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ABSTRACT
We introduce quiho, a framework for profiling application perfor-
mance that can be used in automated performance regression tests.
quiho profiles an application by applying sensitivity analysis, in
particular statistical regression analysis (SRA), using application-
independent performance feature vectors that characterize the per-
formance of machines. The result of the SRA, feature importance
specifically, is used as a proxy to identify hardware and low-level
system software behavior. The relative importance of these features
serve as a performance profile of an application (termed inferred
resource utilization profile or IRUP), which is used to automatically
validate performance behavior across multiple revisions of an ap-
plication’s code base without having to instrument code or obtain
performance counters. We demonstrate that quiho can success-
fully discover performance regressions by showing its effectiveness
in profiling application performance for synthetically introduced
regressions as well as those found in real-world applications.
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Execute the battery of microbenchmarks
(stress-ng), as well as the application being 
profiled, on all the available machines.

1

Obtain dataset of stress-ng performance vectors 
for each machine, as well as the performance 
vector corresponding to the application.

2

X y

Create a prediction model via 
sklearn’s gradient boosting. This 
produces a tree ensemble. 

3

Create the IRUP by obtaining the 
relative ranking of feature 
importance out of the ensemble.

4

Figure 1: quiho’s workflow for generating inferred resource
utilization profiles (IRUPs) for an application. An IRUP is
used as an alternative for profiling application performance
and can complement automated regression testing. For ex-
ample, after a change in the runtime of an application has
been detected across two revisions of the code base, an IRUP
can be obtained in order to determine whether this change
is significant. IRUPs can also aid in root cause analysis.

1 INTRODUCTION
Quality assurance (QA) is an essential activity in the software engi-
neering process [1–3]. Part of the QA pipeline involves the execu-
tion of performance regression tests, where the performance of the
application is measured and contrasted against past versions [4–6].
Examples of metrics used in regression testing are throughput, la-
tency, or resource utilization over time. These metrics are captured
and compared for multiple versions of an application (usually cur-
rent and past versions) and, if significant differences are found, this
constitutes a regression.

One of the main challenges in automating performance regres-
sion tests is defining the criteria to decide whether a change in
application performance behavior is significant [7]. Understanding
the impact that distinct hardware and low-level system software1
components have on the performance of applications demands
highly-skilled performance engineering [8–10]. Traditionally, this
investigation is done by an analyst in charge of looking at changes
1Throughout this paper, we use “system” to refer to the low-level compute stack
composed by hardware, firmware and the operating system (OS).
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to the performance metrics captured at runtime, possibly investi-
gating deeply by looking at performance counters, performance
profiles, static code analysis, and static/dynamic tracing. One com-
mon approach is to find bottlenecks by generating a profile (e.g.,
using the perf Linux kernel tool) in order to understand which
parts of the system an application is hammering on [5]. Profiling
involves recording resource utilization for an application over time.
In general, this can be done in two ways: timed- and event-based
profiles. Timed-based profiling samples the instruction pointer at
regular intervals and generates a function call tree with each node
having a percentage of time associated with it, which represents
the amount of time that the CPU spends within that piece of code.
Event-based profiling samples at regular intervals different events
at the hardware- and OS-level in order to obtain a distribution of
events over time. In either case, the system needs to execute the
application in a “profiling” mode in order to enable the instrumen-
tation mechanisms that the OS has available for carrying out this
task.

Automated solutions have been proposed in recent years [11–13].
The general approach of these is to analyze runtime logs and/or met-
rics application in order to build a performance prediction model
that can be used to automatically determine whether a regression
has occurred. This relies on having accurate predictions and, as
with any prediction model, there is the risk of finding false nega-
tives/positives. In addition to striving for highly accurate predic-
tions, one can also use performance modeling as a profiling tool.

In this workwe present quiho, an approach aimed at complement-
ing automated performance regression testing by using inferred
resource utilization profiles (IRUP) associated to an application.
quiho is an alternative framework for profiling an application where
the utilization of one or more subsystems (e.g. virtual memory) is
inferred by applying Statistical Regression Analysis2 (SRA) on a
dataset of application-independent performance vectors. The main
assumption behind quiho is the availability of multiple machines
when exercising performance regression testing, a reasonable re-
quirement that is well-aligned with current software engineering
practices (performance regression is carried out on multiple archi-
tectures and OSs).

When an application is profiled using quiho (Fig. 1), the machines
available to the performance tests are baselined by executing a bat-
tery of microbenchmarks on each. This matrix of performance
vectors characterizes the available machines independently from
any application and can be used (and re-used) as the foundation
for applying statistical learning techniques such as SRA. In order
to infer resource utilization, the application under study is exe-
cuted on the same machines from where the performance vectors
where obtained, and SRA is applied. The result of the SRA for an
application, in particular feature importance, is used as a proxy to
characterize hardware and low-level system utilization behavior.
The relative importance of these features constitutes what we refer
to as an inferred resource utilization profile (IRUP).

In this article, we demonstrate that our approach successfully
identifies performance regressions by showing that quiho (1) obtains
resource utilization profiles for applications that accurately reflect

2We use the term Statistical Regression Analysis (SRA) to differentiate between regres-
sion testing in software engineering and regression analysis in statistics.

Run regression 
tests and obtain 
FGRUPs.

