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ABSTRACT
The identification of workload-dependent performance issues, as
well as their root causes, is a time-consuming and complex process
which typically requires several iterations of tests (as this type of
issues can depend on the input workloads), and heavily relies on hu-
man expert knowledge. To improve this process, this paper presents
an automated approach to dynamically adapt the workload (used
by a performance testing tool) during the test runs. As a result, the
performance issues of the tested application can be revealed more
quickly; hence, identifying them with less effort and expertise. Our
experimental evaluation has assessed the accuracy of the proposed
approach and the time savings that it brings to testers. The results
have demonstrated the benefits of the approach by achieving a
significant decrease in the time invested in performance testing
(without compromising the accuracy of the test results), while in-
troducing a low overhead in the testing environment.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Software testing and debugging;
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1 INTRODUCTION
Performance is a crucial dimension of quality and a major concern
of any software project. This is especially true at the enterprise level,
where system performance can play a critical role in achieving com-
panies’ goals (e.g., trading systems, airlines’ websites). However,
despite the efforts invested in performance engineering tasks, it is
common that performance issues occur and materialise into severe
problems with serious business consequences (e.g., outages on pro-
duction or even cancellation of software projects). For instance, a
survey conducted among information technology executives docu-
mented that half of them had experienced performance problems
in more than 20% of their managed applications [12]. This situ-
ation has been exacerbated by the introduction of recent trends
in information technology (e.g., Cloud Computing and Big Data)
which have augmented the complexity of enterprise-level applica-
tions, complicating, even more, the performance testing of such
applications [18].

A particularly complex challenge in the area is that a consider-
able number of performance issues, occurring at enterprise-level
applications, are workload-dependent [32]. Even though existing
performance testing tools (e.g., Apache JMeter [1]) can be used
to detect these types of issues, this is usually ineffective because
these tools use static (i.e., pre-configured) workloads. Thus, they
rely on the expertise of human testers to set an adequate work-
load that can reveal the performance issues that might exist in
the Application-Under-Test (AUT). Typically, testers use “standard”
workloads (e.g., based on their own knowledge and previous experi-
ence, or based on corporate policies), which might not be sufficient
in order to identify issues that may not surface even on relatively
large workloads [17]. This is because it is often unclear how large
is large enough for a workload to exhibit such issues (as the appro-
priate workload can be different for each application, or even for
different versions of the same application).

An example that illustrates well the motivation of this work is
the outage exhibited by the Skype network in December 2010 [6].
It lasted approximately 24 hours and affected more than 20 million
users worldwide (around 90% of the Skype users at that time). The
analysis performed during its fixing revealed that it was caused by
an insufficient amount of performance testing [25]. In particular,
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Figure 1: Performance Testing - Contextual view

an untested significantly high workload peak caused an overload
of the offline messaging service, which started sending delayed
responses. A specific version of the Skype clients could not pro-
cess well the delayed messages and crashed. These clients included
around 25% of the super-nodes (special Skype nodes that work as
address books to connect the calls). Consequently, the remaining
super-nodes received a traffic 100 times bigger than usual. As the
super-nodes have a built-in mechanism to avoid having a huge
impact on the host system, this made more super-nodes to shut
down, creating a vicious cycle that ended affecting 90% of the Skype
users. This scenario clearly illustrates how conducting performance
testing with the right amount of workload is important to iden-
tify any performance bugs that exist on a system. Otherwise, the
consequences might be very serious (like the outage experienced
by Skype users). Similarly, research works have also documented
the (potential) magnitude of this problem. For instance, a recent
research study investigated 109 performance issues and found that
41 of them occurred due to incorrect workload assumptions [14].

Contributions. To address this challenge, our research has fo-
cused on developing techniques that improve the identification
of workload-dependent performance issues, as well as their root
causes, in order to increase the productivity of testers (hereinafter
referred as users) by reducing the effort and expertise required in
this process. In a previous work [15], we proposed an automated
approach which dynamically adapts the workload used by a testing
tool. However, that preliminary version was based on heuristic
policies derived from the studied AUT; hence, it was not practical
for real-world usage (as it was not application-independent). In this
paper, we propose a new set of adaptive policies which leverage
performance metrics, retrieved from the underlying AUT and eval-
uated in real-time, to self-configure the test workload according to
the specific application behaviour. Such automated policies manage
(i) when (i.e., time) and for how much (i.e., amount) the test work-
load needs to be modified, and (ii) to which application functionality
(from the tested one) the workload will be applied. We also extend
our approach to support the existing functional dependencies in
the tested transactions involved, as well as to determine to which
operations the workload will be more useful. As a result of the
previous strategies, the need of the testers to manually configure an

appropriate test workload is eliminated. Finally, we conduct a prac-
tical validation of the approach (denominated DYNAMO) consisting
of an implementation prototype and a series of experiments using
three different applications. They evaluate the productivity benefits
(i.e., time savings) that can be achieved by using DYNAMO, as well
as the amount of overhead (i.e., computational costs) introduced to
the test environment.

