
Characterizing the Performance of Concurrent Virtualized
Network Functions with OVS-DPDK, FD.IO VPP and SR-IOV

Nikolai Pitaev
Enterprise Infrastructure and Solutions Group, Cisco

Systems
npitaev@cisco.com

Matthias Falkner
Enterprise Infrastructure and Solutions Group, Cisco

Systems
mfalkner@cisco.com

Aris Leivadeas
Department of Systems and Computer Engineering,

Carleton University
arisleivadeas@sce.carleton.ca

Ioannis Lambadaris
Department of Systems and Computer Engineering,

Carleton University
ioannis@sce.carleton.ca

ABSTRACT
The virtualization of network functions is promising significant
cost reductions for network operators. Running multiple network
functions on a standard x86 server instead of dedicated appliances
can increase the utilization of the underlying hardware,while re-
ducing the maintenance and management costs of such functions.
However, total cost of ownership calculations are typically a func-
tion of the attainable network throughput, which in a virtualized
system is highly dependent on the overall system architecture - in
particular the input/output (I/O) path. In this paper we investigate
the attainable performance of an x86 host running multiple virtu-
alized network functions (VNFs) under different I/O architectures:
OVS-DPDK, SR-IOV, and FD.io VPP. Running multiple VNFs in
parallel on a standard x86 host is a common use-case for cloud-
based networking services. We show that the system throughput
in a multi-VNF environment differs significantly from deployments
where only a single VNF is running on a server.

CCS CONCEPTS
• Networks → Cloud computing; Network servers; Network experi-
mentation; Network performance analysis; Network measurement; •
Hardware → Networking hardware; Buses and high-speed links;

KEYWORDS
NFV; Virtualized System Architectures; VNF Performance; SR-IOV;
OVS; OVS-DPDK; FD.io VPP; Hypervisors; KVM
ACM Reference Format:
Nikolai Pitaev, Matthias Falkner, Aris Leivadeas, and Ioannis Lambadaris.
2018. Characterizing the Performance of Concurrent Virtualized Network
Functions with OVS-DPDK, FD.IO VPP and SR-IOV. In ICPE ’18: ACM/SPEC
International Conference on Performance Engineering, April 9–13, 2018, Berlin,
Germany.ACM,NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3184407.
3184437

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184437

1 INTRODUCTION
Service Provider and Infrastructure Provider (e.g. Cloud Provider)
networks are increasingly making use of virtualized network func-
tions (VNFs) to reap the benefits of reduced capital expenditures
(CAPEX) and operating expenses (OPEX). Running VNFs on stan-
dard off-the-shelf server platforms promises to reduce the capital
expenditures previously dedicated to hardware appliances. Oper-
ators are also expecting a significant reduction in the operating
expenses by increasing the level of automation enabled by software
defined networking. Total cost of ownership calculations however
are typically a function of the attainable network performance,
which in a virtualized system is highly dependent on the overall sys-
tem architecture. For input/output (I/O) intensive workloads such
as virtualized network functions (VNFs), the packet path from the
physical interface on the server into the virtual machine (VM) is par-
ticularly impactful on the overall system throughput. Open vSwitch
(OVS) [13, 29], OVS - Data Plane Development Kit [8], Single-Root
I/O Virtualization [7], and Fast Data input/output Vector Packet
Processing (FD.io VPP) [17] are possible alternative mechanisms to
carry network traffic from the physical interface into VNFs.

Also impacting the overall system throughput is the number
of concurrent VNFs running on top of the hypervisor. For most
use-cases where virtualization is considered, multiple VMs are shar-
ing the hardware resources offered by the underlying x86 host. In
some cases, application workloads running in VMs are instantiated
alongside VNFs. More commonly, operators separate application
workloads fromVNFs onto different servers, while still instantiating
multiple VMs on each of the systems.

The networking departments of many enterprise or service
providers operate their own hardware systems, separate from the
IT departments. An example of such a deployment scenario is cloud-
based managed services. In this use-case, SP operators offer virtual-
ized networking services to enterprise customers out of their own
data centers. VNFs such as virtual routers, virtual firewalls, or virtu-
alized WAN optimization are instantiated on a per-enterprise basis.
For basic services, a single VNF can be configured to serve multi-
ple enterprise customers, even with multiple networking features
(multi-tenancy combined with multi-feature). For more sophisti-
cated services, dedicated VNFs may be service-chained for each
enterprise customer, offering higher per-tenant throughput and
customer separation. Multiple VNFs associated with different en-
terprise customers share the underlying x86 host resources in this

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

285

https://doi.org/10.1145/3184407.3184437
https://doi.org/10.1145/3184407.3184437
https://doi.org/10.1145/3184407.3184437

case. Sophisticated automation and orchestration environments
instantiate such cloud-based networking services within minutes,
taking the available hardware resources into account.

Furthermore, multiple VNFs are running in parallel in such a
shared server environment, contending for underlying CPU, I/O,
memory and storage resources. The overall attainable system through-
put may be impacted by various system bottlenecks. In particular,
the vSwitch bottleneck is identified as one of the main bottleneck in
such a multi-VM configuration. Thus, the performance of different
I/O architectures are of utmost importance. In [22], the authors
present the performance of running multiple VNFs in parallel while
varying the hypervisor’s I/O technologies with OVS, SR-IOV and
FD.io VPP.

