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ABSTRACT
Dynamic Binary Modification (DBM) is a technique for modifying
applications transparently while they are executed, working at the
level of native code. However, DBM introduces a performance over-
head, which in some cases can dominate execution time, making
many uses impractical.

The ARM hardware ecosystem poses unique challenges for high
performance DBM systems because of the large number and wide
range of capabilities of the commercially available implementations:
from single issue, in order cores up to 6-issue out-of-order cores
and including less traditional implementations. These variations
raise the question of whether it is possible to develop DBM opti-
misations which either improve or, at the very least, do not affect
performance on all available systems and microarchitectures. To
answer this question, the performance of three new optimisations
for the MAMBO DBM system has been evaluated on five systems
using different microarchitectures. For comparison, the overhead of
DynamoRIO, a high performance DBM system which was recently
ported to the ARM architecture, is also evaluated.
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1 INTRODUCTION
Dynamic Binary Modification (DBM) is a technique for modify-
ing applications transparently while they are executed, working
at the level of native code. DBM has numerous applications, some
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of the more common being dynamic instrumentation [23, 27], pro-
gram analysis [26, 30], virtualisation [1, 28] and Dynamic Binary
Translation (DBT) [8, 9, 13].

The ARM hardware ecosystem poses unique challenges for high
performance DBM systems because of the large number and wide
range of capabilities of the commercially available implementations:
from single issue, in-order cores (Cortex-A5), up to out-of-order
cores (Cortex-A17 or Applied Micro X-Gene).

These challenges are exacerbated by the wide adoption of single-
ISA heterogeneous multicores (such as big.LITTLE [3]), which use
different microarchitectures (e.g. a cluster of energy efficient in-
order cores and a cluster of high performance out-of-order cores)
in the same System on Chip (SoC) and allow the migration of
active applications from one type of core to another. This raises the
question of whether it is possible to develop DBM optimisations
which either improve or, at the very least, do not affect performance
on all ARM systems and microarchitectures.

MAMBO [17] is an open source [16], DBM framework for the
ARM architecture. To further reduce its overhead, three optimisa-
tions are proposed and evaluated in this paper. The performance of
these new optimisations and of the baseline MAMBO system has
been measured on five ARM systems which use different microar-
chitectures.

The overhead of the baseline MAMBO system is partly caused
by microarchitectural inefficiencies, for example by a high number
of instruction cache misses [17]. Therefore, the optimisations pre-
sented in this paper aim to address this limitation by improving
performance at the microarchitectural level (e.g. by reducing the
number of cache misses) rather than at the architectural level (e.g.
by reducing the number of executed instructions).

The contributions of this paper include:

• a trace system for MAMBO which reduces its overhead by
improving code cache locality and eliminating some of the
branches on the hot code path, while avoiding software
branch target prediction for poorly predictable branches;

• a novel scheme to enable hardware return address prediction
in a code cachewithout use of a software return address stack
(Hardware-assisted return address prediction);

• a software indirect branch prediction scheme which allows
effective prediction for polymorphic indirect branches (Adap-
tive Indirect Branch Inlining);

• evaluating the effectiveness of these optimisations when
running on a wide range of microarchitectures, including a
comparison against the state of the art; and

• reducing the geometric mean overhead of the MAMBO DBM
system running SPEC CPU2006 by 27% - 54% on the five
evaluation systems.
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Figure 1: Example basic block and associated data structures.

The rest of the paper is organised as follows. Section 2 is a short
description of the baseline MAMBO system. Section 3 describes
the newly introduced trace system. Section 4 describes the new
optimisations for indirect branches. Section 5 is the performance
evaluation and Section 6 draws the final conclusions.

2 BASELINE SYSTEM OVERVIEW
The baseline MAMBO system was described by Gorgovan et al. [17].
MAMBO, like most other DBM tools, runs in the same process with
the application it modifies and controls its execution by scanning,
translating and optionally modifying all code before execution. The
process of code discovery, translation and modification is done at
the level of Basic Blocks (BBs), which are single-entry, single-exit
units of code. To amortise the cost of this process, the result is stored
in a code cache and reused for future executions. MAMBO uses
thread-private code caches (and associated data structures), which
allow multithreaded code scanning and execution with minimal
synchronisation. A hash table is used to map application addresses
(Source Program Counters - SPCs) to their translation in the code
cache (Translated Program Counters - TPCs). To minimise the cost
of handing over execution from one basic block to another, basic
blocks which end with a direct branch are linked directly (using di-
rect branches inside the code cache). Additionally, indirect branches
are translated to inline hash table lookups, which perform a lookup
of the TPC corresponding to each SPC used by the application, with
minimal spilling and restoring of application registers, as opposed
to a full context switch to the DBM system.

Figure 1 shows an example basic block and a simplified view
of the associated data structures. The application code, at address
0x8000, contains two data processing instructions and a branch
with link (procedure call) to another location. The translation in
the code cache, in basic block bb_x, contains the unmodified data
processing instructions (grey) and the translation of the branchwith
link instruction (black). The translated branch with link hides that
the code is running from a code cache, at a different location than
expected, by explicitly setting the value of the Link Register (LR)
to the correct value and then executing a regular branch (without
link) to the translation of the target address. Some of the metadata
created for the example BB is shown in the right hand column: its
SPC, TPC, the location, type of branch and its target (for direct
branches) in a structure specific to each BB; the space used by the
translation in the code cache is marked as used (in the code cache
metadata); and an entry is added to the thread-private hash table to
map the SPC to the TPC. Branches between basic blocks are tracked
by maintaining a linked list of incoming branches for each basic
block (the linked_from metadata field).

3 TRACES
The baseline code cache, organised in basic blocks, creates and
stores the basic blocks in the order they are first executed. However,
the basic blocks in the software code cache have high fragmentation,
making inefficient use of the hardware code cache. Furthermore,
the two paths of conditional branches are translated in two separate
basic blocks in the software code cache, increasing the number of
executed branches (by executing a branch in the translated code
even when the source conditional branch is not taken). To avoid
these limitations, this paper introduces traces (also known as su-
perblocks) to MAMBO, which are single-entry, multiple-exit units
built by merging together the basic blocks on the hot code path.
The single-entry, single-exit units which make up a trace are called
trace fragments.