Identify whether a 
regression occurred
by automatically 
comparing FGRUPs.

4

Find root cause of 
regression5

VS.

Push new 
commit

Trigger 
execution

a

Run regression 
tests and 

obtain IRUPs

Identify whether a 
regression occurred 
by comparing IRUPs

Find root cause 
of regression

Figure 2: Automated regression testing pipeline integrating
inferred resource utilization profiles (IRUP). IRUPs are ob-
tained by quiho and can be used both, for identifying regres-
sions, and to aid in the quest for finding the root cause of a
regression.

what their code do and (2) effectively uses these profiles to identify
induced regressions as well as other regressions found in real-world
applications. The contributions of our work are:
• Insight: feature importance in SRA models (trained using
application-independent performance vectors) gives us a re-
source utilization profile (an IRUP) of an application without
having to look at the code.
• An automated end-to-end framework (based on the above
finding), that aids analysts in identifying significant changes
in resource utilization behavior of applications which can
also aid in identifying root cause of regressions, and that is
resilient to code refactoring.
• Methodology for evaluating automated performance regres-
sion. We introduce a set of synthetic benchmarks aimed at
evaluating automated regression testing without the need
of real bug repositories. These benchmarks take as input
parameters that determine their performance behavior, thus
simulating different “versions” of an application.

Next section (Section 2) shows the intuition behind quiho and
how can be used to automate regression tests. We then do a more
in-depth description of quiho (Section 3), followed by our evaluation
of this approach (Section 4). We then discuss different aspects of our
work (Section 5), review (Section 6) related work and we lastly close
with a brief discussion on challenges and opportunities enabled by
quiho (Section 7).

2 MOTIVATION AND INTUITION
Fig. 2 shows the workflow of an automated regression testing
pipeline and shows how quiho fits in this picture. A regression
is usually the result of observing a significant change in a perfor-
mance metric of interest (e.g., runtime). At this point, an analyst will
investigate further in order to find the root cause of the problem.
One of these activities involves profiling an application to see the
resource utilization pattern. Traditionally, coarse-grained profiling
(i.e. CPU-, memory- or IO-bound) can be obtained by monitoring
an application’s resource utilization over time. Fine granularity
behavior helps application developers and performance engineers
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Variability patterns of an application (zlog), resemble the same 
variability pattern of one or more performance microbenchmark(s). 

Figure 3: A matrix of performance feature vectors over a
colection of CloudLab servers (left), and an array of a per-
formancemetric for an application on those samemachines
(right). Every column in the matrix comes from executing
a microbenchmark on that machine. This dataset of mi-
crobenchmarks allows us to create a performance predic-
tion model for application. Variability patterns of an ap-
plication (zlog in the example), resemble the same vari-
ability pattern of one or more performance microbench-
mark(s). Thus, the system subcomponent exercised by the
microbenchmark is likely to be also the cause of why the
application exhibits such performance behavior.

quickly understand what they need to focus on while refactoring
an application.

Fine granularity performance utilization behavior can better in-
form the regression testing pipeline. Examples of which resources
are included in this type of profiling are the OS memory map-
ping subsystem, the CPU’s cryptographic unit, or the CPU cache.
This type of profiling is time-consuming and requires use of more
computing resources. This is usually done offline by analysts and
involves eyeballing source code, static code analysis, or analyzing
hardware/OS performance counters/profiles.

An alternative is to infer resource utilization behavior by compar-
ing the performance of an application on platforms with different
performance characteristics. For example, if we know that machine
A has higher memory bandwidth than machine B, and an applica-
tion is memory-bound, then this application will perform better on
machine A. There are several challenges with this approach:

1. Consistent Software. We need to ensure that the software
stack is the same on all machines where the application runs.

2. Application Testing Overhead. The amount of effort required
to run applications on a multitude of platforms is not negli-
gible.

3. Hardware Performance Characterization. It is difficult to ob-
tain the performance characteristics of a machine by just
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Figure 4: An example profile showing the relative impor-
tance of features for an execution of the hpccg miniapp
[14]. The x-axis corresponds to the relative performance
value, normalized with respect to the most important fea-
ture, which corresponds to the first one on the y-axis (from
top to bottom). Section 3.2 describes in detail how feature
importances are calculated.

looking at the hardware specs. Therefore, another more prac-
tical alternative is required.

4. Correlating Performance. Even if we could solve the above
issue (Hardware Performance Characterization) and infer
performance characteristics by just looking at the machine
hardware specifications, there is still the problem of not
being able to correlate baseline performance with application
behavior. The problem is that between two platforms, it is
rarely the case that the performance change is observed in
only one subcomponent of the system. For example, a newer
machine doesn’t have just faster memory sticks, but also a
better CPU and chipset.

The advent of cloud computing allows us to solve (1) using solu-
tions like KVM [15] or software containers [16]. ChameleonCloud
[17], CloudLab [18,19] and Grid5000 [20] are examples of bare-
metal-as-a-service infrastructure available to researchers that can
be used to automate regression testing pipelines for the purposes
of investigating new approaches. These solutions to infrastructure
automation coupled with DevOps practices [21,22] allows us to
address (2), i.e. to reduce the amount of work required to run tests.