In this paper, we extend the experimental results by replacing
OVS with OVS-DPDK, which promises to significantly increase
the I/O performance for virtualized network functions. We also use
DPDK-enabled VNFs. We show how OVS-DPDK compares from a
throughput perspective to SR-IOV and FD.io VPP as the number
of VNFs is increased under multiple feature configurations. We
demonstrate the system throughput behaviour not just for pure
IP forwarding, but also for a realistic virtual router configuration
where processing-intensive features like Network Address Transla-
tion (NAT), Firewall, Quality-of-Service (QoS) and even deep-packet
inspection (DPI) are applied to the packet flows processed by each
VNF. Our experiments reveal that OVS-DPDK has comparable per-
formance to FD.io VPP, thus confirming a significant throughput
improvement as compared to native OVS. Considering that both
OVS-DPDK and FD.io VPP offer richer virtualization functional-
ity with fewer caveats than SR-IOV, network operators looking
to deploy VNFs have viable alternatives to trade-off deployment
flexibility and overall system throughput.

The remainder of the paper is organized as follows: Section
2 provides an overview of the related work. Section 3 provides
insights of the various I/O architectures. Section 4 presents the test
methodology followed. The performance evaluation is presented
in Section 5. Finally, Section 6 concludes the paper.

2 RELATEDWORK
Performance of the I/O path in virtualized system architectures has
been widely studied in the literature in recent years. Throughput of
FD.io with VPP has been investigated under various system configu-
rations in [19], showing the throughput and latency improvements
that can be achieved with FD.io VPP as compared to OVS-DPDK.
In [11], the authors perform systematic experiments to investigate
various virtual switches, including OVS, Linux bridges and also
citing official results for OVS-DPDK. Various traffic flows are tested,
going directly into a single VNF, passing through a single VNF, or
being service chained through a VNF and terminated in another
VNF. A thorough investigation into the system parameters in a
similar setup is also reported in [12].

In [20] a user-space virtual switch (SnabbSwitch) is introduced
and its performance analyzed against OVS, OVS-DPDK, linux bridges,
Virtual Function Input/Output (VFIO), and SR-IOV. The results
demonstrate that this implementation performs similar to SR-IOV
and VFIO, and out-performing OVS and OVS-DPDK in user-space.
The tests are conducted with two VNFs only, generating either

uni-directional or bi-directional traffic, following the methodology
in [27]. A similar vSwitch development (Lagopus) is described in
[23] and its performance studied for both delay and throughput.
No comparison to other vSwitches is made, and traffic is not sent
to any VNFs.

An elaborate study of SR-IOV performance under multiple VNFs
is reported in [10], without making however any comparison to
other vSwitches. A similar study for SR-IOV with NAPI optimiza-
tions is presented in [15], analyzing CPU utilization and through-
put in a multi-VNF scenario, but without comparisons to other I/O
techniques. The authors in [24] investigate the switching perfor-
mance of a virtualized software router with different traffic flows
(up to 4) under various packet sizes, and compare the throughput to
non-virtualized software routers to show the performance penalty
introduced by virtualization, without analyzing different virtual
switching technologies. The throughput and latency of OVS and
OVS with DPDK with multiple VMs and Docker containers that are
service chained is also studied in [2]. The study shows that OVS
with DPDK can achieve a 10-fold improvement in the PPS rate for
the specified test. However, no comparison to other I/O techniques
is made, as the focus of the paper is more on analyzing the number
of VMs / containers in a chain. A comparison between physical and
VM performance under Intel DPDK is given in [25]. Throughput in
terms of Mpps is reported with two VMs and compared to a phys-
ical setup. A multi-VNF performance analysis under Openstack
is reported in [4], showing also realistic traffic patterns with net-
working features (DPI, Firewall, routing) applied under Openstack
with both a linux bridge and OVS. Newer I/O technologies are not
analyzed in the paper.

In comparison with the above presented works, the contribution
of this paper is twofold: first, our test study the impact of multiple
VNFs running in parallel (not chained) on an x86 host. In such an
environment, multiple VNFs place demand for I/O processing and
vCPUs on the hypervisor scheduler, thus stressing the latter in a
different way to single-VNF tests. This is very common in so-called
horizontal-scale use-cases, where multiple VNFs are used in order
to fulfil high scale requirements. Our study thus provides insights
into a realistic deployment scenario, where there is contention for
the servers’ hardware resources. In the environment we study, the
hypervisor scheduler has to process switch to allocate the available
CPU cycles to numerous VNFs as well as to the Linux OS itself.
In any of the single-VNF analyses above, such an interaction is
not taken into account. Second, we perform our analysis with a
commercially available virtual router (the Cisco CSR 1000V® [1]),
configured not only for pure IP forwarding, but also showing the
impact under a realistic feature processing configuration. Of partic-
ular importance in our tests is to avoid any hypervisor tuning steps
that may be difficult to operationalize in a production environment.
Only those hypervisor or process settings that can be configured at
boot time or bring-up are optimized.

3 OVERVIEW OF A VIRTUALIZED SYSTEM
ARCHITECTURE

In a basic virtualized system architecture, hardware resources (CPU,
Memory, Storage) are being abstracted by a hypervisor layer to
present virtual CPU/Memory/Storage to VMs or applications that

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

286

run on top of the hypervisor. In this paper, we focus on the scenario
of networking functions running inside a VM, as opposed to run-
ning VNFs in a container (e.g. Docker [6]) or running applications
directly on the host OS. For networking VNFs, one or more software
processes are running inside the VM to perform packet processing
(e.g. firewall, routing, NAT etc.). These software processes are asso-
ciated with the virtualized CPUs allocated to the VM. In addition
to the vCPU threads configured for a VM, numerous VM system
threads are also generating processing loads. The aggregate of all
vCPU processes from the set of VMs are presented to the hypervisor
layer for scheduling onto physical CPU cores.