Because creating a trace has a non-trivial cost (both in terms
of code cache space, and execution time spent creating the trace
instead of running the application), it is important to only create
traces for hot code, which is expected to execute many times in
the future and amortise its creation cost. On the other hand, to
get the best performance, it is preferred to create traces for all
of the hot code in an application and as early as possible. The
challenge is in 1) quickly identifying the hot code in an application
and 2) in profiling the hot execution paths through this code with
low overhead. MAMBO builds traces using an improvement of the
Next Executing Tail (NET) online profiling scheme [15]. The NET
algorithm is summarised in Table 1. It is designed to minimise the
profiling overhead. Towards that end, NET initially maintains an
execution counter only for the basic blocks which are the potential
start of a hot path. These instrumented basic blocks are called trace
heads. The insight is that the hot execution path must consist of
cycles, therefore NET uses the targets of backwards branches (both
direct and indirect) as trace heads. Once the execution counter
for a particular trace head reaches a certain threshold, then the
trace is considered hot and NET records the full execution path
following the trace head, until a backwards branch is encountered
(which terminates the trace). This recorded path is then used as the
predicted path, based on the rationale that the trace tail following a
hot trace head is also likely to be part of the hot execution path. For
example, let us consider the Control Flow Graph (CFG) depicted
in Figure 2, where each box represents a basic block and block
A ends with a conditional direct branch, blocks B, D, E, F, G, H
and I end with unconditional direct branches, while block C ends
with an unconditional indirect branch. Using the NET trace head
selection algorithm, the trace heads in this example would be the
two blocks which are the target of backwards branches: A and C. If,
for example, the execution count threshold would then be reached
for the trace head A and then the blocks CEH would execute, the

Hot code profiling execution counter for trace heads
Trace head selection the targets of backward branches
Trace path the path taken across forward direct and indirect

branches, after the execution counter of a trace head
reached a certain threshold

Trace termination a backward branch is encountered
Table 1: Overview of the NET algorithm.
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Figure 2: Example control flow graph. Each box represents
a basic block. Block A, the entry point, contains a condi-
tional direct branch, block C contains an unconditional in-
direct branch and all other blocks contain unconditional di-
rect branches.

trace would consist of the blocks ACEH, ending with a branch back
to the beginning of the trace.

An important property of NET is that it builds traces across
indirect branches, statically predicting their target address to be
the same as observed in the path recording phase. In the previous
example involving the trace ACEH, the target of the indirect branch
from block C is block E in the path recording stage, therefore NET
builds the trace predicting that the target of block C is always E.
However, analysis of the SPEC CPU benchmarks showed that most
indirect branches are polymorphic and poorly predicted by a static
target predictor, as used by NET. Furthermore, a static indirect
branch predictor adds overhead in the case when the prediction
is incorrect. This analysis is available in Section 4.2, which also
presents AIBI, a more accurate indirect branch prediction scheme,
which has been implemented in MAMBO. To avoid this limitation,
the MAMBO trace building scheme terminates on indirect branches,
which avoids static target prediction and instead allows their SPC-
to-TPC lookup to be implemented using an inline hash table lookup,
optionally with Adaptive Indirect Branch Inlining (Section 4.2).
However, this change to NET has a number of side-effects which
must be managed to maintain good performance, as discussed in
the following subsections.

3.1 Trace head selection
The new trace termination condition described in Section 3 avoids
adding the targets of an indirect branch to a trace tail, by terminat-
ing the trace. However, one or more of these targets are likely part
of the hot execution path, therefore all targets of indirect branches
should then have execution counters (i.e. become trace heads) to
allow the creation of traces. Nevertheless, the NET trace head selec-
tion algorithm only instruments the targets of backwards branches
and would generally fail to instrument many of these targets. If, for
example, block C in the CFG shown in Figure 2 is on the hot code
path and its indirect branch has a 70% bias toward block E, 30%
toward block F and never branches to block G, then both the E and
F blocks are also on the hot code path. If these blocks would be trace
heads, then the traces EH... and FI... would be created. Nevertheless,
the unmodified trace head selection of NET does not allow this and
instead the blocks E, H, F and I could not be trace heads, nor would
they be included in trace tails because of the additional termination
condition used by MAMBO.

NET also presents an implementation challenge for DBM sys-
tems: if a basic block is first reached using a forward branch, then it
will be created without an execution counter. However, if it is later
reached using a backward branch, then an execution counter has
to be added to the existing block or, otherwise a second version of
the basic block has to be created. Both options make inefficient use
of the code cache space and increase fragmentation. For example,
in the control flow graph depicted in Figure 2, the first execution
of block C would necessarily be a result of the branch from block
A, therefore not creating a trace. If block I would execute at a later
time, then the backwards branch to C would be discovered and an
execution counter would have to be added to the existing block C.

Both of these issues are addressed in MAMBO by a single change
to the trace head selection algorithm: whether a basic block is a
trace head is decided at the time it is scanned, depending onwhether
it ends with a direct branch (then it is a trace head) or an indirect
branch (then it is a regular basic block). Basic blocks containing an
indirect branch are not allowed as trace heads because they would
be terminated immediately and would therefore create traces con-
taining a single fragment. This algorithm also allows the targets
of indirect branches to be trace heads and avoids ulterior transfor-
mation of existing basic blocks into trace heads, by removing the
reachability of basic blocks as an input to the trace head selection
algorithm. Instead, it relies exclusively on the contents of the basic
block itself, which are known at the time it is scanned. In the ex-
ample CFG in Figure 2, all basic blocks apart from block C (which
contains an indirect branch) would be trace heads.

Changing the trace head selection algorithm compared to NET
results in more basic blocks becoming trace heads and incurring the
overhead of updating the execution counter. However, this overhead
is limited: the counter is updated by calling a shared procedure,
which is implemented using only ten instructions. Additionally,
the execution count threshold for trace creation is low, typically in
the order of tens or hundreds, which strongly limits the maximum
overhead that can be introduced by each trace head. Compared
to scanning the trace head and translating it in the code cache,
repeatdly incrementing the execution counter up to its threshold is
relatively fast.