The rest of this paper is structured as follows: Section 2 presents
the background and the related work. Section 3 explains the pro-
posed approach, while Section 4 describes the experimental evalu-
ation and results. Finally, Section 5 presents the conclusions and
future work.

2 BACKGROUND AND RELATEDWORK
Performance testing is an important type of testing which aims
to assess whether or not an application (i.e., AUT) will be able to
perform its business functionality under a given workload [13, 19].
As shown in Fig. 1, a performance test run typically involves the
execution of a performance testing tool (e.g., Apache JMeter [1])
during a certain period of time (usually several hours, or even days,
in an industrial scenario) in order to apply a desired test workload to
the AUT. In this context, a test workload is traditionally composed
of a number of concurrent customers (normally virtual), as well
as a set of functional operations (e.g., search, buy, sell), mimicking
an expected type of real usage of the AUT. In order to identify
performance issues, users commonly collect performance-related
counters (e.g., response time, throughput) periodically during the
test execution, so that their trendings and behaviours can be anal-
ysed through time. Finally, users commonly utilise some type of
diagnosis tool (e.g., IBMWAIT [8]) in order to deepen their analysis
of the gathered information.

The literature on performance testing has shown a variety of ap-
proaches to improve this process from different perspectives: Some
research works have centred on automating the tasks related to
benchmark an application (from a performance testing perspective).
For instance, the work on [26] presents a framework to automat-
ically conduct a set of typical application-related benchmarking
tasks, including a workload generator. Another solution is described
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Figure 2: DYNAMO - Contextual View

in [27], which presents a cloud-based benchmark-as-a-service plat-
form that includes a component to create traffic for the benched
application. Meanwhile, the work on [29] proposes an approach
to automate the extraction of workload specifications (from pro-
duction logs) in order to be reused in the performance testing of
session-based applications; while the work discussed in [9] aims
to produce easy-to-process output (from a controlled performance
testing run) in order to create a performance model of the tested
application.

Meanwhile, other research works have proposed techniques to
facilitate the identification of potential performance issues. For ex-
ample, the authors of [16] proposed a performance test framework
tailored to the particular needs of the dynamic multi-tenant cloud
environments. Similarly, the work on [23] presents a technique to
identify the early warning signs that typically precede a relevant
performance degradation in a system. Moreover, some other works
have centred on generating useful synthetic testing data [10, 11], or
on providing techniques that can reduce the expertise required in
order to efficiently automate the usage of the diagnosis tools in the
performance testing domain [20]. In contrast to these works, which
aim to improve other facets of performance testing, our solution
addresses the particular need of setting a suitable test workload for
a particular application; hence, successfully isolating a user from
the complexities of determining such workload.

Finally, some research works have proposed the use of pre-
configured workloads [28, 30] in order to simulate a real customer
behaviour using Markov chains. Although these approaches can
successfully mimic the desired test workload (which is based on
the modelled customer behaviour), there is no guarantee that the
mimicked workload is sufficient to identify any existing perfor-
mance issues in the tested application. In contrast, our research
work aims to address that particular challenge in the performance
testing domain.

3 PROPOSED APPROACH: DYNAMO
In this section, we provide the overview of our solution and describe
the processes involved, its architecture, and supporting policies.

3.1 Overview
The goal of this work was to develop an automated approach
(i.e., DYNAMO) that could dynamically adjust the test workload
(used in the performance testing of applications) to the specific
characteristics of the underlying AUT. The aim is to shield the
user from the complexities of identifying a suitable test workload,
as they are normally application-dependent and can even change
between versions of the same application. In this manner, users
can improve their productivity as well as maximise valuable test-
ing resources and time (as they are usually limited due to project
constraints, such as budget or schedule).

As explained in Section 1, DYNAMO is motivated by the fact
that current testing tools need to be manually configured with an
appropriate test workload in order to avoid negative impacts on the
accuracy of the test run’s outputs (e.g., overlooking any relevant
workload-dependant issues). This is because, if an inappropriate
configuration is used, the tools might fail to obtain the desired
outputs, resulting in significant time wasted. This scenario is ex-
emplified in Fig. 3 (presented for illustrative purposes only, as the
actual workload curves are application-specific), which shows how
not all test workloads are typically useful to identify the workload-
dependent issues existing within a system. If the workload is “too
low”, the issues might not surface (hence the users would overlook
them). Likewise, if the workload is “too high”, the test environment
would get saturated. If this occurs, most of the identified issues
would be caused by the environment saturation, rather than being
actual application performance issues.

DYNAMO addresses these types of problems by actively adapting
the workload used by a performance testing tool, so that it stresses
more the application functionality which is suspicious of having a
performance issue in order to have more certainty about whether
or not a bug exists. This action would enhance the results obtained
by a performance test run, which can be a very time-consuming
activity (as discussed in Section 2). As a consequence, DYNAMO
leads to a better utilisation of the available resources (in terms of
workload) for a performance testing tool in order to maximise its
results (e.g., identification of performance bugs or more certainty
about the achieved Service Level Agreements). Internally, DYNAMO
leverages policies to automatically monitor the effectiveness of the
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Figure 3: Bugs vs. Test Workload Trade-off

workload used by the performance diagnosis tool. Furthermore, our
approach relies on a set of diagnostic metrics, which are evaluated
in real-time, to determine when a workload adjustment is required
for a specific transaction under test.