Thus, the main challenge to inferring resource utilization pat-
terns lies in quantifying the performance of the platform in a con-
sistent way (3,4). One alternative is to look at the hardware speci-
fication and infer performance characteristics from this, a highly
inaccurate task due to the lack of correspondence between ad-
vertised (or theoretical peak throughput) and actual performance
observed in reality. For example, the platform spec might spec-
ify that the machine has DDR4 memory sticks with a theoretical
peak throughput of 10 GB/s. But the actual memory bandwidth is
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typically less in practice. How much less is non-deterministic and
depends on access patterns.

quiho solves this problem by characterizing machine perfor-
mance using microbenchmarks. These performance vectors are
the “fingerprint” that characterizes the behavior of a machine [23].
These vectors, obtained over a sufficiently large set of machines3,
can serve as the foundation for building a prediction model of the
performance of an application when executed on new (“unseen”)
machines [24]. Thus, a natural next step to take with a dataset like
this is to try to build a prediction model.

While building a prediction model is obviously something that
can be used to estimate the performance of an application, building
one can also serve as a way of identifying resource utilization. If we
use these performance vectors to apply SRA and focus on feature
importance [25] of the generated models, they can allow us to infer
resource utilization patterns. In Fig. 3, we show the intuition behind
why this is so. The performance of an application is determined by
the performance of the subcomponents that get stressed the most
by the application’s code. Thus, intuitively, if the performance of an
application across multiple machines resembles the performance of
a microbenchmark over the same set of machines, then we can say
that the application is heavily influenced by that subcomponent. In
other words, if the variability of a feature across multiple machines
resembles the variability of application performance across those
same machines, it is likely due to the application stressing the same
subcomponent that the corresponding microbenchmark stresses.
While this can be inferred by obtaining correlation coefficients,
proper SRA is needed in order to create prediction models, as well
as to obtain a relative rank of feature importances.

Relying on SRA as a way of inferring resource utilization behav-
ior has the practical consequence of quiho benefiting heavily from
an heterogeneous setup. The more the “performance diversity” of
machines that are available for testing, the easier that quiho can
discover an application’s resource utilization behavior. Intuitively,
this can be explained as follows. If we run a IO-bound application
on distinct machines with very different CPU and memory subsys-
tem performance but similar IO throughput, we won’t be able to
discover that the application’s bottleneck is on the IO subsystem.
If we create a more heterogeneous mix of machines, with larger
IO performance variability, we can discover that this application
is IO-intensive since the performance of the application will vary,
depending on the capabilities of the underlying IO subsystem of
each distinct machine.

Thus, having high performance variability allows quiho to infer
resource utilization patterns by discovering the underlying cor-
relations between the performance of microbenchmarks and an
application’s performance. Since SRA results in creating a perfor-
mance prediction model for an application, we can rank features by
sorting them with respect to their relative performance prediction
importance. We call this ranking an Inferred Resource Utilization
Profile (IRUP), as shown in Fig. 4. In the next section we explain how
these IRUPs are obtained and how they can be used in automated
performance regression tests. Section 4 empirically validates this
approach.

3In Section 5 we briefly sketch how we would apply PAC to find the minimal set of
machines needed to obtaining meaningful results from SRA.

3 OUR APPROACH
In this section we describe quiho’s approach and the resulting proto-
type. We first describe how we obtain the performance vectors that
characterize system performance. We then show that we can feed
these vectors to SRA in order to build a performance model for an
application. Lastly, we describe how we obtain feature importance,
how this represents an inferred resource utilization profile (IRUP)
and the algorithm (and alternative heuristics) to comparing IRUPs.

3.1 Performance Feature Vectors As System
Performance Characterization

While the hardware and software specification can serve to describe
the performance characteristics of a machine, the real performance
characteristics can only feasibly be obtained by executing programs
and capturing metrics. One can generate arbitrary performance
characteristics by interposing a hardware emulation layer and de-
terministically associate performance characteristics to each in-
struction based on specific hardware specs. While possible, this is
impractical (we are interested in characterizing “real” performance).
The question then boils down to which programs should we use
to characterize performance? Ideally, we would like to have many
programs that execute every possible opcode mix so that we mea-
sure their performance. Since this is an impractical solution, an
alternative is to create synthetic microbenchmarks that get as close
as possible to exercising all the available features of a system.

stress-ng[26] is a tool that is used to “stress test a computer sys-
tem in various selectable ways. It was designed to exercise various
physical subsystems of a computer as well as the various operat-
ing system kernel interfaces”. There are multiple stressors for CPU,
CPU cache, memory, OS, network and filesystem. Since we focus on
system performance bandwidth, we execute 42 stressors for CPU,
CPU cache, memory and virtual memory stressors (Tbl. 1 shows the
list of stressors used in this paper). A stressor (or microbenchmark)
is a function that loops for a fixed amount of time, exercising a
particular subcomponent of the system. At the end of its execution,
stress-ng reports the rate of iterations executed for the specified
period of time (referred to as bogo-ops-per-second).

Using this battery of stressors, we can obtain a performance
profile of a machine (a performance vector). When this vector is
compared against the one corresponding to another machine, we
can quantify the difference in performance between the two at
a per-stressor level. Fig. 5 shows the variability in these perfor-
mance vectors. We have significant variability coming from the
hardware differences of the underlying nodes. As mentioned in
Section 2, in contrast to what one might expect, we prefer higher
variability since, as we will show later, the higher the variability
among performance between machines, the more information the
prediction models have available to identify the underlying system
characteristics that affect application performance.