In MAMBO, a trace head is implemented as a basic block with
a header (shown in Listing 1) which: 1) pushes to the stack the
contents of 3 scratch registers and of the Link Register, 2) sets the
id of the trace head in R0 and 3) calls a shared procedure which
then decrements the execution counter of the trace head by one and
returns, until it reaches zero. When zero is reached, trace creation
is started, using the id passed to the shared procedure to identify
the trace head. The rest of the trace building process is described
in Section 3.2.

PUSH {R0-R2, LR}
MOVW R0, #(trace_head_id & 0xFFFF)
MOVT R0, #(trace_head_id >> 0xFFFF)
BL increment_exec_counter

Listing 1: The code added to trace heads.
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NET MAMBO traces
Hot code profiling execution counter for trace heads same as NET
Trace head selection the targets of backward branches basic blocks exiting with a direct branch
Trace path the path taken across forward direct and

indirect branches, after the execution
counter of a trace head reached a certain
threshold

the path taken across direct branches, after the execution
counter of a trace head reached a certain threshold

Trace termination a backward branch is encountered an indirect branch is encountered
OR a direct branch to an existing trace is encountered
OR the maximum number of fragments has been reached and
a backward direct branch is encountered

Table 2: Comparison of MAMBO traces and NET.

3.2 Trace building
Trace building works similarly to NET: when a trace is first created,
the SPC of the trace head is used to create the first fragment in
the trace. Then this fragment is executed and its selected target is
appended to the trace. This process continues iteratively until a
termination condition is met. The first such condition is the execu-
tion of an indirect branch, as previously discussed. An additional
condition is the execution of a direct branch to the entry point of
an existing trace (including itself), which is intended to limit tail
duplication between different traces. If a branch to the entry point
of an existing trace is encountered, then a direct branch to that trace
is inserted and the partial trace is terminated. For example if a trace
was created from block A in Figure 2, then the trace would initially
contain the fragment A. After the fragment A would execute, its
target would be appended to the trace. If this target was B, then the
partial trace would contain the fragments AB. Since B contains a
branch to D, this fragment would also be added to the trace, which
would then contain ABD. Finally, the target of the D fragment is
A, for which a trace would already exist (the partial trace itself).
The ABD trace would be terminated and linked directly to its own
entry point.

Additionally, when a trace is created, the SPC-TPC hash table
is updated to the TPC of the trace. All direct branches from other
basic blocks and traces to the trace head are replaced by branches
to the new trace, essentially making the trace head unreachable. In
the previous example, the hash table entry for the SPC of A would
be changed from the address of the trace head A to the address of
the new partial trace A.... Similarly, any branches to trace head A
would be replaced with branches to the partial trace.

3.3 Trace size limits
Some code duplication is allowed inside each trace, to encourage
partial unrolling of short loops. However, excessive code duplication
is undesirable, therefore the maximum number of fragments in each
trace is limited. If this configurable limit is reached, the trace is
terminated on its next backwards branch. For example in the CFG
shown in Figure 2, the blocks CFI form a loop. If this loop would
execute while the trace ACFICFICFI... was built, then this would
result in an increasingly large trace, which would eventually fill
the trace code cache. However, because the maximum number of
fragments in a trace is limited, the trace would be terminated on the
backward branch from I to C after a limited number of iterations.

3.4 Summary
Using a software code cache based on basic blocks contributes to the
overhead of DBM systems by introducing fragmentation and by ex-
ecuting numerous branch instructions to transfer control between
any two basic blocks. These issues are mitigated by traces, which
are single-entry and multiple-exit units which group together the
basic blocks likely to execute sequentially on the hot code path. The
main challenges related to traces are in 1) identifying the hot code
with minimal delay and 2) profiling this code to obtain the hot exe-
cution paths. The NET online profiling algorithm is commonly used
to build traces in DBM systems, however it relies on static target
prediction for indirect branches. Nevertheless, indirect branches
are shown to generally be polymorphic and poorly predicted by a
static target predictor. In this context, several changes to NET are
proposed, as summarised in Table 2, which eliminate static indirect
branch prediction while managing the undesired side-effects.

4 INDIRECT BRANCHES
Indirect branches are control flow instructions with a target not
known at translation time. Looking up TPC for the SPC of indirect
branches at runtime is the major source of overhead for DBM
systems [21]. We classify indirect branches in three types:

• function returns, for which we introduce hardware-assisted
return address prediction in Section 4.1; and

• generic indirect branches, handled in MAMBO using inline
hash table lookups, for which we introduce the optional
adaptive inlining - Section 4.2; and

• table branches, handled in MAMBO using the space-efficient
shadow branch table linking [17].

Figure 3 shows the steps involved in an inline hash table lookup,
which is the mechanism used for handling indirect branches in the
baseline MAMBO: 1) first, if required and depending on the type of
indirect branch, the values of up to three registers are pushed onto
the stack to enable their use as scratch registers; then, 2) the SPC

Figure 3: Inline hash table lookup.
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is copied or generated in one of the scratch registers; 3) the hash
table lookup is performed, with the TPC being loaded; and 4) finally
the values of the scratch registers are restored and a branch to the
TPC is performed. The hardware-assisted return address prediction
and adaptive indirect branch inlining optimisations are both an
extension to inline hash table lookups.

4.1 Hardware-assisted return address
prediction

Return instructions are the instructions which execute at the end
of a procedure (the callee) to return control back to the caller. More
specifically, returns target the instruction immediately following
the call instruction. Therefore, at the time a call is executed, the
target of the first return to execute can be accurately predicted
to be the address of the instruction following the call. If nested
calls execute, then all predicted addresses can be recorded in a
Last In, First Out (LIFO) structure for later use. These properties
are used for return address prediction in virtually all modern mi-
croprocessors, including by most ARM implementations, which
maintain a Return Address Stack (RAS) which is not exposed ar-
chitecturally [2, 4–6]. However, the translated code generated by a
DBM system does not generally maintain these properties because

(a) The original function call.

(b) The translated function call without hardware return
prediction.

(c) The translated function call with hardware return pre-
diction.

Figure 4: Example of a typical function call.

call instructions are translated to regular branches while returns
are translated to regular indirect branches. Consequently, hardware
return address prediction is not used. Instead, return instructions
are predicted by the hardware using the generic indirect branch
prediction mechanisms, which are both less accurate and also lim-
ited in the number of indirect branches which can be tracked and
predicted simultaneously. Since fast return handling is critical for
achieving low overhead in DBM systems [21], this limitation is an
important contributor to the total overhead.