Figure 2 depicts the contextual view of our solution within the
traditional performance testing process (discussed in Section 2).
There, it can be noticed how DYNAMO enhances this process. This
is achieved by proactively monitoring the intermediate test results
(in real-time) in order to automatically adjust the workload (if
needed) during the test run execution. Consequently, the usage of
DYNAMO eliminates the need of (potentially costly) trial-and-error
test cycles, which would traditionally require the intervention of
the users to manually adjust the utilised test workload.

3.2 Core Process
DYNAMO performs a series of steps (i.e., core process) during the
execution of the AUT. The process is depicted in Fig. 4. It starts by
initialising the set of input parameters as well as the selected poli-
cies. There are two different types of policies that can be configured:
(1) A diagnosis policy, which defines the criteria that will be used
to decide if a transaction is suspicious of suffering a performance
issue, the data sources required to perform the assessment (e.g., per-
formance metrics), and any other specific information required to
execute the policy. (2) An adjustment policy, which defines the rules
to adjust (either increase or decrease) the workload whenever a
change is required. These policies are described in more detail in
Section 3.4.

DYNAMO requires at least one policy of each type. The encapsu-
lation of these two types of business logic into configurable policies
allows our approach to be easily extensible. The aim is that multiple
policies can be developed which can be used to fulfil the require-
ments of different use cases. In order to fully configure DYNAMO,
the tester needs to: (i) indicate how long the test run will be ex-
ecuted (i.e., test duration); (ii) indicate an assessment interval in
order to specify how often the diagnosis policy will be evaluated to
determine if a workload adjustment is needed; (iii) indicate which
diagnosis and adjustment policies will be used (among the avail-
able alternatives); (iv) provide any inputs required by the chosen
policies.

Once the initialisation phase finishes, the process starts the fol-
lowing cycle, which is performed in parallel to the performance
test run execution: First, the logic awaits the configured assessment
interval during which the AUT has processed a certain amount of
transactions (as per an initial test workload) before any diagnosis

is carried out. Next, a new set of samples is collected (based on the
data sources defined in the diagnosis policy). After the collection
finishes, the process checks if any transaction is suspicious of suf-
fering a performance issue (as dictated by the criteria defined in the
selected diagnosis policy). Then, if any transaction is suspicious of
suffering a performance issue, the workload gets automatically ad-
justed. Such adjustments are controlled by the chosen adjustment
policy. This process iteratively continues until the performance
test run finishes. Finally, any errors that might occur are internally
reported and handled.

3.3 Architecture
The design of our approach is complemented by a component-
based architecture. There are three main components that compose
the core process of DYNAMO (depicted in Fig. 4): The generic
component contains all the functionality which is independent
of the policies (e.g., the control logic of the core process). The
other two components are the action and decision makers, which
encapsulate the logic related to the adjustment of the workload and
the diagnosis of performance issues, respectively. This architecture
was designed with the aim of minimising the code changes required
to extend the approach (e.g., to support other performance test
tools, such as IBM RPT [4]). Along with this line of thinking, at
an architectural level, the components are only accessed through
interfaces. This is exemplified in Fig. 5, which presents the high-
level class hierarchy of the action and decision maker components.
There, it can be seen that each package contains a main interface
to expose the set of supported actions, as well as an abstract class
which contains all common functionality (with respect to the tools).
Then, the hierarchy is easily extendable to support specific types
of policies. For instance, one decision maker can leverage common
performance metrics (e.g., response time, throughput, error rate) in
order to assess the health of the AUT from a customer’s perspective.
Alternatively, another decision maker can assess the health of the
AUT from a server’s perspective, by measuring the amount of
consumed resources (as shown in Fig. 5).

3.4 Supported Policies
In the following paragraphs, we describe the set of diagnosis and
adjustment policies that DYNAMO supports:

3.4.1 Adjustment Policies. This type of policy defines the actions
to follow for modifying the test workload used by the performance
testing tool (once a diagnosis policy has determined that an ad-
justment action is required). Among the alternative approaches to
develop adjustment policies for DYNAMO, we have initially focused
on the following two:

• A full house policy, in which any modifications made to
the test workload affects all transaction types (either all
types increasing or decreasing at once by the same work-
load amount). This approach can be useful in the scenario
when a new enterprise application is about to be released to
production. Since there is no historical data regarding the ap-
plication’s performance, its reliability remains undetermined.
Therefore, it is reasonable to assume that all transactions are
equally likely of experiencing workload-dependent perfor-
mance issues.
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Figure 4: DYNAMO - Core Process

Figure 5: DYNAMO - Class Hierarchy of Decision andAction
Makers

• A mix and match policy, in which only a subset of the tested
transaction types are increased. This approach would be use-
ful in caseswhen only some of the transactions are suspicious
of suffering a performance issue (i.e., they are workload-
dependent). It is important to remark that this policy is also
responsible for preserving the functional dependencies ex-
isting among the transactions. For instance, consider that
an online shopping store website is the AUT. The “purchase”
functionality has exhibited abnormal behaviour (based on
its performance indicators). Thus, it has been determined to
adjust its test workload with the aim of stressing this part of
the application. In this scenario, the functional dependencies
of “purchase” can be the “login” and “add to cart” operations,
as both actions need to occur before being able to buy a prod-
uct. Hence, the workload of these three transaction types
will be equally adjusted as they are dependent.