Every stressor (element in the vector) can be mapped to basic
features of the underlying platform. For example, bigheap is di-
rectly associated to memory bandwidth, zero to memory mapping,
qsort to CPU performance (in particular to sorting data), and so on
and so forth. However, the performance of a stressor in this set is
not completely orthogonal to the rest, as implied by the overlapping
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Table 1: List of stressors used in this paper, along with the
categories assigned to them by stress-ng. Note that some
stressors are part of multiple categories.

stressor CPU Cache Mem VM

af-alg X
atomic X X
bigheap X
brk X

bsearch X X X
cache X
cpu X
crypt X
full X

heapsort X X X
hsearch X X X
icache X
lockbus X X
longjmp X
lsearch X X X
malloc X X X
matrix X X X
memcpy X
mincore X
mmap X
mremap X
msync X
nop X
numa X X

oom-pipe X
qsort X X X
remap X X

resources X
rmap X
shm X

shm-sysv X
stack X X

stackmmap X X
str X X X

stream X X
tsearch X X X
vecmath X X

vm X X
vm-rw X X
vm-rw

vm-splice X
zero X

Table 2: Table of machines from CloudLab. The last three
entries correspond to computers in our lab.

machine cpu num_cpus cores

c220g2 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 2 8
c8220 Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz 2 10
dl360 Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz 2 8
m510 Intel(R) Xeon(R) CPU D-1548 @ 2.00GHz 1 8
pc2400 Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz 1 4
pc3000 Intel(R) Xeon(TM) CPU 3.00GHz 1 1
pc3500 Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 1 4
r720 Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz 1 8
scruffy Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 1 4
dwill Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz 1 4
issdm-41 Dual-Core AMD Opteron(tm) Processor 2212 2 2

categories in Tbl. 1. Fig. 6 shows a heat-map of Pearson correla-
tion coefficients for performance vectors obtained by executing
stress-ng on all the distinct machine configurations available in
CloudLab [19] (Tbl. 2 shows a summary of their hardware specs).
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Figure 5: Boxplots illustrating the variability of the perfor-
mance vector dataset. The data is normalized in order to
guard against dimensionality issues. Thus, the y-axis shows
variability in terms of the z-score (signed value representing
the number of standard deviations by which the value of an
observation is below or above the mean). Each stressor was
executed five times on each of the machines listed in Tbl. 2.
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Figure 6: Heat-map of Pearson correlation coefficients for
performance vectors obtained by executing stress-ng on all
the distinct machine configurations available in CloudLab.

As the figure shows, some stressors are slightly correlated (those
near 0) while others show high correlation between them.

In order to analyze this last point further, that is, to try to discern
whether there are a few orthogonal features that we could focus on,
rather than looking at the totality of the 42 stressors, we applied
principal component decomposition (PCA) [27]. Fig. 7 shows the
relative (blue) and cumulative (green) explained variance ratio.
The explained variance ratio is the amount of variability that a
component removes from the dataset. The higher the variance
associated to a component, the more the data can be explained
by that component. Having 6-8 components would be enough to
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Figure 7: Principal Component Analysis for the perfor-
mance vector dataset. The y-axis (log-scale) corresponds to
the explained variance ratio, while the x-axis denotes the
number of components. The blue line denotes the amount of
variance reduced by having a particular number of compo-
nents. The green line corresponds to the cumulative sum of
the explained variance. We omit the last point due to space
constraints, but we note that the variability at this point,
while relatively (in the image), numerically is insignificant
(y-axis is in log-scale).

explain most of the variability in the dataset. This confirms what
we observe in Fig. 6, in terms of having many stressors that can
be explained in function of others. So the reader might wonder,
why not remove stressors in order to simplify the analysis? If we
use the correlation matrix, we would need to define an arbitrary
correlation index threshold. If we use PCA, we lose information
with respect to what stressors are explaining a prediction. Instead
of trying to reduce the number of features, we decide to leave all
the stressors in order to not lose any information or having to
define arbitrary thresholds. Part of our future work is to address
whether we can reduce the number of features with the goal of
improving the models, without having to lose information about
which stressors are involved in the prediction.

3.2 System Resource Utilization Via Feature
Importance in SRA

SRA is an approach for modeling the relationship between variables,
usually corresponding to observed data points [28]. One or more
independent variables are used to obtain a regression function that
explains the values taken by a dependent variable. A common
approach is to assume a linear predictor function and estimate the
unknown parameters of the modeled relationships.

A large number of procedures have been developed for parameter
estimation and inference in linear regression. These methods differ
in computational simplicity of algorithms, presence of a closed-
form solution, robustness with respect to heavy-tailed distributions,
and theoretical assumptions needed to validate desirable statistical
properties such as consistency and asymptotic efficiency. Some of
the more common estimation techniques for linear regression are
least-squares, maximum-likelihood estimation, among others.

scikit-learn [29] provides many of the previously mentioned
techniques for building regression models. Another technique avail-
able in scikit-learn is gradient boosting [30]. Gradient boosting

is a machine learning technique for regression and classification
problems, which produces a prediction model in the form of an
ensemble of weak prediction models, typically decision trees [31]. It
builds themodel in a stage-wise fashion like other boostingmethods
do, and it generalizes them by allowing optimization of an arbitrary
differentiable loss function. This function is then optimized over a
function space by iteratively choosing a function (weak hypothesis)
that points in the negative gradient direction.