Unfortunately, a virtualized system architecture may expose var-
ious throughput bottlenecks. Specifically, the physical port density
and speed of the server may constraint the amount of traffic that
can be processed. Another bottleneck may be the hypervisor sched-
uler itself, in particular if a large number of processes need to be
allocated CPU cycles with strict timing. Furthermore, the VNF itself
typically has a maximum packet processing capacity that may also
limit its throughput. Finally, in an I/O bound networking environ-
ment another bottleneck is how the packet path from the physical
NIC into the VMs can affect the overall performance. In this paper,
we are particularly interested in this final bottleneck and for this
reason, we evaluate how different available alternatives such as
OVS-DPDK, FD.io VPP, or SR-IOV can contribute to the overall
system throughput. Our intent is to share real measurement results,
and provide insights on the performance of various I/O techniques.

3.1 Virtualized I/O Architectures
Virtualization of network functions differs from application virtual-
ization. In the former case, the I/O workload generated by packet
flows dominates. By definition of a VNF and its purpose being to
process networking traffic, packets are continuously arriving into
the server and need to be passed to its respective VM for processing.
Networking VMs are thus generating high I/O workloads for the
hypervisor and thus be referred to as I/O bound. In contrast, many
non-networking applications receive only a limited number of ex-
ternal inputs. Their requirement for CPU cycles are predominantly
algorithmic computations, possibly also with intensive memory
and storage access. Such applications or networking functions con-
sequently become compute-bound.

In general, packets arrive on the physical NIC and are copied into
memory via two direct-memory access (DMA) operations. Along
with the packet copy, a descriptor specifying the buffer location
(memory address and length) is also copied into memory. The pNIC
then sends an interrupt to indicate the arrival of the packet (see
[10, 24] for details). The packet may then be processed by the virtual
switch or a linux bridge process such as OVS-DPDK, FD.io VPP or
SR-IOV. The three different system configurations are illustrated in
Figures 1a and 1b respectively.

In the case of OVS-DPDK [9], packets are passed to the virtual
switch for distribution to the destination VNFs (CSR 1000V® in-
stances), assisted by the data path development kit (DPDK) libraries
for fast packet processing. The DPDK libraries offer a poll-mode
driver (PMD) that allows packets to pass from the physical inter-
face to the virtual switch directly, thus avoiding the networking

(a) FD.io VPP and OVS-DPDK

(b) SR-IOV

Figure 1: I/O paths of virtualized system architectures

stack of the kernel. OVS-DPDK offers enhanced switching func-
tionality, supporting among others, jumbo-frames, link bonding,
native tunnelling support for VXLAN, GRE or Geneve, MPLS, or
ingress/egress policing. From a CPU resource perspective, OVS-
DPDK is relying on CPU cycles from the host x86 core to switch
packets, thus stressing the hypervisor scheduler in a system where
multiple VNFs are also contending for the same CPU cycles. Any
CPU core associated for switching to OVS-DPDK becomes unavail-
able to process VNFs. OVS-DPDK can however be configured to use
multiple CPU cores for packet switching to increase its throughput
towards the VNFs. In our tests below, we have configured 2 cores
to be used for switching packets. Note that Figure 1a highlights the
pertinent queues in these setups. Such internal queues are setup to
pass packets on their path from the virtual switch into the VNFs,
and their depths can become a bottleneck with high data rates. For
OVS-DPDK the pertinent queues are in the DPDK driver in the
guest user space. Note also that the VNFs used in our tests (the
Cisco CSR 1000v) are also supporting DPDK to transfer packets effi-
ciently to and from OVS-DPDK, so the entire packet path from the
physical interface via the virtual switch into the VNF is supported
by DPDK.

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

287

Figure 2: 2-socket x86 NUMA architecture

FD.io VPP [17] is an open-source alternative solution to optimize
the I/O path in a virtualized system. Running as a Linux user-
space process, the FD.io VPP drivers enable NIC access over PCI.
FD.io processes packets in vectors (vector packet processing, VPP).
Packets are removed from the receive rings of the interface and are
formed into a packet vector, to which a processing graph is then
applied [14]. The processing graph represents the features that need
to be applied (e.g. IPv4 forwarding, classification, multicast etc.)
[17]. This approach minimizes interrupts and traversing a call stack
and thus also thrashing of the instruction caches and misses. VPP
processes multiple packets at a time, making it a high-performance
processing stack that supports even more networking functions
than OVS-DPDK. Features such as DHCP, Segment routing, ARP,
L2TPv3, VRFs, IPv6, MPLS-over-Ethernet are all supported. Similar
to OVS-DPDK, FD.io VPP makes use of Intel’s DPDK [8] library
to accelerate packet processing, and thus requires CPU cycles to
process packets which become unavailable for VNF processing.
Again, the number of CPU cores assigned to FD.io VPP can be
configured, and is set to 2 in our test to align with the OVS-DPDK
setup. FD.io VPP also leverages internal queues in the DPDK driver
in the guest user space to pass packets from the virtual switch into
the VNFs.