3.4.2 Diagnosis Policies. This type of policy is used to detect if a
transaction type in the AUT is suffering a performance degradation.
As a result, the test workload used by the performance testing
tool might be adjusted (as specified by the adjustment policy used).
Among the possible approaches to develop diagnosis policies for
DYNAMO, we have initially concentrated on one policy based on
the error rate performance metric. This policy was designed to
leverage the observed behaviour that, even though it is expected
that some errors may occur when processing client requests, these
errors will considerably increase when the load has reached a point
that exceeds the application’s ability to deliver its service. The
policy is also inspired by concepts of supervised machine learning,
in which the test execution is divided into two phases: The first
phase is exploratory, where the main goal is to identify which
transactions are the most workload-sensitive; the second phase
is operational, and it is mainly focused on stressing, as much as
possible (and within the constraints of the test environment), those
transactions that have been previously identified (in phase one)
as workload-sensitive. The ultimate goal of such strategy is to
maximise the number of performance issues that can be identified
by a single performance test run.

This policy requires the following inputs:

(1) Phase ratio: As the policy is composed of two phases, this
optional parameter indicates what percentages of the total
test duration will be used for the first and second phases,
respectively. If the values for this parameter are not con-
figured, a default ratio of 20/80% will be used. This default
value has been taken from the Pareto law, which states that,
for many events, roughly 80% of the total effects come from
20% of the causes [24].

(2) Initial workloads: As a starting calibration point, the user
needs to indicate a known low workload (e.g., 50 customers)
and a relative ratio where the workload sensitivity might
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Figure 6: DYNAMO - Error rate-based Adjustment Policy

be noticeable (e.g., 10 times). Understanding that the user
might not know the exact test workload, it is only assumed
that s/he can still provide an educated estimation.

(3) Error rate threshold: This optional parameter defines the
upper bound value that indicates that the system has become
saturated. If this parameter is not configured, a default value
of 90% will be used (as this is a value commonly identified
as saturation point [19]).

(4) Functional dependencies: This is the set of dependency rela-
tionships that might exist between the tested transactions
(e.g., a purchase cannot occur without first logging into the
system). If configured, such dependencies will be considered
by the policy’s logic to keep the test workload consistent (by
propagating the dependencies to the applicable adjustment
policy).

(5) Workload-sensitivity identification strategies: This param-
eter defines which strategy (among the ones supported for
each of the two phases) will be used to assess the workload-
sensitivity of the transactions to determine if their workload

needs to be adjusted. They are explained in the following
paragraphs (as part of the phases’ descriptions).

The core process of the error-based adjustment policy is depicted
in Fig. 6. Below, we explain the two main phases that compose the
execution of the policy.

Phase 1: Here, the goal is to find what transactions, among the
overall set of functional transactions been tested, are workload-
sensitive (WkS) or workload-insensitive (WkI). First, all the ele-
ments required to properly execute the policy are initialised. Next,
two initial Test Runs are conducted (TR1, TR2); each test lasts half
of the time configured for phase 1. TR1 is executed using the initial
test workload provided by the user (i.e., a low workload such as
50 customers), while TR2 uses an incremented test workload that
results from multiplying the initial low workload by the relative
ratio parameter (i.e., 500 customers, assuming a ratio of 10 and an
initial workload of 50 customers). Internally, this phase leverages
the full house adjustment policy (i.e., all transactions are equally
modified at the same time). This policy is suitable for this scenario
because, at this stage, it is still uncertain which transactions are
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workload-sensitive and which are not. During the execution of the
test runs, a set of performance metrics is gathered (i.e., response
time, throughput, error rate). Once TR2 finishes, the process will as-
sess the workload-sensitivity of the transactions by comparing the
differences (i.e., deltas) between the performance metrics gathered
from TR1 and TR2.

Two different strategies for workload-sensitivity identification
are supported: (1) Absolute, in which all the transactions whose
delta percentage is greater than or equal to a pre-configured value
(e.g., 20%) are tagged asWkS; the rest are tagged asWkI. (2) Relative,
in which all the transactions are sorted based on their deltas and
only the top N transactions (either using an absolute number, such
as 5, or a percentage, such as 20%) are tagged WkS; the rest are
tagged as WkI. It is worth mentioning that the functional dependen-
cies among the transactions are respected. This means that, if a WkI
transaction has a functional dependency with a WkS transaction,
the WkI transaction will be altered to tag it as WkS in order to
respect that dependency. The final output of phase 1 is the set of
transactions tagged as either WkS or WkI.

