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ABSTRACT
Data heterogeneity and irregularity are key characteristics of big

data applications that often overwhelm the existing software and

hardware infrastructures. In such context, the flexibility and elas-

ticity provided by the cloud computing paradigm offer a natural

approach to cost-effectively adapting the allocated resources to

the application’s current needs. Yet, the same characteristics im-

pose extra challenges to predicting the performance of cloud-based

big data applications, a central step in proper management and

planning. This paper explores two modeling approaches for perfor-

mance prediction of cloud-based big data applications. We evaluate

a queuing-based analytical model and a novel fast ad-hoc simulator

in various scenarios based on different applications and infras-

tructure setups. Our results show that our approaches can predict

average application execution times with 26% relative error in the

very worst case and about 12% on average. Moreover, our simulator

provides performance estimates 70 times faster than state of the art

simulation tools.
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1 INTRODUCTION
Nowadays, the big data adoption has moved from experimental

projects to mission-critical, enterprise-wide deployments providing
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new insights, competitive advantage, and business innovation [13].

IDC estimates that the big datamarket grew from $3.2 billion in 2010

to $16.9 billion in 2015 with a compound annual growth rate of

39.4%, about seven times the one of the overall ICT market [2].

Key properties characterizing big data applications are high vol-

umes of data and increasing heterogeneity and irregularity in data

access patterns. Such properties impose challenges to the hardware

and software infrastructure. On the other hand, the elastic nature

of cloud computing systems provide a natural hosting platform

to cost-effectively provision the dynamic resource requirements

of big data applications. Indeed, 61% of Spark adopters ran their

applications on the cloud in 2016 [1].

Yet, though flexible, the shared infrastructure that powers the

cloud together with the natural irregularity of big data applications

may impact the predictability of cloud-based big data jobs. Accurate

performance prediction of an application is a key step to both plan-

ning and managing: it is a key component to drive the automatic

system (re-)configuration so as to meet the applications’ dynamic

needs, avoiding Service Level Agreement (SLA) violations.

A plethora of different modeling techniques, varying from analyt-

ical approaches to simulation tools, have been proposed and applied

in the past to study system performance [5, 7, 16, 19, 23, 24, 26].

Nevertheless, their efficiency to model massively parallel applica-

tions introducing thousands of parallel tasks has been shown to

be an issue [3]. Thus, we here take the challenge of predicting the

performance of big data applications by exploring two very differ-

ent techniques, an analytical model and a simulation tool, which,

as will be discussed, have complementary pros and cons in terms

of prediction accuracy and efficiency. Our goal is to efficiently es-

timate (in a few seconds), the average execution time of a target

application, given the available resources, in a way we can support

run-time reconfiguration decisions. That is, given a target appli-

cation, specified by a directed acyclic graph (DAG) representing

the individual tasks and their parallelism and dependencies, the

purpose is to predict how long it will take for the application to run

(on average) on a given resource deployment (described in terms,

e.g., of numbers of cores or nodes). We focus on applications run-

ning on Spark
1
, which is a fast and general engine for large-scale

data processing whose adoption has steadily increased and which

probably will be the reference big data engine for the next 5–10

years [9].

Firstly, we investigate the use of an analytical queuing network

(QN) model for predicting the performance of Spark applications.

1
http://spark.apache.org/
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The model, originally proposed in [16] for performance predic-

tion of parallel application, extends an Approximated Mean Value

Analysis (AMVA) technique by modeling the precedence relation-

ships and parallelism between individual tasks of the same job. This

model, here referred to as Task Precedence model, explicitly captures
the overlap in execution times of different tasks of the same job to

estimate the average application execution time.

We also propose and evaluate dagSim, a novel ad-hoc and fast

discrete event simulator to model the execution of complex DAGs.

The advantages of dagSim with respect to state of the art simulators

and AMVA techniques are twofold. On one side, the simulation

process achieved great accuracy within a shorter timescale with

respect to other formalisms (e.g., Stochastic Petri Nets) or specific

tools (e.g., JMT [5] or GreatSPN [7]). Furthermore, the tool provides

percentile estimate, which cannot be obtained via the analytical

Task Precedence model.
We evaluate the modeling approaches in four scenarios consist-

ing of different virtual machine environments and applications,

as well as different resource configurations. Our results indicate

a good overall accuracy for both Task Precedence model and the

dagSim simulator (with 26% relative error in the very worst case and

about 12% on average). Both models presented similar performance,

specifically dagSim performed better for interactive queries while

the Task Precedence model performed better for iterative machine

learning (ML) algorithms. dagSim demonstrated to be on average 70

times faster than JMT while providing the same accuracy.

The rest of this paper is organized as follows. Section 2 presents

related work, while Section 3 introduces our two prediction models.

Section 4 describes the experimental scenarios we explored and

discusses our main results. Conclusions are offered in Section 5.

