the
’wrong’ garbage collector, setting the CPU to a fixed frequency, or
trying to pin the benchmark to less CPU cores than needed.

6 RELATEDWORK
Replicability and reproducibility are well-known problems in em-
pirical software research. However, in particular computational
replicability is known to be only episodically aimed at in exper-
imental computer science [3]. A major reason for this are that
reproducing experiments from scratch is time-consuming, error-
prone, and sometimes just infeasible, typically due to insufficient
documentation of the experiment, an experiment setup not running
on the target environment, missing libraries, different library ver-
sions, or the inability to install the required dependencies [2, 3, 6, 9].
Even in standardized high-performance environments, replicability
is difficult to achieve [14].

Several approaches for achieving replicability are discussed in
the literature. Similar to our approach, Tso et al. employ Rasp-
berry Pi devices to create an affordable, replicable environments
for distributed computing, called the Glasgow PiCloud [22]. This
environment consists of about 50 devices, which are used to build
a scale model of a data center. The PiCloud also makes use of
container-based virtualization. However, the containers are used as
a replacement for virtual machines, which are not feasible on the
Raspberry Pi due to the limited resources and the lack of hardware
support, not for replicating experiments. A similar setup with more
than 300 devices is described by Abrahamsson et al. [1].

Instead of replicating performance experiments locally, exper-
iments may also be run in Cloud environments. Although most
Cloud providers offer standardized instance types, these types are
often not clearly and sufficiently specified [12], and may differ sig-
nificantly in performance. Furthermore, the provider may move
virtual machines to different hosts or even change the underlying
hardware or the type specification at its own discretion, posing a
threat to replicability.

De Oliveira et al. present an infrastructure called DataMill [7],
which allows to run experiments on a pool of different worker
machines provided by the DataMill community. This infrastructure
aims at producing robust and replicable results by running the ex-
periments on multiple devices with slightly different specifications,
thus creating a results less dependent on the specifics of a partic-
ular setup. Furthermore, this infrastructure allows researchers to
explore how particular changes to the environment (e.g., compiler
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Id Experiment (base) Baseline SPASS-meter
mean σ min max 95% CI peaks mean σ min max 95% CI peaks

1 from [16] 1.6 0.2 1.5 105.2 [1.6;1.6] 1,667 164.8 44.1 91.9 19,228.7 [164.8;164.8] 1,155
2 object pools (1) 1.6 0.3 1.5 352.2 [1.6;1.6] 1,864 152.3 142.5 89.8 370,604.0 [152.3;152.4] 818
3 parallel GC (2) 1.6 0.2 1.5 107.5 [1.6;1.6] 1,632 194.4 56.7 110.1 27,715.9 [195.4;194.5] 6,901
4 time resources (2) 1.6 0.3 1.5 358.4 [1.6;1.6] 1,729 146.3 34.9 88.5 13,034.8 [146.2;146.3] 406
5 ramdrive (2) 1.6 0.2 1.5 132.9 [1.6;1.6] 1,685 146.8 40.0 90.6 19,453.1 [146.7;146.7] 534
6 services (5) 1.6 0.3 1.5 207.2 [1.6;1.6] 1,774 150.5 39.2 91.0 24,952.0 [150.4;150.5] 528
7 SPASS timer(6) 1.6 0.3 1.5 545.9 [1.6;1.6] 1,695 146.1 36.8 91.5 10,972.5 [146.2;146.3] 321
8 SPASS events (7) 1.6 0.2 1.5 108.6 [1.6;1.6] 1,773 146.7 157.7 86.7 349,777.3 [146.6;146.7] 333
9 one CPU core (6) 1.6 0.3 1.5 312.5 [1.6;1.6] 2,223 492.8 427.1 86.0 13,560.1 [492.6;493.1] 37,360
10 two CPU cores ( 6) 1.6 0.3 1.5 616.2 [1.6;1.6] 1,818 147.4 46.7 89.7 54,325.9 [147.3;147.4] 348
11 max CPU clock (6 ) 1.6 0.2 1.5 98.2 [1.6;1.6] 1,628 148.1 41.0 108.5 12,913.6 [148.1;148.2] 359
12 min CPU clock (6) 3.1 0.5 3.0 945.6 [3.1;3.1] 3,116 294.8 80.5 177.0 120,450.8 [294.7;294.8] 752
13 no swapping (6) 1.6 0.3 1.5 185.1 [1.6;1.6] 1,704 147.4 40.6 88.9 13,771.2 [147.4;147.4] 388
14 no recursion (6) 1.4 0.2 1.3 191.6 [1.4;1.4] 1,534 17.6 1.8 11.35 3,361.3 [17.6;17.6] 53

Table 5: Summary of selected case experiments on response times in µs. Notable changes are shown in bold font.

switches) affect their experiments. A similar goal is pursued by the
PerfDiff framework by Zhuang et al. [24].

As previously mentioned, replication of performance experi-
ments also requires replicating the surrounding software environ-
ment. We used Docker containers for this purpose, which is recom-
mended by several authors [2, 5]. Chirigati et al. present ReproZip
[3, 4], a tool which facilitates creating container images by tracking
the accessed files during an experiment by monitoring system calls,
and automatically adding them to the image.