Phase 2: Here, the aim is to increase the test workload of the
WkS transactions as much as possible without reaching the satura-
tion point of the system. When phase 2 starts, the transactions will
use an initial workload using the mix and match adjustment policy.
For WkI transactions, this will be half of the workload used in TR2
of phase 1, while the WkS transactions will use the full workload.
These values are configurable, however, their default values have
been defined with the aim of accelerating the identification of per-
formance issues. For instance, the last workload used in TR2 of
phase 1 has already proven to be effective as it was used to identify
the WkS transactions. Also, since the adaptive logic of phase 2 only
applies to WkS transactions, WkI transactions can use the initially
configured workload during the rest of the test execution. In that
manner, they do not spend resources that can be invested in the
testing of WkS transactions.

Once the initial workloads are set, the following loop will be
executed until the configured test duration has passed: First, the
process awaits the current assessment interval, so that the test run
can make use of the current test workload for some time before
evaluating whether or not it is the right workload for the particular
application’s behaviour. Once the interval has elapsed (and assum-
ing that the maximum suitable workload has not been reached), a
sample of the performance metrics is retrieved from the test loader
tool (i.e., the error rate for allWkS transactions that comprehend the
most recent assessment interval). Then, the deltas for the sampled
error rates are calculated for each WkS transaction (as previously
explained in phase 1). These deltas are then used to determine if
the workload of any individual transaction type requires being
adjusted. Before doing this, DYNAMO first needs to assess if the
test run has not reached the saturation point yet. In order to assess
this, the average error rate is compared to the configured threshold.
If the average error rate (across all tested transactions) is higher
than the threshold, it means that the test environment is already
saturated. In this case, a final adjustment to the test workload is
done by rolling it back to the one used before the last increment
(as such workload is the highest one reached before exceeding the

error rate threshold). Also, a flag is set to indicate that the maxi-
mum workload point has been reached, so that DYNAMO stops
modifying the workload.

On the contrary, if the saturation point has not been reached
yet, the process checks which of the WkS transaction(s) will be
increased. To determine this, the policy can use three different
selection strategies (inspired by the commonly-known load balanc-
ing algorithms, random and round-robin): (1) Random: Here, the
transaction whose workload will be increased is randomly picked.
This can be either a uniform or a weighted random selection. In
the uniform mode, all the transactions have the same probabil-
ity of being selected. In the weighted mode, the transactions are
weighted so that the probability of each transaction to be selected
is determined by its relative weight. For example, based on their
performances, the worst performing transaction would have more
chances to be chosen. (2)Maximum: Here, the workloads of the top
N transactions that have the worst performance are increased. In
order to avoid a “selfish” behaviour, the workload of a transaction
cannot be increased in two consecutive adjustment rounds. (3)Min-
imum: Here, the workloads of the top N transactions that have
the best performance are increased. This alternative tends to be
fairer (than maximum) because it is more likely that the transaction
whose workload was increased will be the worst performer in the
next round. Hence, this strategy gives other transactions the chance
to have their workloads increased (without the need to keep track
of the adjusted transactions, as in the maximum strategy).

The loop continues until the performance test run finishes. It is
worth mentioning that any exceptions are internally reported and
handled. Furthermore, similarly to the previous phase, the func-
tional dependencies that exist among the transactions are always
respected. This means that, if the workload of a transaction needs
to be modified (as per any of the previously discussed adjustment
strategies), all its functional dependencies must also be modified
accordingly.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
Our experiments aimed to evaluate the benefits brought by DYNA-
MO (e.g., its bug accuracy and time savings), as well as the costs of
its usage (e.g., its computational resources). All experiments were
carried out in an isolated test environment to prevent environmen-
tal noise (so the entire load was controlled). The environment was
composed of two virtual machines (VMs): One acted as application
node (running Apache Tomcat 6.0.35 [2], a widely used Java Ap-
plication Server); while the other VM acted as load tester (running
Apache JMeter 2.9 [1], a popular performance testing tool). Each
VM had 4GB of RAM, 2 CPUs at 2.20GHz, Linux Ubuntu 12.04L,
and OpenJDK JVM 7 with a 1.6GB heap. From a technical perspec-
tive, we built our prototype on top of the JMeter tool, developing it
in Java [21]. This was done in order to make our solution highly
portable, as there are Java Virtual Machines (JVM) available for
most contemporary operating systems.

As AUT, we used three different applications:
(1) PetStore, an e-commerce application commonly used in the

literature [19, 22]. It is composed of 11 different business
operations. They are described in Table 1.
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Table 1: PetStore Operations

Name Description
Index Welcome page.
Add user Page to register a new user.
Login Page to perform the login action.
Login but-
ton

Process to validate the user and password.

Search
product

Search page to find particular items.

Select prod-
uct

This actionwill display the details of the chosen
product.

Update cart Add the selected product to the shopping cart.
New order Page displayed after the first item is added to

provide general information about the order.
Add pay-
ment

Page where the payment information is cap-
tured.

Confirm or-
der

The final step in the purchase process, where
the order is confirmed.

Log out Link to perform the logout action.

(2) m-PetStore, a modified version of Petstore that mimics the
scenario of an evolving AUT inwhich ten performance issues
were injected (a blend of lock contention, I/O latency, and
deadlock bugs) following a strategy previously used in other
works [20].