Figure 2 provides a sample illustration of the hypervisor’s I/O
configuration for FD.io VPP (and can be generalized for OVS-DPDK).
The x86 server is shown to offer two sockets with 8 cores each in
the diagram. The PCI links of the physical interface are associ-
ated with the first socket, which also runs the switching threads
(worker-threads) for FD.io VPP. The VNFs are pinned to dedicated
cores spread across both sockets. The non-uniform memory access
(NUMA) [16] architecture provides separate memory for each pro-
cessor core and thus enables the cores of hitting their respective
memory banks in parallel.

SR-IOV [7] in contrast offers a virtualized PCIe pass-through
mechanism that does not rely on the hypervisor to pass packets
between the NIC to the individual VNFs. As illustrated in Figure
1b SR-IOV virtualizes PCIe, creating PCIe physical functions (PF)
and virtual functions (VF). This allows a physical port to be shared
amongst multiple VNFs. The processing of features in a SR-IOV
setup is entirely done inside the VNF, requiring the VNF to support
the appropriate drivers. Features such as VXLAN, MPLS, policing
etc. mentioned above for OVS-DPDK and FD.io VPP now have to
be applied to packets inside the VNFs. SR-IOV has some functional
limitations [28] due to its dependency on the underlying hardware
and software. The server’s NIC cards and the BIOS have to support

the technology. Further caveats are for example the number of VFs
that can be configured for a physical NIC, currently limiting the
number of VFs to 128 on an Intel Fortville NIC - but the practical
limit may be as low as 64 [28]. Depending on the hardware and the
driver implementation, other caveats may exist such as packet mir-
roring, VLAN filtering, multicast addresses or promiscuous unicast
[26].

4 TEST METHODOLOGY
To demonstrate the effects of the various I/O options in a multi-VNF
system configuration, we apply the following test methodology:
A Cisco UCS C240 Series [5] x86 host configured with a Redhat
KVM [18] virtualization infrastructure is connected via a NIC with
two 10 Gigabit Ethernet (GE) interfaces to a Layer 2 switch (Cisco
Nexus 5548), which is in turn connected to an IXIA traffic generator
using again 2x10 GE ports. The traffic generator sends IP Traffic
with either an IMIX, 128B or 1518B packet size to a variable number
of Cisco CSR 1000V® virtual routers hosted on the x86 server. IMIX
traffic refers to typical internet traffic with packet sizes distributed
within the range of 64 to 1500B. Up to 10 virtual routers are in-
stantiated to ensure that the physical hardware resources are not
over-subscribed.

The Cisco 1000V VNFs are configured to either perform basic
IPv4 forwarding on the traffic stream (IP Throughput test), or to
apply feature processing by executing Network Address Transla-
tion (NAT), Firewall, Quality-of-Service (QoS) and Deep-Packet
Inspection (DPI) on the traffic stream. The latter feature config-
uration is representative for the cloud-based managed customer
premises equipment (CPE) use-case described in Section 1. The
bi-directional traffic is then returned to the traffic generator to
measure the attained throughput, packet loss and other statistics,
following RFC2544 [3], accepting a packet loss rate of 0.01% over
the 1 minute measurement interval1. The specifics of the test setup
are summarized in Table 1.

The packet path from the physical port in the x86 host to the
VNFs is compared for three different system configurations, illus-
trated in Figures 1a, 1b for SR-IOV and FD.io VPP, and OVS-DPDK
respectively, as described in Section 3.

1In virtualized systems, a non-zero packet loss rate is typically accepted since the
Linux scheduler is not designed to accommodate a no drop rate (NDR) for high packet
I/O.

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

288

Table 1: Details of the Test components

Test Component Details
x86 Host Cisco UCS C240 M4 Series: 2 Sockets Intel Xeon E5-2699v3

2.3 GHz with 18 cores each, 262GB RAM
Physical Interfaces 1 NIC with 2 x 10GE ports; Intel X520-DA2 NIC
Hypervisor Redhat KVM version 7.2; Linux kernel 3.10.0-327.18.2.el7.x86

64; Libvirt 1.2.17; QEMU version 2.3.0
I/O Paths OVS version 2.4.0

Cisco FD.io VPP release 16.06, configured for 3 cores
SR-IOV

Switch Cisco Nexus 5548 Series, NX-OS 7.0
Traffic Generator Ixia N2X, IxServer6.80.1100.12 GA
VNFs Cisco CSR 1000V® virtual Router, IOS XE version 16.3.1a; 2

vCPU, 4GB RAM

5 MULTI-VM PERFORMANCE RESULTS
In this section we present the performance of the different I/O
architectures in a multi-VM system. Two separate experiments were
carried out. Experiment 1 with the goal to evaluate the performance
of the throughput achieved when VNFs are configured to basic IPv4
forwarding (Cisco Express Forwarding - CEF); and Experiment 2
with the goal to evaluate the throughput performance achieved
when applying feature processing by executing the feature set (NAT,
Firewall, QoS, and DPI) to the VNF.

In our test methodology, the measured results are compared
to a benchmark throughput that represents the optimal multi-VM
throughput. The benchmark is derived from the measurement of
a single VNF test with SR-IOV with either the IP forwarding only
(Cisco Express Forwarding - CEF) or the feature set NAT, Firewall,
QoS and DPI applied to the VNF. In ideal conditions, each additional
VNF would contribute the same throughput to the overall system
performance as the first VNF, up to the point where other system
bottlenecks (in particular the physical NIC capacity) are reached.
The benchmark is thus an additive linear extrapolation of the single-
VNF test under SR-IOV. In other words, it is a theoretical optimal
increase of the throughput that we would expect to notice as we
add VNFs on the server. Details on a similar test setup are reported
in [21].