Once an ensemble of trees for an application is generated, feature
importances are obtained in order to use them as the IRUP for an
application. Fig. 1 shows the process applied to obtaining IRUPs for
an application. scikit-learn implements the feature importance
calculation algorithm introduced in [32] and is sketched in the
following pseudo-code algorithm. Given an ensemble of trees:

1. Initialize an f_importance array to hold a score for each
feature in the dataset.

2. Take an unseen tree of the ensemble and traverse it using
the following steps:
a. For each node that splits on feature i , compute the error re-

duction of that node, multiplied by the number of samples
that were routed to the node.

b. Add this quantity to the f_importance array (value cor-
responding to feature i).

c. Once all nodes are traversed, pick another unseen tree
from the ensemble and go to 2.

3. Assign a score of 100 to the most important feature and
normalize the rest of elements in the f_importance array
with respect to this one.

For step 2.a, the error reduction is recursively defined by ob-
taining the difference between the parent node impurity and the
weighted sum of the two child node impurities. The impurity cri-
terion depends on whether the problem is a classification or re-
gression one. Gini or MSE (among many others) can be used for
classification. For regression, variance impurity is employed and cor-
responds to the variance of all data points that are routed through
that node.

We note that before generating a regression model, we normalize
the data by obtaining the z-score of the dataset. Given that the
bogo-ops-per-secondmetric does not quantify work consistently
across stressors, we normalize the data in order to prevent some
features from dominating in the process of creating the prediction
models. In Section 4 we evaluate the effectiveness of IRUPs.

3.3 Using IRUPs in Automated Regression
Tests

As shown in Fig. 2 (step 4), when trying to determine whether a
performance degradation occurred, IRUPs can be used to compare
differences between current and past versions of an application.
In order to do so, we apply a simple algorithm. Given two profiles
A and B, look at first feature in the ranking (highest in the chart).
Then, compare the relative importance value for the feature and
importance values forA and B. If relative importance does not have
the same value, the importance is considered not equivalent and
the algorithm stops. If values are similar, we move to the next, less
important factor and the compare again. This is repeated for as
many features are present in the dataset.
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IRUPs can also be used as a pointer to where to start with an
investigation that looks for the root cause of the regression (Fig. 2,
step 5). For example, if the stream stressor (mimics the STREAM
benchmark [33]) ends up being the most important feature, then
we can start by looking at any code/libraries that make use of
this subcomponent of the system. An analyst could also trace an
application by capturing performance counters over time and look
at corresponding counters to see which code paths make heavy use
of the subcomponent in question.

4 EVALUATION
In this section we answer the following questions:

1. How well can IRUPs accurately capture application perfor-
mance behavior? (Section 4.1)

2. How well can IRUPs work for identifying simulated regres-
sions? (Section 4.2)

3. How well can IRUPs work for identifying regressions in real
world software projects? (Section 4.3)

Note on Replicability of Results: This paper adheres to The
Popper Experimentation Protocol and convention4 [34], so experi-
ments presented here are available in the repository for this article5.
We note that rather than including all the results in the paper, we
instead include representative ones for each section and leave the
rest on the paper repository. The dataset associated to this study is
open and can be examined in more detail on binder. The dataset can
also be re-generated on other platforms by executing the Popper
pipeline associated to this experiment. All results presented here
are continuously validated and can be replicated easily on Cloudlab
(see README on our Github repository for more details).

4.1 Effectiveness of IRUPs to Capture Resource
Utilization Behavior

In this subsection we show how IRUPs can effectively describe the
fine granularity resource utilization of an application with respect
to a set of machines. Our methodology is:

1. Given an application A, discover relevant performance fea-
tures using the quiho framework.

2. Do manual performance analysis of A to corroborate that
discovered features are indeed the cause of performance
differences.

Fig. 4 shows the profile of an execution of the hpccgminiapp [14].
This proxy application (or miniapp) [35] is a “conjugate gradient
benchmark code for a 3D chimney domain on an arbitrary number
of processors [that] generates a 27-point finite difference matrix
with a user-prescribed sub-block size on each processor.” [14].

Based on the profile, stackmmap and cache are the most impor-
tant features. In order to corroborate if this matches with what the
application does, we profiled this execution with perf. The stacked
profile view shows that ~85% of the time the application is running
the function HPC_sparsemv(). The code for this function is shown
in Lst. 1. As the name implies, this snippet implements a sparse
vector multiplication function of the form y = Ax where A is a
sparse matrix and the x and y vectors are dense. By looking at this

4http://falsifiable.us
5http://github.com/ivotron/quiho-popper

Table 3: Table of performance counters for the HPCCG per-
formance test.

counter HPCCG stackmmap cache bigheap

ins. per cycle 0.78 0.18 0.25 0.39
stalled cycles p/ins. 0.53 2.29 3.52 1.44

stalled cycles (frontend) 13.51% 41.09% 89.70% 18.95%
stalled cycles (backend) 41.19% 9.23% 0.80% 56.53%

branch misses 2.87% 9.24% 0.01% 0.69%
L1-dcache misses 5.62% 5.47% 52.91% 2.75%

LLC misses 1.03% 16.41% 51.88% 5.60%

code, we see that the innermost loop iterates an array, accumulat-
ing the sum of a multiplication. This type of code is a potential
candidate for manifesting bottlenecks associated with CPU cache
locality [36].