(3) DaCapo, one of the Java benchmarks most widely-used in
the literature, offering a wide range of 14 real-life programs
from different business domains [3] (shown in Table 2). To
enable the execution of any DaCapo program from within a
test script, a wrapper JSP was also developed and deployed
on the application node. Finally, each program execution
was considered a transaction.

As evaluation criteria, we adopted the following metrics and
units: Throughput (tps), response time (ms), error rate (%), CPU
(%) and memory (MB) utilisations. Also, the analysed performance
issues were retrieved from the outputs of IBM WAIT (popular Java
diagnosis tool used due to its strong analytic capabilities to detect
performance bugs [8, 31]). In order to do this, WAIT was fed with
Javacores [5] (snapshots of the JVM state). They were generated
with the native Linux kill command (i.e., no instrumentation was
required to create them) and collected every 30 secs (following a
sampling interval commonly used in the industry [19]). Finally, a
2-hour test duration (per test run) was used to reflect realistic test
conditions. Besides, three types of test runs were performed:

(1) The first type used the traditional approach of static work-
loads (as per common industrial practices [7]). For this pur-
pose, all the AUTs started with a close-to-idle scenario an
ended with a saturated environment. However, since the
AUTs have diverse functional behaviours, their saturation
points were different. Consequently, the workload ranges
(as well as the workload increments) varied per AUT. For
PetStore, the workload range was [100..1800] in increments
of 100; for m-PetStore, it was [100..3500] in increments of 100
(up to 2300) and then 300; and for DaCapo, it was [200..4400]

Table 2: DaCapo Programs

Name Description
avrora It simulates a set of programs running on a grid

of microcontrollers.
batik It processes a set of vector-based images.
eclipse It executes a set of performance tests in an

eclipse development environment.
fop It generates PDF files based on a set of XSL-FO

files that are parsed and formatted.
h2 It executes a set of banking transactions against

a database-centric application.
jython It executes a set of python scripts in Java.
luindex It indexes a set of documents.
lusearch It performs a set of keyword searchs over a

corpus of data.
pmd It reviews a set of Java classes, looking for bugs

in their source code.
sunflow It renders a set of images.
tomcat It executes a set of queries against a Tomcat

server.
tradebeans It executes a set of stock transactions, via Java

Beans calls.
tradesoap It executes a set of stock transactions, via SOAP

calls.
xalan It transforms a set of XML files into HTML

files.

in increments of 200 (up to 3600) and then 400. These con-
figurations exemplify the challenges typically experienced
by users to select an appropriate test workload.

(2) The second type of run used the preliminary version of
DYNAMO based on heuristic policies derived from PetStore
(referred as h-DYNAMO [15]).

(3) The third type of run used the work proposed in this paper
which adopts our new adaptive logic (DYNAMO). It involved
a 5-minute assessment interval and a 20%-80% phase-ratio.
The initial workload for both PetStore versions was 100 (with
a ratio of 4), while for DaCapo was 800 (with a ratio of 2).
Additionally, the error rate threshold was set to 8%, using
the relative strategy for phase 1 (to homogenise DYNAMO’s
configuration, as the AUTs were composed of different num-
bers of functional transactions), and the minimum strategy
for phase 2 (to give all WkS transactions a fair possibility of
getting stressed).

4.2 Experimental Results
In this section, we present the results obtained, discussing them in
terms of the relevant perspectives: bug accuracy, time savings, and
computational costs. Due to space constraints, we only present the
most relevant results (as this experiment involved above 140 hours
of test run executions).

4.2.1 Performance Bugs Analysis. Our analysis first focused on
assessing the bug accuracy of all test runs. The obtained results
are presented in Figs. 7, 8 and 9, which compare the number of
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Figure 7: PetStore
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Figure 8: m-PetStore
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Figure 9: DaCapo

performance bugs found in each test run for the three AUTs. For the
static type test run, we report the best (best-static), worst (worst-
static), and average (avg-static) performing workload. It can be
observed how DYNAMO worked well, as it was able to identify
more bugs than all of the other test runs. The only exception was
the best-static test run of DaCapo, which found one more bug than
DYNAMO.

The improvements in bug identification accuracy achieved by
DYNAMO were the result of increasing the test workload for those
functional transactions which were the most workload-sensitive.
This is because such workload adjustments provoked that the
workload-sensitive transactions were considerably more frequently
executed (compared to the static test runs) during DYNAMO’s
test run executions. These behaviours, which were captured by
the sampled Javacores, allowed to better feed the diagnosis tool
(i.e., WAIT), which was pushed to do a more detailed analysis of
the AUTs (as those samples contained more information about the
most workload-sensitive transactions, which typically are the main
causes of the workload-dependent issues existing in an application).
For instance, in the case of PetStore (whose results as shown in
Fig. 7), DYNAMO’s phase 1 identified 6 highly workload-sensitive
operations (among the 11 which compose the application). This
information allowed that the additional test workload (introduced
during phase 2) could concentrate on those 6 operations. Thus,
the workloads of those transactions were gradually increased (dur-
ing the assessment intervals, based on their error rate deltas) until
reaching a peak of 1300 concurrent virtual customers for the 3 trans-
actions which were more frequently chosen for workload increase
(i.e., search, select product, and add item). On the contrary, other
transactions were only occasionally chosen (e.g., login), causing
that the workload used to test themwere relatively lower (e.g., login
only reached a maximum of 700 concurrent virtual customers).