Figure 4(a) shows a typical function call in ARM code. A caller
function contains a call (implemented using a Branch-and-Link - BL
- instruction) to the entry address of the callee. The callee preserves
the return address from the Link Register (LR), executes, and then
returns to it using a return instruction (a Branch-and-eXchange
- BX - instruction using the address in the LR, in this example).
Because the target address of the return is in a register, this return
instruction is an indirect branch.

Hardware return address prediction on ARM works thus: when
a call (either a BL or a Branch-with-Link-and-eXchange - BLX -
instruction) is executed, an entry, containing the address of the
next instruction after the call, is automatically pushed by the core
on the hardware RAS. Then, when the matching return instruction
is executed, its target address is predicted by automatically popping
the first value from the top of the RAS. Since the ARM architecture
does not have explicit return instructions, certain types of indirect
branches (return-type instructions) are treated by the branch pre-
dictor as returns, typically: BX LR, a POP containing the PC in the
register list, a SP-relative load into PC, and MOV PC, LR.

The naive translation of BL and BLX instructions (from the na-
tive code in Figure 4(a) to Figure 4(b)) emulates the call instruction
by setting the value of the LR explicitly to the SPC of the instruction
following the call and then branches to the translation of the target
using a regular (i.e. without link) branch. Similarly, return instruc-
tions are translated to an inline hash table lookup (represented by
the IHL() pseudocode) followed by a regular branch (BX) to the
TPC of the return address. Therefore, the naive translation of calls
and returns is not compatible with the hardware return address
predictor, which increases branch mispredictions by 1) translating
call-type instructions to regular branch instructions, which do not
cause a push on the RAS and by 2) translating return-type instruc-
tions to generic indirect branches, which are predicted using the
less accurate indirect branch predictor, while also increasing the
pressure on the indirect branch predictor. We propose hardware-
assisted return address prediction to solve these issues, by modifying
the translations as shown in Figure 4(c): first, it translates call-type
instructions to a sequence which ends with a call-type instruction
(BB #1), which allows the hardware predictor to push an entry to
the RAS. Next, it inserts the translation of the following instruc-
tions, i.e. the predicted return (BB #2) immediately after the call,
as expected by the predictor. Finally, it modifies the translation of
return-type instructions to use a return-type instruction, which
will allow the hardware predictor to pop the predicted address from
the RAS (BX LR in BB #3).

For return prediction to work correctly, a single translation of
each call-type instruction must exist in the code cache, otherwise
multiple translations of the predicted return would be generated,
which cannot be registered in the hash table mapping the SPC-TPC
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Figure 5: Comparison of hit rates on a selection of SPEC
CPU2006 benchmarks for indirect branch predictors.

relationships. This is a potential issue because different entry points
into a single linear code area which contain a call-type instruction
would normally lead to the creation of multiple basic blocks, each
one containing a translation of the call-type instruction. To avoid
this issue, if a call-type instruction is scanned without being the first
instruction in a basic block, a new basic block is created with the
call-type instruction as the entry point, if it does not exist yet. The
original basic block is then directly linked to the translation of the
call-type instruction. This ensures that when a call-type instruction
is scanned, its SPC-TPC mapping will be recorded. Then, if the
same call-type instruction is encountered in multiple BBs by the
code scanner, all are linked to the unique translation.

As an additional optimisation, when a call-type instruction is
not the first one in a basic block and its translation does not exist
yet, the separate basic block generated for the call-type instruction
will be stored in the code cache area immediately following the
first basic block, allowing the eliding of the direct branch. For the
example in Figure 4(c), BB #1 would be stored immediately after BB
#0, allowing the elimination of the B BB#1 instruction from BB #0.

4.2 Adaptive indirect branch inlining
Indirect branches have dynamic targets, which are not known
at translation time. Due to their nature, the translated indirect
branches must perform a SPC to TPC lookup every time they exe-
cute. This lookup represents a major source of overhead for DBM
systems [19, 21]. The baseline version of MAMBO and other DBM
systems such as DynamoRIO [10] attempt to reduce this overhead
by generating a highly optimised inlined hash table lookup rou-
tine for each translated indirect branch. This approach allows the
hardware branch predictors to handle separately each translated
indirect branch (improving hardware branch prediction rates) and
minimises the length of the critical path compared to a shared
routine by taking advantage of the available dead registers, on
a case-by-case basis. However, the hash table lookup operation
inherently requires a number of additional instructions, includ-
ing memory loads and conditional branches. Other DBM systems,
such as Pin for ARM [18], use Indirect Branch Inlining (IBI) [7],
which consists of a compare-and-branch chain which compares the
current target address against a configurable number of previous
targets, using only the code path (i.e. by using immediates). How-
ever, previous attempts to use this prediction scheme in MAMBO
have failed to improve performance, due to the high overhead asso-
ciated with updating the predicted target, the poor hit rate due to
the polymorphic nature of indirect branches and the high penalty

of hardware branch mispredictions triggered in the relatively com-
mon case when one or more predictions at the top of the chain miss.
We designed the Adaptive Indirect Branch Inlining (AIBI) scheme
to allow quick updating of the predicted address after every mis-
prediction, while still having a shorter critical path than the inline
hash table lookup. This is similar to the way indirect branch target
prediction works in most hardware implementations.

Figure 5 compares the hit rates for three indirect branch predic-
tions schemes: AIBI, which always predicts the address of the most
recent target; IBI (common), which is a static predictor which pre-
dicts the most common target for each branch using post-mortem
information; and IBI (first) which predicts the address of the first
target seen for each branch. The selected benchmarks are those
which execute a relatively high number of generic indirect branches.
The aggregate bars show the hit rates when considering together
all indirect branch executions from the selected benchmarks. IBI
(common) shows the upper bound for a static predictor and since
the information to choose the most common target is not available
at runtime, practical IBI implementations will almost always have
lower hit rates. The IBI (first) hit rate is more relevant for practical
IBI implementations, which can either predict the target of the n-th
execution of an indirect branch, or, alternatively, can profile the
first few executions of the branch and predict the most common
target among those samples. It can be observed that the hit rate for
AIBI is generally similar to that of the IBI (common) predictor and
for most benchmarks and overall, slightly better. On the other hand,
the hit rate for IBI (first) is generally much lower, which indicates
that practical IBI implementations will tend to have lower hit rates
than AIBI.