5.1 Experiment 1: IPv4 Forwarding Results
Figures 3 and 4 show themeasured performancewithmultiple VNFs
for pure IP forwarding with an IMIX packet size in terms of Gbps
and MPPS respectively2. SR-IOV shows a near-linear contribution
to the overall system throughput for each additional VNF, reaching
the physical interface limit of 19.01 Gbps with 3 VNFs under IMIX.
The discrepancy between the full interface bandwidth of 20 Gbps
and the measured maximum rate is explained by accounting for the
inter-frame gap, the preamble and the start-of-frame delimiter in the
Ethernet header. The maximum expected packet forwarding rate
across both 10GE interfaces is 6.18 MPPS. The observed forwarding
rate with SR-IOV of 6.14 is almost matching this rate.

In the case of FD.io VPP and OVS-DPDK, additional VNFs con-
tribute positively to the overall system throughput for the first 2
and 3 VMs respectivey, reaching beyond a system throughput of
2Results for a packet size of 1518 bytes are not shown for the IP forwarding traffic
profile. Both SR-IOV and FD.io VPP are able to exhaust the physical interface capacity
already with a single VNF. OVS-DPDK is able to reach the physical interface capacity
with two VNFs.

Figure 3: Multi-VM System Throughput with CEF, IMIX
Packet Size, Gbps

Figure 4: Multi-VM System Throughput with CEF, IMIX
Packet Size, MPPS

10 Gbps. However, additional VNFs instantiated thereafter cause
the system throughput to decline. This decline is slightly more
significant for OVS-DPDK than for FD.io VPP. Such a decline im-
plies a decreasing average throughput per VNF as VNFs are added
(system throughput divided by number of VNFs), challenging a
network operators capacity planning rules. Neither of the latter
two I/O techniques reaches the physical interface limit of 20 Gbps
in this test. The gradual decline in system throughput is further
investigated below.

As expected, the total system throughput is scaled proportionally
with a smaller packet size of 128B (see Figures 5 and 6), causing the
slope of the benchmark to be shallower. Again, SR-IOV shows a
linearity in system throughput as the number of VNFs is increased,
up to 8 VNFs. Thereafter however, additional VNFs no longer con-
tribute positively to the overall system throughput, and the maxi-
mum interface capacity of 20 Gbps cannot be reached even with 10
instantiated VNFs. Taking the Ethernet overhead (interframe gap,
preamble) into account explains the upper limit. To account for
the subsequent degradation of system throughput with the 9th and
10th VNF, we examined the packet loss counters of the physical
interfaces. We observed packet losses towards the traffic generator,
indicating that the NIC buffers are overflowing.

OVS-DPDK and FD.io VPP as I/O mechanisms for 128B packet
flows again reach their maximum system throughput with 3 VNFs
at around 5 Gbps and 5Mpps respectively. The total system through-
put again tapers off as additional VNFs are added. It is notable that

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

289

Figure 5: Multi-VM System Throughput with CEF, 128B
Packet Size, Gbps

Figure 6: Multi-VM System Throughput with CEF, 128B
Packet Size, MPPS

for small packet sizes of 128B, the attainable system throughput of
both FD.io VPP and OVS-DPDK is very comparable.

Next, we examine the impact of varying the switching threads
(VPP worker threads for FD.io) on the total system throughput.
Figure 7 shows the detailed CPU core configurations with 1, 2
and 4 FD.io VPP switching threads respectively3. Multiple VNF
instances were again instantiated on the x86 host and subjected to
IPv4 traffic with IMIX. Figure 8 shows the corresponding results for
this separate experiment. With a single switching thread pinned
to a dedicated core, the throughput level reaches 6.31 Gbps with a
single VNF, and then again exhibits a slight degradation as VNFs
are added to the system. Configuring a second switching thread to
the configuration increases the overall system throughput to over
8 Gbps, and then sees the system throughput level off at around 9
Gbps. Configuring further two switching threads (for a total of 4)
to the FD.io VPP configuration significantly increases the system
throughput. However, in this case the CPU resources are exhausted
after instantiating 4 VNFs, demonstrating the trade-off of allocating
CPU cores to VNFs or to the I/O path.

A more thorough investigation of the results also shows that the
association between the physical interfaces, the switching threads,
and the VNFs onto the sockets can impact performance. Instan-
tiating VNFs on the one socket while the physical interface and
3These test were run on a Cisco UCS C-Series C240M4SX with two Intel E5-2667v3
sockets, 8 cores each, clocked at 3.2 GHZ. Traffic arriving on 4x10GE interfaces, two
associated with each socket. The hypervisor details were consistent as in Table 1. The
IOS XE version tested was 16.3.0, accounting for some differences in the measured
throughput results.

the FD.io VPP switching thread are pinned to the other socket (c.f.
Figure 2) forces remote memory accesses across sockets (a socket
boundary crossing across the QPI link). In a NUMA architecture,
this causes a slight performance degradation and is at least a partial
explanation for the slight degradation of the system throughput
observed in Figures 3 or 5. This socket boundary crossing penalty
is more pronounced if the physical interfaces’ PCI is associated
with different socket to where the FD.io VPP switching threads
are processed. Placing VNFs on different sockets to the FD.io VPP
switching thread incurs less of a penalty.