Similar trends were observed for the other two AUTs (i.e., m-
PetStore and DaCapo), as comparable improvements in terms of bug
accuracy were obtained (as shown in Figs. 8 and 9). However, some
(expected) differences in terms of the results were obtained due
to their diverse application behaviours. For example, the highest
test workload reached by a transaction in m-PetStore was 1100
customers. Moreover, this test run was the only one (among those
that used DYNAMO)which triggered a rollback action (i.e., decrease
the test workload to the previously used amount) because the error
rate threshold was exceeded at some moment of the test run. This
exemplifies how even different versions of the same application can
require considerably different test workloads. Finally, 4 transactions
were themost workload-sensitive ones in DaCapo (i.e., avrora, batik,
sunflow, and xalan), whose highest transaction-level workloads
were 1400, 1400, 1700, and 1600 customers (respectively).

To offer a more comprehensive perspective of the results, we
also performed a breakdown of the bugs by classifying them based
on their frequency of occurrence. A bug was labelled as major if it
occurred above 5% of the test run duration (i.e., 2 hours). Otherwise,
it was considered as minor. This analysis confirmed the results
discussed previously, as DYNAMO always outperformed worst-
static, avg-static, and best-static (except in DaCapo). Regarding the
best-static of DaCapo, the results showed an interesting finding:
DYNAMO found more major bugs (typically the ones that matter
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the most from a performance perspective). Therefore, best-static of
DaCapo only surpassed DYNAMO in terms of minor bugs.

Moreover, it is worth noting that DYNAMO always outmatched
h-DYNAMO, even for PetStore (which is the AUT from which h-
DYNAMO was derived). This was the result of two main factors:
Firstly, h-DYNAMO used the same workload for all types of tested
transactions. However, this strategy was not optimal because not
all transactions suffered performance issues. Thus, stressing more
some types of transactions (i.e., those with suspected problems),
while leaving the others to use lower test workloads (like DYNA-
MO did) produced better results in terms of bug accuracy. Secondly,
h-DYNAMO did not adapt to the AUT’s behaviour (e.g., its satura-
tion point), but it only reused the test workload that was useful for
PetStore. Not surprisingly, it was not an optimal test workload for
the other AUTs. Finally, the differences between h-DYNAMO and
DYNAMO were relatively small because the same test environment
was used for all test runs. If an alternative (i.e., bigger) test environ-
ment were used, the differences would be far more notorious (as
h-DYNAMO would not be able to escalate to the characteristics of
the new test environment, while DYNAMO would do).

4.2.2 Testing Time. The second part of our analysis centred
on assessing the time savings achieved with our solution. Since
DYNAMO was able to adjust the workload during the test run
execution, it avoided the need for costly trial-and-error test runs.
More specifically, the user only required one test run (instead of
the 18, 27, and 20 runs required to cover the full range of static
workloads for PetStore, m-PetStore, and DaCapo, respectively). This
means that DYNAMO reduced the duration of the total performance
testing activities by an average of 95% across the three AUTs (as
DYNAMO was able to avoid the execution of 17, 26, and 19 test
runs, for PetStore, m-PetStore, and DaCapo, respectively). This is
depicted in Figs. 10, 11 and 12, which compare the testing time of
the static runs against DYNAMO for each AUT. h-DYNAMO is not
included in the figures as it behaves similarly to DYNAMO in terms
of execution time. Moreover, the differences in the total time of the
static test runs across AUTs is the result of using different ranges
of test workloads for each AUT (due to their diverse functional
behaviours, as explained in Section 4.1).

Finally, in order to provide a more conservative analysis of these
results, we have also included another series in the figures (i.e.,
bad static runs) in order to indicate the time invested in the static
test runs where DYNAMO was better (in terms of bug accuracy).
Even under this conservative analysis, significant time savings were
obtained. This is because only one static test run (out of 65) obtained
marginally better results than DYNAMO.

4.2.3 Cost Analysis. We also measured the computational re-
sources required by DYNAMO in order to understand the costs of
using our solution. We focused on the JMeter (load tester) node
because DYNAMO resides there. The obtained results are shown
in Figs. 13, 14, and 15, which depict the average CPU and memory
utilisations during the test runs’ executions. It can be noted how
the test runs were more memory-intensive than CPU-intensive.
The main factor behind the amount of consumed resources was
the test workload (e.g., dictating the number of threads that are
used to mimic the virtual customers’ behaviours). Consequently,
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Figure 14: m-PetStore
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Figure 15: DaCapo

the amount of resources varied among the three AUTs (as each
application reached a different optimal test workload).