A major difference of AIBI compared to IBI is that the prediction
is updated for every miss, which is achieved by falling back to
the inline hash table lookup and unconditionally overwriting the
prediction on this execution path. Since this can occur for a large
percentage of the executions of a branch, this operation must be
implemented very efficiently to minimise the overhead of predic-
tion misses. Using immediates on the code path to generate the
predicted address (similar to IBI) was ruled out because ARM uses
a modified Harvard architecture, which requires expensive cache
flushing and invalidation via system calls to update code. Therefore,
the predicted target address and its matching code cache address
are accessed as data words, which is the second major difference
from IBI. The addition of two unconditional store instructions with
no read-after-write dependencies on the fallback execution path
appears to have a minimal performance impact on most hardware
implementations.

The diagram in Figure 6 shows how AIBI works, where the boxes
with a solid border show the additional steps added specifically
for AIBI, while the boxes with a dashed border show the unmod-
ified steps which are part of the inline hash table lookup routine
(which is shown separately in Figure 3). Listing 2 shows the im-
plementation of AIBI. With AIBI, after the target address has been
generated or loaded in a register, the predicted SPC is loaded using
a single PC-relative load instruction and then two addresses are
compared, as shown in the check_pred procedure. The comparison
is implemented using a subtract instruction (SUB) and a Compare
and Branch on NonZero (CBNZ) instruction to preserve the flags
in the ARM Program Status Register (PSR). In case of a match, the
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Figure 6: Adaptive indirect branch inlining.

check_pred:
LDR Rs0, [PC, #16]
SUB Rs0, Rs0, Rtarget
CBNZ fallback

b_pred:
POP {Rs0, ..., Rsn}
LDR PC, [PC, #4]

pred_spc: .word
pred_tpc: .word
fallback:

; the fallback inline hash table lookup
SUB Rs0, PC, offset_to_pred_spc
STR Rtarget, [Rs0, #0]
; the TPC is loaded from the hash table in Rtarget,
; overwriting the SPC
STR Rtarget, [Rs0, #4]
...

Listing 2: The implementation of AIBI. Rs0 to Rsn are scratch
registers, while Rtarget is the register which initially con-
tains the target address (SPC).

context is restored and execution branches to the predicted TPC
using a second PC-relative load, as shown in the b_pred procedure.
Otherwise, in case of amiss, the regular inline hash table lookup pro-
ceeds, with the difference that after the hash table lookup has been
performed, but before branching to the destination, the predicted
SPC and TPC are updated, as shown in the fallback procedure.
PC-relative stores are not allowed in the Thumb mode, therefore
the address where the predicted SPC and TPC are stored is first
generated using a subtract instruction.

AIBI is similar in predicting the address of the most recent tar-
get to the MRU IBI prediction scheme proposed by Dhanasekaran
and Hazelwood [14]. However, while the MRU scheme is used in
addition to IBI, AIBI is an alternative to IBI. When the MRU predic-
tion misses, it falls back to IBI, while AIBI falls back to an inline
hash table lookup. MRU updates the predicted address from the
IBI target fragments, while AIBI updates the predicted address in
the inline hash table lookup. Furthermore, AIBI as implemented
in MAMBO is effective in reducing the overhead on all systems
used in the evaluation (Section 5), while MRU as prototyped for
Pin failed to improve performance on average [14]. Unfortunately,
insufficient information is available to determine why. The MRU
publication explains that its dynamic instruction count was higher
than that of standard IBI despite the increased prediction hit rate.

However, on ARM platforms we have observed that the hardware
branch prediction rate and other microarchitectural events often
have a stronger effect than relatively small changes in the number
of executed instructions. For example, when we have implemented
IBI in MAMBO, the dynamic instruction count was significantly
reduced, however the overhead was increased because of the hard-
ware branch mispredictions introduced by the IBI chain. This could
indicate that 1) existing x86 implementations can predict IBI chains
better than ARM implementations or, less likely, 2) that branch
mispredictions are relatively cheaper on x86 implementations than
on ARM implementations. Another possible explanation is that the
performance of MRUwas affected by the mechanism used to update
the predicted address, which it duplicates across every target frag-
ment linked by the IBI chain and whose details are not presented
in the publication.

5 EVALUATION
5.1 Experimental setup
Table 3 describes themicroarchitectures of the five different systems
used for evaluation. All systems use a modified Harvard architec-
ture, with separate 32 KiB L1 data caches and 32 KiB L1 instruction
caches, and separate data and instruction L1 TLBs as described in
Table 3. Higher level caches and TLBs are unified. The IB predic-
tor row describes the hardware indirect branch prediction scheme:
previous means that the address of the previous target of the in-
struction is predicted, while adaptive means that multiple target
addresses can be predicted for each branch instruction.

All systems are running Ubuntu 14.04 LTS with the Linux kernel
version supported by the manufacturer: 3.8 for ODROID-X2, 3.10
for ODROID-XU3, Tronsmart R28, Jetson TK1, and 4.2 for APM X-
C1. SPEC CPU2006 has been compiled with GCC 4.6.3, configured
to generate Thumb-2 code (the default configuration) for the armhf
architecture using the -O2 optimisation level and the executables
were statically linked. Power management features such as DVFS
and core offlining were disabled. The ODROID-XU3 system uses a
heterogeneous big.LITTLE [3] configuration, with a LITTLE Cortex-
A7 cluster, which was used for this evaluation and a big Cortex-A15
cluster which was not benchmarked because the same ARM core is
used on the Jetson TK1 system.

The libquantum benchmark from the SPEC CPU2006 suite has
been disabled because it fails to complete, both when executed
natively and under MAMBO. All other CPU2006 benchmarks are
enabled and produce the expected output. All SPECCPU2006 results
were obtained using the ref data set.