Listing 1 Source code for bottleneck function in HPCCG.

int HPC_sparsemv(HPC_Sparse_Matrix *A,
const double * const x,
double * const y)

{

const int nrow = (const int) A->local_nrow;

for (int i=0; i< nrow; i++) {
double sum = 0.0;
const double * const cur_vals =
(const double * const) A->ptr_to_vals_in_row[i];

const int * const cur_inds =
(const int * const) A->ptr_to_inds_in_row[i];

const int cur_nnz = (const int) A->nnz_in_row[i];

for (int j=0; j< cur_nnz; j++)
sum += cur_vals[j]*x[cur_inds[j]];

y[i] = sum;
}

return(0);
}

We analyze the performance of this benchmark further by ob-
taining performance counters for the application and comparing
the counters with those from the top three features (Tbl. 3 shows
the summary of hardware-level performance counters). Given that
hardware performance counters are architecture-dependent, we can
not make generalizations about given that we run an application on
a multitude of machines. Having said this, we can try to analyze the
counter results for the particular machine where we ran this test.
We can see that the performance counters values for the hpccg ap-
plication correspond to a combination of values for the three most
relevant features (stressors). In the case of the stackmmap stressor,
similarities between stalled cycle counters are noticeable denoting
similarities in stalled cycles, which are associated to application
performance [37,38].

Load Testing and Benchmarking ICPE’18, April 9̶–13, 2018, Berlin, Germany

279



ss
ca

sc
ik

it-
le

ar
n

hp
cc

g

re
di

s-
ge

t

re
di

s-
se

t

application

−4

−3

−2

−1

0

1

2

3

4

z 
sc

or
e

Figure 8: Variability of the four applications presented in
this subsection. Y-axis has been normalized.
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Figure 9: IRUPs for the four tests benchmarked in this sec-
tion. This and subsequent figures show only the top 5 most
important features in order to improve visualization of the
plots.

Next, we analyze the IRUPs of other three applications6. These
applications are Redis [39], Scikit-learn [29], and SSCA [40]. Due
to space constraints we omit a similar detailed analysis as the one
presented above for hpccg. However, resource utilization character-
istics of these code bases is well known and we verify IRUPs using
this knowledge. As a way of illustrating the performance variability
of these applications on an heterogeneous set of machines, Fig. 8
shows boxplots of their runtime.

In Fig. 9 we show IRUPs for these four applications7. The first two
on the top correspond to two tests of Redis, a popular open-source
in-memory key-value database. These two tests are SET, GET from
the redis-benchmark command that test operations that store
and retrieve key-value pairs into/from the DB, respectively. The
resource utilization profiles suggest that SET and GET are memory
intensive operations (first 3 stressors from each test, as shown in
Tbl. 1), which is an obvious conclusion.
6For brevity, we omit other results that corroborate IRUPs can correctly identify
resource utilization patterns. All these are available in the Github repository accompa-
nying this article.
7In order to enhance the visualization of the IRUPs we only show the top 5 most
important features. Complete profiles can be visualized on the Jupyter notebook
contained in the github repository.
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Figure 10: MariaDB with innodb and in-memory backends.

The next two IRUPs (below) correspond to performance tests for
Scikit-learn and SSCA. In the case of Scikit-learn, this test runs a
comparison of several classifiers in on a synthetic dataset. Scikit-
learn uses NumPy [41] internally, which is known to be memory-
bound. The profile is aligned to this known behavior since the zero
microbenchmark stresses access.

The last application is SSCA, a graph analysis benchmark com-
prising of a data generator and 4 kernels which operate on the graph.
The benchmark is designed to have very little locality, which causes
the application to generate a many cache misses. As shown in the
profile, the first feature corresponds to the cache stressor, which
as it was explained earlier, stresses the CPU cache by generating a
non-locality workload.

4.2 Simulating Regressions
In this section we test the effectiveness of quiho to detect per-
formance simulations that are artificially induced. We induce re-
gression by having a set of performance tests that take, as input,
parameters that determine their performance behavior, thus sim-
ulating different “versions” of the same application. In total, we
have 10 benchmarks for which we can induce several performance
regressions, for a total of 20 performance regressions. For brevity,
in this section we present results for two applications, MariaDB
[42] and a modified version of the STREAM benchmark.

The MariaDB test is based on the mysqlslap utility for stressing
the database engine. In our case we run the data loading test, which
populates a database whose schema is specified by the user. We
have a fixed set of parameters that load a 10GB database. One of
the exposed parameters is the one that selects the backend (storage
engine in MySQL terminology). While the workload and test pa-
rameters are the same, the code paths are distinct and thus present
different performance characteristics. The two engines we use in
this case are innodb and memory. Fig. 10 shows the profiles of Mari-
aDB performance for these two engines.