5.2 Experiment 2: Throughput with features
The performance profile observed for IP traffic flows changes con-
siderably as features are turned on in the VNFs. More processing
cycles are required by the VNFs themselves to manipulate the traf-
fic, in our case applying DPI, NAT, QoS, and Firewall. The overall
system throughput that can be achieved in such a configuration is
consequently below the IP forwarding throughput, exhibited in Fig-
ure 9 by having a significantly smaller gradients as VNFs are added
(benchmark comparison between Figures 3 and 9). Interestingly, in
this case the system throughput for SR-IOV and FD.io VPP is almost
identical as VNFs are added, up to 6 VNFs, and also highly linear,
demonstrating the performance of the vector processing approach
with FD.io VPP. This linearity is desirable from an operator per-
spective since it provides the necessary determinism for capacity
planning as customers for the networking services are added. Note
that for FD.io VPP the system throughput increases up to 6 VNFs
and aggregates 9 Gbps. This is below the maximum throughput
of 10Gbps observed above for FD.io VPP under IMIX - the feature
processing overhead of the VNFs shifts the processing burden to the
VNFs instead of the I/O path, and so the switching capacity limits of
the FD.io VPP worker threads are not stressed. As observed for the
IMIX tests, the system throughput starts to degrade from the 8th
VNF onwards. The socket boundary crossing architecture described
above offers an explanation for this degradation: for VNFs 7-10 the
switching threads are on a different socket, thus forcing a boundary
crossing across the QPI link.

For themulti-feature test case, OVS-DPDK exhibits near-linearity
until 5 VNFs, but trailing noticeably below SR-IOV and FD.io VPP.
However, after the 6th VNF the throughput degradation under
OVS-DPDK is significant. Recall that this implies impacts on the
already instantiated VNFs as new VNFs are added - the average
throughput per VNF is 390Mbps for the 10VNFs, so less than half of
the throughput achieved for a single VNF (900 Mbps). The NUMA
architecture with socket boundary crossings across the QPI link
explains part of this degradation. Again, VNFs 7-10 are associated
with a different socket than the OVS-DPDK PMD threads, thus
forcing cross-socket memory access. However, since the system
throughput degradation starts after the 6th VNF, it means that a
limit of the OVS-DPDK switching capacity is also reached.

The measurements of the system throughput with large packet
sizes (1500B) and with features enabled is shown in Figure 10. In this
case, the larger packet size implies that fewer packets are required
to fill the physical interface bandwidth, and so no bottlenecks in
the I/O path are experienced for the SR-IOV and FD.io VPP cases.
The physical interface bandwidth limit of 20Gbps is reached after

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

290

(a) 1 switching thread

(b) 2 switching threads

(c) 4 switching threads

Figure 7: System Architecture for different FD.io VPP switching thread experiments

Figure 8: Impact of different worker threads on system
throughput

instantiation of the 4th VNF. An I/O path based on OVS-DPDK
initially also shows linearity up to the 3rd VNF, reaching 15.2Gbps
per server. Thereafter, the total system throughput flattens and
starts to decline significantly again after the 4th VNF, pointing
again to the less efficient packet processing paradigm of OVS-DPDK

Figure 9: Multi-VM System Throughput with Features, IMIX
Packet Size, Gbps

as compared to FD.io VPP. Adding more PMD threads to the OVS-
DPDK configuration can improve system throughput at the expense
of instantiating fewer VNFs.

6 CONCLUSION AND FUTUREWORK
In this paper we analyzed the performance of running multiple
VNFs in parallel under different I/O technologies: SR-IOV, OVS-
DPDK and FD.io VPP. Our tests differ from service chained deploy-
ments in that each VNF is executing all the functions required for

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

291

Figure 10: Multi-VM System Throughput with Features,
1500B Packet Size, Gbps

a particular IP traffic flow, instead of service chaining the traffic
through multiple VNFs. The hypervisor scheduler thus not only
has to fulfil the I/O demands of the VNFs, but also the vCPU de-
mands arising in such a scenario. Our studies show that SR-IOV
offers a highly linear contribution to the total system throughput
as VNFs are added to a server. However, SR-IOV also comes with
some deployment caveats that may restrict a deployment scenario.

FD.IO VPP and OVS-DPDK perform very similar in our test en-
vironments, scaling linearly for the initial VNFs, but then reaching
a system throughput plateau as further VNFs are added. We show
that this plateau is a function of the CPU resources allocated to
the virtual switching functions of FD.io VPP and OVS-DPDK. Both
FD.io VPP and OVS-DPDK demonstrate a gradual decline in total
system throughput as further VNFs are added. We investigated this
decline and identified the pinning configuration of the physical
interfaces, the virtual switching threads, as well as the VNFs as
contributing to this gradual decline. In our tests with demanding
features (DPI, NAT, Firewall, QoS), FD.IO VPP outperformed OVS-
DPDK, showing the benefits of processing packets in a vector. Both
of these I/O techniques are thus viable alternatives to SR-IOV that
offer better feature functionality and deployment flexibility if the
deployment scenario justifies the resource profiles required.

As further research areas, we are identifying to run similar tests
in an oversubscribed setup, where the sum of the offered vCPU
resources from the VNFs exceeds the available core count on the
x86 host. Such measurements allow a better characterization of the
hypervisor scheduler under heavy loads, and are also relevant for
SPs and Cloud Providers to further increase the VNF density per
server and thus reduce the overall total cost of ownership.