2 RELATEDWORK
This paper focuses on the use of modeling techniques to enable

the analysis of the viability of big data jobs. Recently, sophisticated

projects have emerged in the study of Spark applications perfor-

mance, such as PREDIcT [20] and RISE2016 [12]. PREDIcT is a tool

including a set of prediction techniques for different areas of data

analytics, while RISE2016 is a collection of scalable performance

prediction techniques for big data processing in distributed multi-

core systems. From a more general perspective, the most relevant

related work has been subdivided into two parts, specifically i)

analytical queuing network methods and ii) simulation approaches.

Analytical Queuing Network Methods: Applications running in
parallel systems have to share physical resources (processors, mem-

ory, bus, etc.). Competition for computational resources can occur

among different applications (inter-application concurrency) or

among tasks of the same application (intra-application concur-

rency). Given system resource limitations, performance analysis

techniques are important for studying fundamental performance

measures, such as mean response time, system throughput, and

resource utilization. In this context, queuing networks have been

successfully used for studying the impacts of the resource con-

tention and the queuing for service in applications running on top

of parallel systems [16, 19, 23, 24, 26].

The parallel execution of multiple tasks within higher level jobs

is usually modeled in the QN literature with the concept of fork/join:

jobs are spawned at a fork node in multiple tasks, which are then

submitted to queuing stations modeling the available servers. After

all the tasks have been served, they synchronize at a join node.

The authors in [19] present a model for predicting the response

time of homogeneous fork/join queuing systems. The observed

system is made up of a cluster of homogeneous index servers, each
holding portions of queriable data. The index server subsystem is

modeled as a fork-join network. In this model, an incoming task is

split into identical subtasks, which are sent to individual servers

and executed in parallel, independently from one another. Once

all subtasks have finished executing, they are joined and the task

execution is completed. The average response time is determined

by the slowest server.

Following the fork-join model paradigm, the authors in [26]

present an analysis of closed, balanced fork-join queuing networks,

in which a fixed number of identical jobs circulate. They introduce

an inexpensive bounding technique, which is analogous to balanced

job bounds developed for product form networks. In the same

direction, [23] models a multiprocessing computer system as K
homogeneous servers, each with an infinite capacity queue. The

authors provide a computationally efficient algorithm for obtaining

upper and lower bounds on the system expected response time.

The work in [16] also considers the issue of estimating perfor-

mance metrics in parallel applications. The proposed method is

computationally efficient and accurate for predicting performance

of a class of parallel computations, which can be modeled as task

systems with deterministic precedence relationships represented

as series-parallel DAGs. Tasks are represented as nodes and edges

mark precedence relationships between pairs of nodes. While the

models proposed in [19, 23, 26] assume a fork-join abstraction to

represent parallel behavior, here the authors focus on the prece-

dence relationships resulting from tasks that must run sequentially,

combined with those that may run in parallel. An extension of this

model, capturing not only intra-job but also inter-job overlap to

evaluate application response times, is presented in [24].

In our work, we apply the model proposed by the authors in [16],

given that the model parameters are easily obtained (for instance,

service demands and task structure) and results are obtained with

low complexity cost. More model details are presented in Sec-

tion 3.2.

Simulation Approaches: Several simulation tools, which are tai-

lored to study the behavior of parallel applications through stochas-

tic formalisms such as SPNs (Stochastic Petri Nets see [21]) have

been implemented. GreatSPN supports the analysis of Generalized

Stochastic Petri Nets (GSPNs) including both immediate and timed

(the fire event occurs either immediately or within a stochastic time)

transitions and of Stochastic Well-Formed Nets (SWNs, i.e., Petri

nets where the tokens can be distinguished) [7]. SMART (Symbolic

Model checking Analyzer for Reliability and Timing, [8]) includes

both stochastic models and logical analysis. SHARPE (Symbolic

Hierarchical Automated Reliability and Performance Evaluator) is a

tool to analyze stochastic models [25], the most notable being fault

trees, product form queuing networks, Markov chains, and GSPNs.

It is also able to mix submodels of fork-joins and queues. JMT [5]

is a suite of applications offering a framework for performance

evaluation, system modeling, and capacity planning.
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The problem of studying the performance prediction of individ-

ual jobs is explored in [22] through a framework consisting of a

Hadoop job analyzer, while the prediction component exploits lo-

cally weighted regression methods. A similar issue is studied in [27]

by using instead a hierarchical model including a precedence graph

model and a queuing network model to simulate the intra-job syn-

chronization constraints. In [6], the authors consider the problem of

minimizing the cost involved in the search of the optimal resource

provisioning, proposing a cost function that takes into account: i)

the time cost, ii) the amount of input data, iii) the available sys-

tem resources (Map and Reduce slots), and iv) the complexity of

the Reduce function for the target MapReduce job. The usage of

a simulator to better understand the performance of MapReduce

setups is described in [28] with particular attention to i) the effect

of several component inter-connect topologies, ii) data locality, and

iii) software and hardware failures.