Multiple MAMBO configurations have been benchmarked. A
configuration is a build of MAMBO with a specific set of enabled
optimisations. The configuration with an empty set of optional
optimisations enabled is called the baseline configuration. This is
similar to the MAMBO configuration used by Gorgovan et al. [17],
with the exception that the low overhead return address prediction,
which is a return address prediction scheme based on a software
RAS, has been disabled because it is incompatible with traces and
therefore it is never used in this evaluation.Hardware-assisted return
address prediction, introduced in this publication, serves a similar
role while maintaining full transparency. All other configurations
are named +<name of optimisation 0> ... +<name of optimisation n>,
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System ODROID-XU3a ODROID-X2 Tronsmart R28 Jetson TK1 APM X-C1
SoC Exynos 5422 Exynos 4412 Prime Rockchip RK3288 NVIDIA T124 APM883208
Core Cortex-A7 Cortex-A9 Cortex-A17 Cortex-A15 X-Gene 1
Frequency 1.4 GHz 1.7 GHz 1.6 GHz 2.3 GHz 2.4 GHz
L2 cache size 512 KiB 1 MiB 1 MiB 2 MiB 256 KiB
L3 cache size N/A N/A N/A N/A 8 MiB
L1i line length 32 32 64 64 64
L1d line length 64 32 64 64 64
L2 line length 64 32 64 64 64
L1d TLB 10 32 32 32(R) + 32(W) 20
L1i TLB 10 32 32 32 10
L2 TLB 256 132 1024 512 1024
IB predictor previousb previous previous adaptive adaptive
OOO N Y, 2-issue Y, 2-issue Y, 3-issue Y, 4-issue
Pipeline len 8 8-11 10-12 15 15

Table 3: Overview of the systems used for evaluation.
aThe specifications for ODROID-XU3 apply to the LITTLE cluster only. The big cluster was not used for this evaluation because it uses the same microarchitecture

as the Jetson TK1 system.
bCortex-A7 is documented not to predict the target for branches implemented as loads or data processing operations with PC as the destination, which are used by

MAMBO in the translation of most indirect branches.

for example the configuration with hw_ras and traces enabled is
named +hw_ras +traces. The following optional optimisations have
been evaluated:

• traces - code cache traces;
• hw_ras - hardware-assisted return address prediction; and
• aibi - adaptive indirect branch inlining.

As described in Section 3, traces are created when a trace head
reaches a predefined execution count threshold. Our experiments on
the SPEC CPU2006 benchmarks have shown that the performance
of longer running tasks is not affected by setting a relatively high
threshold. However, significant trace cache space savings can be
obtained. Therefore, the trace creation threshold for this evaluation
was set to 256, the maximum allowed by the implementation.

For comparison, we have also evaluated DynamoRIO [10], the
only other maintained and publicly available low overhead DBM
system for ARM. We used the git commit 38950ce2 from 19th of
January, 2017. Note that DynamoRIO does not implement the hot
code tracing optimisation for 32-bit ARM, the architecture used in
this evaluation.

5.2 Overall performance
Table 4 summarises the overall performance of the baseline, +traces,
the optimal MAMBO configuration and of DynamoRIO for each
system (when running SPEC CPU2006), while Figures 7 to 11 show
the detailed results for each benchmark. The values reported in the
table are the geometric mean of execution time relative to native
execution for each set of benchmarks. It can be observed that be-
tween the five test systems, two unique MAMBO configurations
are needed to achieve the lowest possible overhead. This hints that,
as expected, some of the optimisations have varying effectiveness
depending on the microarchitecture. Another related observation is
that the spread of the average overhead between the microarchitec-
tures is quite high: from only 12% on APMX-C1, up to 21% on Jetson
TK1, which further underlines the impact of microarchitecture on
the performance of DBM systems. The SPECint benchmarks run

SPEC suite
Hardware platform DBM system int fp CPU
ODROID-XU3 (LITTLE) baseline 1.55 1.11 1.26
in-order Cortex-A7 +traces 1.41 1.10 1.21

+hw_ras +traces 1.36 1.09 1.19
DynamoRIO 1.68 1.21 1.38

ODROID-X2 baseline 1.61 1.13 1.30
OOO Cortex-A9 +traces 1.33 1.07 1.17

+aibi + traces 1.31 1.06 1.15
DynamoRIO 1.65 1.16 1.34

Tronsmart R28 baseline 1.60 1.12 1.29
OOO Cortex-A17 +traces 1.31 1.09 1.17

+aibi +traces 1.29 1.08 1.16
DynamoRIO 1.71 1.26 1.42

Jetson TK1 baseline 1.71 1.16 1.35
OOO Cortex-A15 +traces 1.44 1.11 1.23

+hw_ras +traces 1.38 1.11 1.21
DynamoRIO 1.67 1.22 1.38

APM X-C1 baseline 1.59 1.09 1.26
OOO X-Gene1 +traces 1.34 1.07 1.17

+hw_ras +traces 1.23 1.05 1.12
DynamoRIO 1.64 1.18 1.34

Table 4: The slowdown ofMAMBO baseline, +traces, the con-
figuration with the lowest overhead and DynamoRIO for
SPEC CPU2006 on each system.

with higher overhead than the SPECfp benchmarks because they
tend to be control (as opposed to data) bound.

The traces optimisation has by far the largest overall effect. This
is the expected result, as improved software code cache locality
and a reduced number of executed branches reduce the overhead
1) for most benchmarks and 2) on all microarchitectures. While the
geometric mean overhead is generally reduced only by a few points
for the other optimisations, this is in large part due to these optimi-
sations targeting only specific types of workloads. For example, the
hw_ras optimisation reduces the overhead of xalancbmk on APM
X-C1 from 96% to 66%, however, because only a few benchmarks
gain a speed-up, the geometric mean overhead is only decreasing
from 17% to 12%. By running the optimal configuration on each
system, the geometric mean overhead is reduced compared to the
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Figure 7: Relative execution time for SPEC CPU2006 on ODROID-XU3 (Cortex A7 in-order).

Figure 8: Relative execution time for SPEC CPU2006 on ODROID-X2 (Cortex A9 out-of-order).

Figure 9: Relative execution time for SPEC CPU2006 on Tronsmart R28 (Cortex A17 out-of-order).

Figure 10: Relative execution time for SPEC CPU2006 on Jetson TK1 (Cortex A15 out-of-order).
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Figure 11: Relative execution time for SPEC CPU2006 on APM X-C1 (X-Gene1 out-of-order).