The next test is a modified version of the STREAM benchmark
[33], which we refer to as STREAM-NADDS (introduced in [43]).
This version of STREAM introduces a NADDS pre-processor param-
eter that controls the number additions for the Add test of the
STREAM benchmark. In terms of the code, when NADDS equals to 1
is equivalent to the “vanilla” STREAM benchmark. For any value
greater than 1, the code adds a new term to the sum being exe-
cuted. Intuitively, since the vanilla version of STREAM is memory
bound, so adding more terms to the sum causes the CPU to do more
work, eventually moving the bottleneck from memory to being
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Figure 12: The IRUPs for modified version of STREAM. The
parameter of NADDS increases by taking values of 1, 2, 4, . . . ,
20 and 30. We see that they capture the simulated regres-
sion which causes this application to be moving from being
memory-bound to being cpu-bound.

cpu-bound; the higher the value of the NADDS parameter, the more
cpu-bound the test gets. Fig. 11 shows this behavior.

Fig. 12 shows the IRUPs for the four tests. On the left, we see the
resource utilization behavior of the “vanilla” version of STREAM
(which corresponds to a value of 1 for the NADDS parameter). As
expected, the associated features (stressors) to these are from the
memory/VM category, in particular vecmath. As the number of
terms for the sum increases, the test moves all the way to being CPU-
bound (at NADDS=30), which can be seen by observing the bsearch
and hsearch features going up in importance as the number of
additions increases.
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Figure 13: A regression that appears from going in the re-
versed timeline (from mariadb-10.0.3 to 5.5.38).

4.3 Real world Scenario
In this section we show that quiho works with regressions that can
be found in real software projects. It is documented that the changes
made to the innodb storage engine in version 10.3.2 improves the
performance in MariaDB, with respect to previous version 5.5.58. If
we take the development timeline and invert it, we can treat 5.5.58 as
if it was a “new” revision that introduces a performance regression.
To show that this can be captured with IRUPs, we use mysqlslap
again and run the load test. Fig. 13 shows the corresponding IRUPs.
We can observe that the IRUP generated by quiho can identify the
difference in performance. For brevity, we omit regressions found in
other 4 applications (zlog, postgres, redis, and apache web server).

5 DISCUSSION
In this section we provide a high-level discussion on several aspects
of quiho.

Application-Independent Performance Characterization.
The main advantage of the quiho approach is its resiliency. By in-
ferring resource utilization instead of directly instrumenting code
to generate profiles, the quiho approach is resilient to code refac-
toring and requires no manual intervention. We used a subset of
stress-ngmicrobenchmarks to quantify machine performance but
the approach is not limited to this benchmarking toolkit. Ideally,
we would like to extend the amount and type of stressors so that we
have more coverage over the distinct subcomponents of a system.
An open question is to systematically test whether the current set
of stressors is sufficient to cover all subcomponents of a system,
and at the same time reduce the number of microbenchmarks.

Falsifiability of IRUPs The reader might have noticed that,
regardless of how the performance of an application looks like, SRA
will always produce a model with associated feature importances.
Thus, one can pose the following question: is there any scenario
where an IRUP is not correctly associated with what the applica-
tion is doing? In other words, are IRUPs falsifiable? The answer
is yes. An IRUP can be incorrectly representing an application’s
performance behavior if there is under- or over-fitting when gen-
erating the model. Fig. 14 shows the correlation matrix obtained
from a dataset containing only 3 data points (generated by selecting
two random machines from the set of available ones). Almost all
stressors are highly correlated among each other, which suggests
(as explained in Section 3) there is little that a prediction model
can learn about the underlying resource utilization behavior of an
application in this dataset (which contains only a couple of points,
coming from two machines with very similar characteristics). This
is confirmed by obtaining an IRUP multiple times for an application
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heapsort
vecmath

zero
mmap
qsort

redis-set

qsort
rmap

nop
icache
stream

redis-set

0 20 40 60 80 100
Relative Importance

rmap
qsort

matrix
zero

stackmmap
redis-set
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of only two randomly selected machines from Tbl. 2.

contained in this small dataset (Fig. 15). The application in this case
is redis-set. If we obtain the IRUP 3 times and compare them,
we observe that they give completely random and contradictory
results (for example, the bottom IRUP ranks CPU stressors as the
top important features). This is in contrast to what we observe
with well-fitted models, such as the ones in Fig. 9 for which multi-
ple IRUPs show consistent results in their results. The correlation
matrix shows why this is so: almost all the features are highly corre-
lated. One way of determining the right amount of machines needed
in order to generate good models is to apply probable aproximate
correct learning (PAC) [44] to this dataset in order to quantify the
probability of obtaining highly accurate estimations.

Quiho vs. other tools. The main advantage of quiho over other
performance profiling tools is that it is automatic and 100% hands-
off. Asmentioned before, themain assumption being that there exist
performance vectors (or they are obtained as part of the test) for a
sufficiently varied set of machines. We see quiho as a complement,
not a replacement of perf, to existing performance engineering

practices: once a test has failed quiho’s checks, then proceed to
make use of existing tools.

IRUP Comparison. The algorithm specified in Section 3.3 is a
straight-forward one. One could think of more sophisticated ways
of doing IRUP comparison and finding equivalences. For example,
using the categories from Tbl. 1, one could try to group stressors
and determine coarse-grained bottlenecks, instead of fine grained
ones. Another alternative is to do reduce the number of features by
applying PCA, exploratory factor analysis (EFA), or singular value
decomposition (SVD), and compare profiles in terms of the mapped
factors.