REFERENCES
[1] [n. d.]. Cisco cloud services router 1000v series. ([n. d.]). Re-

trieved October 13, 2017 from http://www.cisco.com/c/en/us/products/routers/
cloud-services-router-1000v-series/index.html

[2] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, and F. Risso. 2015. As-
sessing the Performance of Virtualization Technologies for NFV: a Preliminary
Benchmarking. In Proc. of the 4th IEEE Eur. Wrkshp on Software Defined Networks
(EWSDN), IEEE (Ed.). 67–72. https://doi.org/10.1109/EWSDN.2015.63

[3] S. Bradner and J. McQuaid. 1999. Benchmarking Methodology for Network Inter-
connect Devices. Technical Report RFC2544. Internet Engineering Task Force
(IETF).

[4] F. Callegati, W. Cerroni, and C. Contoli. 2016. Virtual Networking Performance
in Openstack Platform for Network Function Virtualization. J. of Electrical and
Computer Engineering 2016 (March 2016), 1–15. https://doi.org/10.1155/2016/
5249421

[5] Cisco. [n. d.]. Cisco ucs c240 m4 rack server. ([n. d.]). Retrieved October 13,
2017 from http://www.cisco.com/c/en/us/products/servers-unified-computing/
ucs-c240-m4-rack-server/index.html

[6] Docker Container. [n. d.]. ([n. d.]). Retrieved October 10, 2017 from https:
//www.docker.com/

[7] Intel Corporation. 2011. Pci-sig SR-IOV Primer: An Introduction to SR-IOV Tech-
nology. (2011). Retrieved October 10, 2017 from http://www.intel.com/content/
www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html

[8] Intel Corporation. 2014. Intel DPDK vSwitch: Performance Report. (2014). Re-
trieved October 10, 2017 from https://01.org/sites/default/files/page/intel_dpdk_
vswitch_performance_figures_0.10.0_0.pdf

[9] Intel Corporation. 2016. Open vSwitch* with DPDK Overview. (2016).
Retrieved October 13, 2017 from https://software.intel.com/en-us/articles/
open-vswitch-with-dpdk-overview

[10] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan. 2016. High Performance
Network Virtualization with SR-IOV. In Proc. of the 16th IEEE Int. Symp. on High
Performance Computer Architecture (HPCA), IEEE (Ed.). 1–10. https://doi.org/10.
1109/HPCA.2010.5416637

[11] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. 2014. Performance Character-
istics of Virtual Switching. In Proc. of the 3rd IEEE Int. Conf. on Cloud Networking
(CloudNet), IEEE (Ed.). 120–125. https://doi.org/10.1109/CloudNet.2014.6968979

[12] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. 2015. Assessing Soft and
Hardware Bottlenecks in Pc-based Packet Forwarding Systems. In Proc. of the
14th Int. Conf. on Networks (ICN). 78–83.

[13] B Pfaff et al. 2015. The Design and Implementation of Open vSwitch. In In Proc. of
the 12th USENIX Symp. on Networked Systems Design and Implementation, USENIX
(Ed.). 117–130.

[14] FD.io. 2016. Fd.io /dev/boot. (2016). Retrieved Octo-
ber 13, 2017 from https://docs.google.com/presentation/d/1JL5O_
ZkRUXVaY4ZuKaMj13jEGv90eanOYAB7mHfmPK4/pub?start=false&loop=
false&delayms=3000#slide=id.p4

[15] Z. Huang, J. Li, Z. Chang, and H. Guan. 2012. Adaptive and Scalable Optimizations
for High Performance SR-IOV. In Proc. of the IEEE Int. Conf. on Cluster Computing,
IEEE (Ed.). 459–467. https://doi.org/10.1109/CLUSTER.2012.28

[16] C. Kim and K. Park. 2015. Credit-based Runtime Placement of Virtual Machines
on a Single NUMA System for QoS of data access performance. IEEE Trans. on
Computers 64, 6 (June 2015), 1633–1646. https://doi.org/10.1109/TC.2014.2329671

[17] M. Konstantynowicz. [n. d.]. FD.io - How to Push Extreme Limits of Performance
and Scale with Vector Packet Processing Technology. ([n. d.]). Retrieved October
10, 2017 from https://www.ietf.org/proceedings/96/slides/slides-96-bmwg-10.pdf

[18] KVM. [n. d.]. Kernel virtual machine. ([n. d.]). Retrieved October 13, 2017 from
https://www.linux-kvm.org/

[19] Lightreading Ray Le Maistre. 2015. Validating Cisco’s NFV Infrastructure Part
1. (2015). Retrieved October 13, 2017 from http://www.lightreading.com/nfv/
nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684

[20] M. Paolino, N. Nikolaev, J. Fanguede, and D. Raho. 2015. SnabbSwitch User Space
Virtual Switch Benchmark and Performance Optimization for NFV. In Proc. of the
IEEE Conf. on Network Function Virtualization and Software Defined Networking
(NFV-SDN), IEEE (Ed.). 86–92. https://doi.org/10.1109/NFV-SDN.2015.7387411

[21] N. Pitaev. [n. d.]. Cisco CSR 1000v Multi VM / Multi IO Test Report. ([n. d.]).
Availableupondemand

[22] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris. 2017. Multi-VNF Perfor-
mance Characterization for Virtualized Network Functions. In Proc. of the IEEE
Conf. on Network Softwarization (Netsoft), IEEE (Ed.). 1–5. https://doi.org/10.
1109/NETSOFT.2017.8004221