ODROID-XU3 ODROID-X2 Tronsmart R28 Jetson TK1 APM X-C1
Config Benchmark I PCr Time I PCr Time I PCr Time I PCr Time I PCr Time
Baseline perlbench 0.73 2.12 0.76 2.10 0.79 1.95 0.64 2.42 0.73 1.98

gobmk 0.59 2.36 0.58 2.41 0.53 2.59 0.50 2.77 0.59 2.65
sjeng 0.70 2.14 0.66 2.18 0.62 2.34 0.59 2.49 0.70 2.03
xalancbmk 0.93 1.94 0.91 2.20 0.79 2.28 0.73 2.49 0.93 2.57

+traces perlbench 0.88 1.73 1.01 1.44 1.08 1.40 0.89 1.71 0.88 1.54
gobmk 0.78 1.73 0.86 1.50 0.89 1.52 0.70 1.94 0.78 1.68
sjeng 0.84 1.74 0.93 1.52 0.99 1.47 0.86 1.70 0.84 1.47
xalancbmk 0.93 1.75 1.07 1.71 1.00 1.75 0.88 2.00 1.01 1.96

+hw_ras (+) perlbench 0.93+ 1.68+ 1.00* 1.45* 1.09 1.40* 0.92+ 1.71+ 0.93+ 1.32+
or gobmk 0.87+ 1.60+ 0.90+ 1.46+ 0.97+ 1.43+ 0.84+ 1.67+ 0.87+ 1.39+
+aibi (*) sjeng 0.90+ 1.65+ 0.94+ 1.49+ 1.00+ 1.47+ 0.91+ 1.63+ 0.90+ 1.34+
+traces xalancbmk 0.97* 1.65* 1.00* 1.66* 0.96* 1.67* 1.02+ 1.80+ 1.07+ 1.66+

Table 5: Relative IPC and slowdown for the benchmarks with the highest relative IPC

baseline configuration by 27% on ODROID-XU3, 41% on Jetson TK1,
45% on Tronsmart R28, 50% on ODROID-X2 and 54% on APM X-C1.

5.3 Performance counter analysis
Using the perf Linux tool, which monitors architectural and mi-
croarchitectural events using the hardware performance counters,
we can gain an insight into 1) the performance differences between
the various microarchitectures and 2) the effects of each optimisa-
tion introduced in this paper. The following events were counted
on each system1 for native execution and each MAMBO config-
uration, using the benchmarks with significant overhead: cycles,
retired instructions, L1 data, L1 instruction and L2 unified cache
accesses and misses, L1 data and instruction TLB misses, architec-
turally executed branches, mispredicted or not predicted branches
speculatively executed.

5.3.1 Predicting speed-up: instructions per cycle. Increasing the
dynamic instruction count is an expected effect of DBM. How-
ever, by designing the generated code to avoid pipeline stalls (i.e.
by avoiding cache misses, branch mispredictions, etc.) the per-
formance overhead should be disproportionately low (i.e. DBM
execution should have an equal or higher Instructions Per Cycle
— IPC — rate than native execution). Therefore, the relative IPC
(IPCr = IPCDBM /IPCnative ) can be used to identify the work-
loads which are the least efficient at a microarchitecture level when
executed under a given DBM system, and which can be expected

1with several exceptions due to unsupported events: L1 instructions loads, L2 loads
and L2 misses on ODROID-X2 and branch mispredictions on APM X-C1

to benefit the most from the optimisations presented in this pa-
per. Table 5 shows the IPCr and relative execution time under
the baseline, +traces and optimal MAMBO configurations, for the
benchmarks with the lowest IPCr . The results in this table show
that the microarchitectural optimisations are effective in reducing
the overhead of the benchmarks with a low IPCr , as intended. For
example, looking at the last two columns, we can see that gobmk
on APM X-C1 has a slowdown of 2.65x under baseline MAMBO,
with a IPCr of 0.59. When traces and then hardware-assisted return
address prediction are enabled, the slowdown is reduced to 1.68x
with an IPCr of 0.78 and 1.39x with an IPCr of 0.87 respectively.

5.3.2 The indirect branch optimisations. The two indirect branch
optimisations (hardware-assisted return address prediction and AIBI )
have a varying degree of effectiveness between each benchmark and
each system. As a case study, we analysed xalancbmk. Compared to
the +traces configuration, the performance on this benchmark was
improved by AIBI on all systems and by hardware-assisted return
address prediction on all systems except on ODROID-X2. Hardware-
assisted return address prediction has better performance than AIBI
on Jetson TK1 and APMX-C1. On this benchmark, hw_ras increases
the number of retired instructions by around 3%, while AIBI re-
duces it by around 9%, therefore the performance difference is not
determined by microarchitectural effects alone. The significant per-
formance counter changes, relative to the +traces configuration, are
summarised in Table 6.

We can observe that hw_ras is more effective than AIBI at re-
ducing the number of branch mispredictions, L1 instructions cache
misses and L2 cache loads. AIBI tends to introduce additional L1
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Opt. System Positive effects Negative effects Speedup
hw_ras ODROID-XU3 -14% icache misses

-7% L2 loads
+8% icache loads
+8% dTLB misses

3.3%

ODROID-X2 -24% icache misses
-13% iTLB misses

+25% branch mis-
predictions

-3.5%

Tronsmart R28 -29% branchmispre-
dictions
-26% icache misses
-20% iTLB misses
-14% L2 loads

- 2.2%

Jetson TK1 -48% branchmispre-
dictions
-41% iTLB misses
-24% icache misses
-16% L2 loads
-9% icache loads

- 11.4%

APM X-C1 -22% icache misses
-14% L2 loads
-6% icache loads

- 18.0%

AIBI ODROID-XU3 -15% icache loads
-10% dcache loads
-10% icache misses
-9% dTLB misses
-7% iTLB misses

+15% branch mis-
predictions

6.1%

ODROID-X2 -8% branch mispre-
dictions
-7% dcache loads

+14% iTLB misses
+9% dcache misses
+7% dTLB misses

3.7%

Tronsmart R28 -18% icache loads
-13% icache misses
-13% branchmispre-
dictions

+14% iTLB misses
+12% dTLB misses
+10% dcache
misses

6.9%

Jetson TK1 -13% icache loads
-9% branch mispre-
dictions

+20% dTLB misses
+12% iTLB misses
+12% dcache loads

8.4%

APM X-C1 -16% L2 loads
-11% icache loads
-10% icache misses
-7% dcache loads

+11% dcache
misses

2.5%

Table 6: Performance counter changes for xalancbmk com-
pared to the +traces MAMBO configuration

data cache misses, caused by accessing the predicted SPC and TPC.
However, on the microarchitectures with no or less advanced out-
of-order executing capabilities (Cortex-A7, Cortex-A9 and Cortex-
A17), the reduced dynamic instruction count of AIBI allows it to
achieve better performance.