Our previous work [3] describes multiple queuing network mod-

els (simulated with JMT) and stochastic well formed nets (simulated

with GreatSPN) to model MapReduce applications, highlighting the

trade-offs and additional complexity required to capture system

behavior to improve prediction accuracy. As a result, general pur-

pose simulators such as GreatSPN and JMT are not suitable to study

efficiently massively parallel applications introducing tens (or even

hundreds) of stages and thousands of parallel tasks for each stage.

A comparison between dagSim and JMT is reported in Section 4.2.

Finally, parallel and distributed processing have been investi-

gated also by means of Process Algebra (PA, [10]). A PA is a math-

ematical framework describing how a system evolves by using

algebraic components and providing a set of methods for their

manipulation. Among the different implementations, Performance

Evaluation Process Algebra (PEPA, [11] is a formal language for

distributed systems, whose models correspond to continuous time

Markov chains (CTMC).

3 PERFORMANCE PREDICTION MODELS
This section presents the two modeling approaches analyzed in this

paper to predict the performance of cloud-based big data applica-

tions. Since our main focus is on applications running on Spark, we

start by first presenting some key components of this framework,

highlighting some assumptions behind its parallel execution model

that may affect the performance models (Section 3.1). We then dis-

cuss the Task Precedence queuing network model (Section 3.2), and

introduce the dagSim discrete event simulator (Section 3.3).

3.1 Spark Overview and Model Assumptions
Spark is a fault-tolerant cluster computing framework that provides

abstractions for parallel computation across distributed nodes with

multiple cores. It is a fast and general purpose engine for large-

scale data processing, which was first proposed as an alternative

to Hadoop MapReduce [29]. Spark is the state of the art for fault-

tolerant parallel processing and it recently became popular for big

data processing on the cloud [1].

The general unit of computation in Spark is an application. It

can be composed of a single job, multiple jobs, or a continuous

processing. A job is composed of a set of data transformations and

terminates with an action requesting a value from the transformed

data. Each transformation represents a specific piece of code that

launches data-parallel tasks on read-only data divided into blocks

of almost equal size, called partitions. This set of same class tasks

is called a stage. Within a stage, a single task is launched for each

data partition, thus the number of tasks inside the stage is equal to

the number of partitions. During the stage run time, each core (also

called CPU slot) can run only a single task at a time. Since cores

are a limited resource, the tasks are assigned to CPU slots until all

resources become busy. Thus, the remaining tasks are enqueued

and scheduled to be executed as soon as the cores become available.

The Spark execution model is represented by a Directed Acyclic

Graph (DAG). Considering a logical plan of transformations that

is fired by an action, the Spark DAGScheduler constructs a DAG of

stages and their precedence relations. The stages are submitted for

execution as a set of tasks that follows FCFS policy. The TaskSched-
uler does not know the dependencies between stages. Each stage

is a sequence of fully-independent tasks that can run right away

based on the data that is already on the cluster [14]. Only stages

have precedence relationships, which are represented by the DAG.

Our present goal is to evaluate the effectiveness of two perfor-

mance prediction techniques to estimate the execution time of Spark

applications. The performance prediction in parallel systems has

been approached in several ways, with varying degrees of detail,

cost, and accuracy. Focusing on a data-parallel framework based on

a DAG execution model, one of the main concerns is to model the

synchronization step that happens when a stage terminates. That is,

the models for calculating performance measures have to take into

account how the executions of stages overlap among themselves.

To that end, we made the following assumptions for both (ana-

lytical and simulation) models: i) the concurrent system is modeled

as a closed queuing model, with a single application that splits

into one or more Spark jobs, ii) jobs are sequentially scheduled

and comprehend one or more stages, iii) multiple stages may run

in parallel or may have some precedence relationships, iv) a stage

is composed of tasks of the same class with no precedence rela-

tionship among themselves (i.e., they may run in parallel), v) the

number of tasks within a stage is constant and known a priori, vi)

an individual application obtains dedicated resources for its execu-

tion (i.e., VMs that are executed on a cloud cluster), vii) resources

(such as memory, CPU, disk) are homogeneous (as often happens

in cloud deployments, see, e.g., [18]).

3.2 Task Precedence Model
In this prediction method, the performance of a parallel application

is modeled by explicitly capturing the precedence relationships

between different blocks of computation. We start by presenting

the main ideas behind the model, as proposed in [16], and then

discuss how it was applied to Spark applications. The reader is

referred to the original paper for a detailed derivation of the model.