IRUP as a visualization tool. The reader might have noticed
that IRUPs can be visually compared by the human eye (and are
somewhat similar in this regard to FlameGraphs [45]). Adding a
coloring scheme to IRUPs might make it easier to interpret the
differences. For example, the categories in Tbl. 1 could be used to
define a color palette (by assigning a color to each subset of the
powerset of categories).

Reproducibility. Providing performance vectors alongside ex-
perimental results allows to preserve information about the perfor-
mance characteristics of the underlying system that an experiment
observed at the time it ran. This is a quantifiable snapshot that
provides context and facilitates the interpretation of results. Ideally,
this information could be used as input for emulators and virtual
machines, in order to recreate original performance characteristics.

Reinforcement Learning. Over the course of its life, an appli-
cation will be tested on many platforms. If we can have an ever-
growing list of machines where an application is tested, the more
we run an application in a scenario like this, the more rich the per-
formance vector dataset (and associated application performance
history). This can serve as the foundation to applycbecomes we
learn about its properties. For example, if we had performance
vectors captured as part of executions of the Phoronix benchmark
suite (which has public data on https://openbenchmarking.org), we
could leverage such a dataset to create rich performance models.

6 RELATEDWORK
Automated Regression Testing. Automated regression testing
[46] can be broken down in the following three steps. 1) In the case
of large software projects, decide which tests to execute [47]. This
line of work is complementary to quiho. 2) Once a test executes,
decide whether a regression has occurred [48]. This can be broken
down in mainly two categories, as explained in [12]: pair-wise
comparisons and model assisted. quiho fits in the latter category,
the main difference being that, as opposed to existing solutions,
quiho does not rely on having accurate prediction models since
its goal is to describe resource utilization (obtain IRUPs). 3) If a
regression is observed, automatically find the root cause or aid an
analyst to find it [13,49]. While quiho does not find the root cause
of regressions, it complements the information that an analyst has
available to investigate further.

Profiling-basedPerformanceModeling. Modeling performance
based on application profiles has been studied before [50–52]. In
[50], the MAPS benchmark is used to characterize the performance
of machines. These profiles are then convoluted with application
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traces obtained by the MetaSim tool in order to obtain a predic-
tion on the performance of an application. In [52] the authors use
randomized optimization (genetic algorithms) to systematically ex-
plore the parameter space of an application in order to create a
record of <input, runtime> pairs. quiho can be used in this case
to augment the available information and have an IRUP associated
to the inputs of the application under study.

Performance Profile Visualization. An IRUP can be used to
visualize performance and thus have a resemblance with a flame
graph [45]. In [53] the authors introduce the concept of differential
flame grahps, which can be used to visually compare the changes
between two or more flame graphs. A similar approach could be
applied to IRUPs in order to visualize the differences between two
flame graphs.

Inducing Performance Regressions. In [54], the authors an-
alyzed the code repositories of two open source projects in order to
device a way of systematically inducing performance regressions.
Our methodology instruments an application in order to parame-
trize performance and control when changes in performance are
triggered, as a way of testing methods that are aimed at detecting
these changes.

Decision Trees In Performance Engineering. In [55] the au-
thors use decision trees to detect anomalies and predict performance
SLO violations. They validate their approach using a TPC-W work-
load in a multi-tiered setting. In [12], the authors use performance
counters to build a regressionmodel aimed at filtering out irrelevant
performance counters. In [56], the approach is similar but statistical
process control techniques are employed instead. In the case of
quiho, the goal is to use decision trees as a way of obtaining feature
performance, thus, as opposed to what it’s proposed in [12], the
leaves of the generated decision trees contain actual performance
predictions instead of the name of performance counters

Correlation-based Analysis and Supervised Learning. Cor-
relation and supervised learning approaches have been proposed in
the context of software testing, mainly for detecting anomalies in
application performance [49]. In the former, runtime performance
metrics are correlated to application performance using a variety of
distinct metrics. In supervised learning, the goal is the same (build
prediction models) but using labeled datasets. Decision trees are
a form of supervised learning, however, given that quiho applies
regression rather than classification techniques, it does not rely on
labeled datasets. Lastly, quiho is not intended to be used as a way of
detecting anomalies, although we have not analyzed its potential
use in this scenario.

7 FUTUREWORK
Themain limitation in quiho is the requirement of having to execute
a test on more than one machine in order to obtain IRUPs. On the
other hand, we can avoid having to run stress-ng every time the
application gets tested by integrating this into the infrastructure
(e.g., system administrators can run stress-ng once a day or once
a week and make this information for every machine available to
users).

We are currently working in adapting this approach to profile
distributed and multi-tiered applications. We also plan to analyze
the viability of applying quiho in multi-tenant configurations and

to profile long-running (multi-stage) applications such as a web-
service or big-data applications. In these cases, we would define
windows of time and apply quiho to each. The main challenge in
this scenario is to automatically define the windows in such a way
that we can get accurate profiles.

In the era of cloud computing, even the most basic computer
systems are complex multi-layered pieces of software, whose per-
formance properties are difficult to comprehend. Having complete
understanding of the performance behavior of an application, con-
sidering the parameter space (workloads, multi-tenancy, etc.) is
challenging. One application of quiho we have in mind is to couple
it with automated black-box (or even gray-box) testing frameworks
to improve our understanding of complex systems.
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