In the case of both PetStore versions, since the average test
workload (across all tested transactions) was relatively lower than
DaCapo’s (ranged between 900 and 1200 customers for PetStore
and between 3000 and 3500 for DaCapo), the costs of DYNAMO
were closer to the best-static (in terms of CPU) and average-static
(in terms of memory). Meanwhile, for DaCapo, the costs were closer
to the worst-static. It is important to highlight that the best-static
was always the static test run with the lowest test workload (per
AUT), which not surprisingly, derived in a poor performance in
terms of bug accuracy. Finally, it can also be seen on the figures
how h-DYNAMO exhibited the same computational costs across
the three AUTs. This was the result of not adapting itself to the
specific behaviour of each AUT.

4.2.4 Final Discussion. In our evaluation, we utilised three appli-
cations to assess, to a certain degree, the generality of the benefits
and costs of DYNAMO. As the results have shown, DYNAMO of-
fered substantial time savings across all the AUTs. Based on our
in-depth analysis, it is expected that DYNAMO can yield similar
results with other applications. However, additional experiments
would provide more certainty about the broader applicability of our
approach (e.g., the usefulness of its default values). It is also possible
to conclude that similar bug accuracy results can be obtained when
using other diagnosis tools, as long as they are capable of detecting
the same types of performance bugs tested.

Additionally, the proposed approach assumes that the user can
provide an educated estimation of a known lowworkload (e.g., 50 cus-
tomers) and a relative ratio where the workload sensitivity might
be noticeable (e.g., 10 times). We consider this is reasonable because
the aim is only to identify which transactions are, relatively, more
workload-sensitive than the others. Similarly, it is also assumed that
the user knows the AUT well-enough to indicate the functional de-
pendencies. For instance, that a user needs to log in before making
a purchase, or that a logout cannot be done without first logging
in. This is a fair input at enterprise level because that information
is usually documented during the analysis phase of the software
development cycle (e.g., in the requirements traceability matrix).

Regarding the strategy followed to conduct the static test runs,
we explored the full spectrum of test workloads in our planned
range (by gradually increasing the test workload linearly) because
this is a practice commonly used in the industry [7]. Moreover,
this strategy allowed us to have certainty of when the saturation
point was reached (as it was application-specific). However, we
understand that other test strategies might be used. For instance,
instead of linearly increasing the static test workloads in a range, a
user might prefer to start his/her performance test work by choos-
ing two very different static workloads (within the planned range)
and then, based on the results of those test runs, select only other
workloads in the range that look most promising to reveal per-
formance issues. Thereby, it might not be required to execute the
same number of static test runs than those conducted in this paper.
Hence, the results for the total testing time of the static approach (as
well as the time savings achieved by DYNAMO) might be different
from those obtained in our experiments. Despite those differences,
from the outcome of our investigation, it is expected that the time
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savings gained by using DYNAMO would be still significative. This
is because, even in the extreme case of only requiring 2 static test
runs (which would be very unlikely to achieve, as even an experi-
enced user might struggle to easily identify the exact test workload
needed for different AUTs), DYNAMO would still be able to save
50% of the testing time (by only requiring 1 test run, instead of the 2
used by the static approach).

Finally, we understand that, even though there is a rationale
behind our chosen default values in our experimental evaluation,
and they have proven useful for the AUTs used, they might not be
applicable to all scenarios. Thus, we plan to explore the range of
possible values for each of our configuration parameters (e.g., the
ratio between phases 1 and 2) in order to develop guidelines that
can help practitioners in the usage of DYNAMO.

5 CONCLUSIONS AND FUTUREWORK
This paper presented an automated approach (DYNAMO) which
can adapt, in real-time, the workload used by a performance testing
tool during the test run execution. Thus, it eliminates the need for
manually identifying a suitable test workload, as well as costly trial-
and-error test runs. A prototype was built on top of the JMeter tool
and a series of experiments were conducted in order to assess DYNA-
MO’s benefits and costs. Our experimental results have proved the
usefulness of the approach by significantly reducing the testing
time (by an average of 95%, compared to a range of static standard
workloads), without compromising the accuracy of the test results.
This is demonstrated by the fact that DYNAMO achieved a high bug
accuracy (as it always identified more relevant performance bugs
than the best test run counterparts, among the ones using static
workloads). Moreover, only a moderate overhead was introduced
by DYNAMO (i.e., the average CPU utilisation, in the node where
DYNAMO resides, never exceeded 40%).

In terms of future work, our research will centre on investigating
how best to extend the capabilities of the approach. For instance, by
assessing which other types of metrics (other than the performance
ones) can be leveraged to enhance the accuracy of the approach
(e.g., the outputs of a diagnosis tool), or by reducing the number
of required input parameters (e.g., the need of manually providing
the functional dependencies existing among the tested operations).
Additionally, we plan to keep assessing the benefits and costs of
DYNAMO through broader experiments with the aim of strength-
ening its validation. For instance, by diversifying the composition
and size of the test environments, the tested applications, and the
duration of the test runs. The aim is to develop guidelines to help
practitioners to configure/use DYNAMO more easily. Finally, we
also plan to make the tool freely available (e.g., as a web service).
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