[23] R. Rahimi, M. Veeraraghavan, Y. Hakajima, H. Takahashi, S. Okamoto, and N.
Yamanaka. 2016. A High-Performance Openflow Software Switch. In Proc. of
the 17th IEEE Int. Conf. on High Performance Switching and Routing (HPSR), IEEE
(Ed.). 93–99. https://doi.org/10.1109/HPSR.2016.7525645

[24] R. Rojas-Cessa, K. Salehin, and K. Egoh. 2015. Evaluation of Switching Perfor-
mance of a Virtual Software Router. In Proc. of the 35th IEEE Sarnoff Symp., IEEE
(Ed.). 1–5. https://doi.org/10.1109/SARNOF.2012.6222733

[25] V. Sankaran and D. Darde. 2015. Performance Analysis of Intel DPDK
on Physical and Virtual Machines. (2015). Retrieved October 13,
2017 from http://www.cs.cornell.edu/courses/cs5413/2014fa/projects/group_of_
dsd96_vs444/final_pres.pdf

[26] H. Shimamoto. 2016. SR-IOV ixgbe driver limitations and improvement. (2016).
Retrieved October 13, 2017 from http://events.linuxfoundation.org/sites/events/
files/slides/20160715_LinuxCon_sriov_final.pdf

[27] M. A. Tahhan and J. M. Morgan. [n. d.]. Vsperf Deep Dive: Virtual Switch
Performance in OPNFV. ([n. d.]). Retrieved October 13, 2017 from https://wiki.
opnfv.org/display/vsperf/?preview=/2926262/6818343/VSPERF%20Golden.pptx

[28] VMware. [n. d.]. VMware vSphere 5.1 Documentation Center. SR-
IOV Support. ([n. d.]). Retrieved October 13, 2017 from https:
//pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.
networking.doc%2FGUID-E8E8D7B2-FE67-4B4F-921F-C3D6D7223869.html

[29] Open vSwitch. [n. d.]. ([n. d.]). Retrieved October 10, 2017 from http:
//openvswitch.org

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

292

http://www.cisco.com/c/en/us/products/routers/cloud-services-router-1000v-series/index.html
http://www.cisco.com/c/en/us/products/routers/cloud-services-router-1000v-series/index.html
https://doi.org/10.1109/EWSDN.2015.63
https://doi.org/10.1155/2016/5249421
https://doi.org/10.1155/2016/5249421
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-c240-m4-rack-server/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-c240-m4-rack-server/index.html
https://www.docker.com/
https://www.docker.com/
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
https://01.org/sites/default/files/page/intel_dpdk_vswitch_performance_figures_0.10.0_0.pdf
https://01.org/sites/default/files/page/intel_dpdk_vswitch_performance_figures_0.10.0_0.pdf
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://doi.org/10.1109/HPCA.2010.5416637
https://doi.org/10.1109/HPCA.2010.5416637
https://doi.org/10.1109/CloudNet.2014.6968979
https://docs.google.com/presentation/d/1JL5O_ZkRUXVaY4ZuKaMj13jEGv90eanOYAB7mHfmPK4/pub?start=false&loop=false&delayms=3000#slide=id.p4
https://docs.google.com/presentation/d/1JL5O_ZkRUXVaY4ZuKaMj13jEGv90eanOYAB7mHfmPK4/pub?start=false&loop=false&delayms=3000#slide=id.p4
https://docs.google.com/presentation/d/1JL5O_ZkRUXVaY4ZuKaMj13jEGv90eanOYAB7mHfmPK4/pub?start=false&loop=false&delayms=3000#slide=id.p4
https://doi.org/10.1109/CLUSTER.2012.28
https://doi.org/10.1109/TC.2014.2329671
https://www.ietf.org/proceedings/96/slides/slides-96-bmwg-10.pdf
https://www.linux-kvm.org/
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684
https://doi.org/10.1109/NFV-SDN.2015.7387411
Available upon demand
https://doi.org/10.1109/NETSOFT.2017.8004221
https://doi.org/10.1109/NETSOFT.2017.8004221
https://doi.org/10.1109/HPSR.2016.7525645
https://doi.org/10.1109/SARNOF.2012.6222733
http://www.cs.cornell.edu/courses/cs5413/2014fa/projects/group_of_dsd96_vs444/final_pres.pdf
http://www.cs.cornell.edu/courses/cs5413/2014fa/projects/group_of_dsd96_vs444/final_pres.pdf
http://events.linuxfoundation.org/sites/events/files/slides/20160715_LinuxCon_sriov_final.pdf
http://events.linuxfoundation.org/sites/events/files/slides/20160715_LinuxCon_sriov_final.pdf
https://wiki.opnfv.org/display/vsperf/?preview=/2926262/6818343/VSPERF%20Golden.pptx
https://wiki.opnfv.org/display/vsperf/?preview=/2926262/6818343/VSPERF%20Golden.pptx
https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-E8E8D7B2-FE67-4B4F-921F-C3D6D7223869.html
https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-E8E8D7B2-FE67-4B4F-921F-C3D6D7223869.html
https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-E8E8D7B2-FE67-4B4F-921F-C3D6D7223869.html
http://openvswitch.org
http://openvswitch.org

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of a Virtualized System Architecture
	3.1 Virtualized I/O Architectures

	4 Test Methodology
	5 Multi-VM performance Results
	5.1 Experiment 1: IPv4 Forwarding Results
	5.2 Experiment 2: Throughput with features

	6 Conclusion and Future Work
	References