The performance degradation caused by hw_ras on ODROID-X2
appears to be caused by an increased number of branch mispre-
dictions. Unfortunately, the return address predictors are not doc-
umented in enough detail to determine why this is happening or
the relevant differences between the return address predictors of
these microarchitectures. A possible explanation is that the return
address predictor of Cortex-A9 compares the predicted address and
the actual address early during execution, causing it to sometimes
use the SPC before it has been replaced by the TPC, however we
have not been able to verify this hypothesis.

5.3.3 The effect of traces. The traces optimisation proved to be
very effective and almost always improved or did not significantly
affect performance. However, in three cases (bzip2 on ODROID-
XU3, hmmer on ODROID-X2 andmcf on Tronsmart R28) execution
was measurably slowed down (by around 6% for all three). In the
case of bzip2 on ODROID-XU3, two of the events we monitor show
a change which is potentially relevant: an increase in the rate of
branch mispredictions (from 9.2 to 9.5 per 1000 instructions) and

L2 cache misses (from 5.0 to 5.5 per 1000 instructions). This is
likely caused by the increased code size. However, because both
of these changes are relatively small, there is a strong possibility
that there are other microarchitectural effects contributing to the
slower execution speed, which are not captured by the performance
counter events we have monitored. For hmmer on ODROID-X2,
only the number of branch mispredictions is significantly increased
(by around 460 million). However, on its own, the penalty of the
additional branch mispredictions cannot account for the additional
167 billion execution cycles. For mcf on Tronsmart R28, there was
no significant change in the number of any of the monitored per-
formance counter events. Therefore, it appears that the main cause
of this rare performance regression caused by the traces optimisa-
tion is not captured by the performance counter events we have
monitored.

6 RELATEDWORK
DBT and DBM are a popular research area, with a number of avail-
able tools [8, 10, 20, 22, 24, 25]. The strength of MAMBO is in
prioritising the performance of a DBM implementation for ARM.

IBI is a common software target prediction scheme for indirect
branches [7, 10, 19, 22, 25, 29]. However, IBI is limited by the high
misprediction rate and the high penalty for mispredictions. Kim and
Smith go as far as calling this technique a performance limiter [21].
This paper introduces AIBI as a replacement for IBI, which improves
the prediction rate by allowing the predicted address to be updated
after every miss, with low overhead. AIBI is similar in concept to the
MRU algorithm introduced by Dhanasekaran and Hazelwood [14],
however AIBI is a replacement for IBI, while MRU is used in addition
to IBI. Furthermore, IBI handles prediction misses differently from
MRU, which likely contributes to its better performance. AIBI and
MRU are compared in detail in Section 4.2.

Dynamically building traces of the hot code path was first en-
abled by the NET [15] profiling algorithm. NETPlus [12] was later
proposed as an improvement, which allows building longer traces
by working across backwards branches. However, both of these
algorithms create traces across indirect branches, using static soft-
ware target prediction in the form of IBI. Because of the previously
discussed limitations of IBI, this paper proposes an improvement of
NET, which avoids software target prediction in traces altogether.

Efficient translation of return instructions is critical for achieving
low overhead in DBM systems [21]. Some of the proposed solutions
for optimising returns include: modifying the ISA to allow explicit
manipulation of the hardware RAS [21], however this change has
not been implemented on general purpose architectures such as
x86 or ARM; maintaining a software RAS [18], however this is only
beneficial on modern microarchitectures if certain transparency
guarantees are relaxed [17], or in the case of DBT when the target
architecture provides additional registers which can be directly
used as a RAS pointer [11]. In this context, this paper introduces
hardware-assisted return address prediction, which was developed
to allow use of the hardware mechanisms for return address pre-
diction, while forgoing the use of a software RAS.
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7 SUMMARY AND CONCLUSIONS
MAMBO is an open source implementation of a DBM framework
for the ARM architecture. In this paper, we have introduced three
optimisations to address some of its performance limitations: traces
increase the code cache locality by grouping together basic blocks
which are likely to execute sequentially; hardware-assisted return
address prediction is a technique which enables use of the hardware
return address prediction without maintaining a software return
address stack; and adaptive indirect branch inlining is a software
indirect branch prediction scheme which allows quick and frequent
updates of the predicted address. By using the right combination of
these optimisations on each system, the geometric mean overhead
of MAMBO is reduced by at least 27% (on ODROID-XU3) and by
as much as 54% (on APM X-C1) compared to the baseline MAMBO
configuration.

The performance of the various optimisations is analysed on five
different ARM platforms, which allows us to show that 1) whether
an optimisation for a DBM system is effective or not depends on
multiple factors, including the microarchitecture of the processor
on which it is running and the type of workload, and that 2) the
optimal combination of optimisations can be different between
multiple systems.

We have shown that some optimisations can improve perfor-
mance on one system and decrease performance on other systems
while running the same workload. For example, hardware return ad-
dress prediction reduced the overhead of MAMBO on the perlbench
benchmark on ODROID-XU3 and APM X-C1 and increased it on
Tronsmart R28. These results are due to the wide range of ARM
microarchitectures commercially available. Therefore, we recom-
mend that future evaluations of DBM overhead use a similar wide
range of hardware platforms. Furthermore, this shows that runtime
or deployment time selection of optimisations can be desirable to
achieve consistent performance.

With regards to the three optimisations presented in this paper,
we recommend that the traces optimisation is always used for SPEC
CPU type workloads. Hardware return address prediction appears
to be most effective on high performance cores (APM X-Gene) or
cores with limited prediction support for generic indirect branches
(Cortex-A7) because it trades off a higher dynamic instruction count
for improved hardware branch prediction. The effectiveness of AIBI
is dependent on the workload. For microarchitectures with shorter
pipelines and low hardware branch misprediction penalties, AIBI
appears to be more effective for translating returns than hardware
return address prediction, as long as hardware indirect branch pre-
diction is supported, because it reduces the dynamic instruction
count.
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