Another approach to replicating the software environment is to
provide fully configured virtual machines, as suggested by [11].
However, virtual machine images can be very large, and since
the entire operating system is included in the image, licensing
issues may occur. A third approach relies on using configuration
management tools able to automatically set up a machine according
to pre-defined rules, such as Ansible,13 Chef,14 or Puppet15 [15].

In order to identify potential root causes for the fluctuations in
our previous experiments, we furthermore performed a root cause
analysis. Typically, a root cause analysis consists of steps like data
collection, causal factor charting, root cause identification and rec-
ommendation generation [20]. In our case, performing a complete
data collection was not feasible, so we opted for an incremental
analysis with interleaved factor charting and progressing based on
excluded root causes. Of course, an automated approach to root
cause detection would be highly desirable, in particular to reduce
the manual effort. Existing automated approaches typically focus
on one specific layer of the software stack such regression testing
[13], web applications and related services [17], or single programs
that can be instrumented to obtain the calling context tree [24].
However, in our situation, we applied an incremental manual pro-
cess as in statistical debugging [21] or in [9], but here considering a
wide range of potential causes across multiple layers of the involved
hardware and software stack.

13https://www.ansible.com/
14http://www.chef.io/
15http://www.puppet.com/

7 CONCLUSIONS AND FUTUREWORK
In this section, we conclude the paper, present lessons learned from
our experiments, and point out directions for future work.

7.1 Conclusions
In this paper, we have presented results and experiences from dif-
ferent experiments to evaluate to what extent the Raspberry Pi and
Docker can be used as a platform for replicable performance exper-
iments. Furthermore, we presented a systematic root cause analysis
to identify potential sources for variance. Below, we present the
answers to the research questions presented in the introduction.

RQ 1: We conclude from the experimental results that the Rasp-
berry Pi appears to be well suited for replicating microbenchmarks,
in particular benchmarks that are not very I/O-intensive. Replicat-
ing macroscopic experiments may work as well, but depends on
the availability of comparable peripherals such as storage devices.
The platform is less suited for enterprise-oriented benchmarks, as it
may lack the sheer processing power or memory capacity to meet
their requirements.

RQ 2: Docker has proven to be a valuable tool for packaging
experiments in a replicable way. However, this comes at the cost
of slightly increased variance in the results, and a potential perfor-
mance impact. Furthermore, the virtualization can be a source of
additional complexity, such as the connectivity issue observed in
Experiment 4.

RQ 3: Despite considerable effort, we identified triggers for the
fluctuations observed in the experiments, but, in the end, we were
unable to pinpoint root causes. However, our results do not indicate
any systematic flaw of the platform itself.

In conclusion, we think that Docker on the Raspberry Pi is indeed
a viable option for building replicable performance microbench-
marks.

7.2 Threats to Validity
We see the the greatest threats to the validity of our results in
the selection of the experiments and the small number of devices
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that were available to use. Furthermore, most of our experiments
were run on the Java Virtual Machine, so that the results may
not be transferable to experiments running in other environments.
As discussed in the Future Work section below, we intend to run
additional experiments to further increase the validity of our results.

7.3 Lessons Learned
During our experiments, we learned several lessons about running
performance experiments with the Raspberry Pi and Docker, which
we summarize below:

• Docker facilitates running benchmarks and fosters experimen-
tation, especially due to the fact that containers can be easily
(re-)created in a defined state.

• I/O-heavy experiments should be executed only on hard disks.
We broke two SD cards during our experiments due to high
write counts.

• As soon as peripherals are involved, power consumption is an
issue. Common USB power supplies, such as the ones shipped
with mobile phones or tablet computers, provide too little
electrical current for a Raspberry Pi and a USB hard drive
under heavy load.

• Container networking can be tricky, as seen in the SPECjEn-
terprise experiment.

• Merging and analyzing experiment results created at different
geographical locations as in our case worked pretty well,
also in particular to agreements on using the same formats,
naming conventions and tools.

• Legal issues may prevent publication of container images.
Some software components can be used free of charge, but
limitations may apply regarding redistribution. For example,
it is currently unclear whether distributing Oracle’s JDK in a
Docker container is compliant with the underlying license.16

7.4 Future Work and Directions
In our future work, we intend to extend our analysis to locate
potential root causes for the performance fluctuations. We also
plan to further evaluate the viability of the Raspberry Pi as well
as other single-board computers for additional benchmarks. As we
expect the next generation of Raspberry Pi to be equipped with
more memory and computing power, executing more demanding
benchmarks might become possible in the future. We furthermore
intend to conduct experiments on a larger number of Pi devices to
reduce the influence of potential device-specific deviations.

Moreover, we envision that the results of different researchers
in the direction of replicable performance experiments could foster
a community practice, including best practices and default experi-
ment workflows, but also accepted technical means, such as Docker,
standardized hardware, or even hardware-benchmark combinations
specified and endorsed by benchmark organizations. Further, a pub-
lic experiment repository containing reference Docker experiment
images, but also standardized installation images for the operating
system to avoid uncontrolled changes to the host system would be
desirable. First steps towards such a community practice are visible
as numerous conferences and journals encourage researchers to
also submit artifacts, including Docker images.
16see http://blog.takipi.com/running-java-on-docker-youre-breaking-the-law/

Future steps might include public experiment repositories or
even an accessible science (Pi) cloud. This would facilitate the shar-
ing of experiments between researchers and pave the way for arti-
fact and cross-validation tracks or new publication models, such as,
for instance, proposed in [3].
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