In the original paper [16], each block of computation was called

a task, and the goal was to estimate the average execution time of

an application composed of multiple parallel/sequential tasks. The

precedence relationships between different tasks are expressed as a

series-parallel DAG, where each node is a task. Available resources

(e.g., cores) are modeled as service centers in a queuing network

model. By exploiting both the queuing network and the DAG, the
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authors modified a traditional iterative Mean Value Analysis (MVA)

approach to account for delays caused by synchronization and re-

source constraints originated from task precedence and parallelism.

The solution uses a traditional MVA model to estimate the aver-

age execution time of each task. In order to explicitly capture the

synchronization delays between parallel tasks, the model estimates

an overlap probability between each pair of tasks based on the input

task precedence DAG. This probability captures the chance that the

executions of the two tasks overlap in time, and is used as an infla-

tion factor to estimate a new set of task average execution times,

according to the MVA equations. The model iterates over these

computations until they converge below a given error threshold.

At each iteration, the precedence graph is reduced by aggregating

multiple tasks and estimating the average execution time of ag-

gregated node. In particular, execution times of sequential tasks

are added, and execution times of parallel tasks are aggregated

according to a probabilistic approach that takes into account the

overlap probabilities between them.

Since jobs in Spark are sequentially executed by default, we ap-

ply the model by considering each node in the input DAG as a stage

of the Spark application, thus explicitly capturing the dependencies

among stages. Each stage is fully described by its average execution

time, which is estimated based on historic data (Spark logs of pre-

vious executions of the same application). Thus, the model takes as

input the application DAG and the average execution time of each

individual stage, and produces as output the average execution

time of each job. To estimate the average execution time of the

application, the execution times of all jobs are summed up.

As a final note, the original model assumes that the times re-

quired to process the execution times of each block of computation

represented by a node in the input DAG are exponentially dis-

tributed [16]. Since we here consider each node in the DAG as a

stage, the assumption is that the execution times of Spark stages are

exponentially distributed. Having said that, we emphasize that this

assumption may not hold in practice, possibly depending on char-

acteristics of the application. In other words, it is a potential source

of approximation error of the model. Yet, the low prediction errors

we obtain in all considered scenarios, as will be shown in Section 4,

indicate that the model is quite robust to such assumption.

3.3 dagSim Simulator
dagSim is a high speed discrete event simulator built to analyze

DAGs corresponding to MapReduce and Spark jobs
2
.

Models are described with a data driven approach defining the

DAG stages and the workload they have to handle. Specifically, a

DAG model is defined as a tuple:

DAG = (S,N
Nodes

,NUsers,Z) , (1)

where N
Nodes

∈ N,N
Nodes

≥ 1 represents the number of compu-

tational nodes NUsers ∈ N,NUsers ≥ 1 the number of users con-

currently submitting jobs to the system, andZ is the “think time

distribution”, i.e., the time a user will wait before submitting a new

job. Set S =
{
s1, . . . , sNStages

}
is the set of stages that define the DAG.

2
The tool is available at https://github.com/eubr-bigsea/dagSim

Furthermore, each stage si ∈ S is a tuple:

si = (id,N
Tasks
, Pre, Post ,T) , (2)

where id is a symbolic constant assigning a name to the stage,

N
Tasks

∈ N,N
Tasks

≥ 1 accounts for the tasks composing the stage,

Pre ∈ S and Post ∈ S define respectively the stages that must

have been completed for si to be executable, and the set of stages

that will be able to run after the completion of si . The probability
distribution T defines the duration of each task of the stage and is

obtained from Spark logs.

The simulation engine has been written in the C language. It is

based on a classic discrete event simulation algorithm and has been

designed for high performance. Though dagSim is a lightweight

tool compared to other commercial programs, it targets specifically

DAG models. Simulation can run efficiently thanks to a proprietary

scheduler library ([4]) offering data structures that perform well

when a high volume of events is generated. The tool is highly

portable, since it can be easily recompiled without the requirement

of external tools or libraries not supplied with the source code.

In order to perform an efficient simulation of jobs, stages are

characterized by a set of possible states:

• CAN_START : represents stages that can be executed, since

all the previous stages have completed, but that have not

started yet because the scheduler is still waiting for resources

to be available.

• WAIT ING: identifies stages that cannot be executed since

some of the previous stages have not been completed.

• RUNNING: Tasks belonging to the stage in this state are

being executed (i.e., a stage that was in the CAN_START
state has found the necessary resources).

• ENDED: all the tasks of the considered stage have been

completed.

Initially, only the stages si that have no dependencies (i.e., such

that Pre(si ) = ∅) are in theCAN_START state, and all the other are

in theWAIT ING state. Each stage in theRUNNING state exploits a

variable to count the number of tasks that still need to be completed.

The core idea of the simulation engine is that each time a task of

stage sk has been executed, this counter is decremented of one unit.

When the counter reaches zero, the engine can determine i) that a

stage has been completed and ii) which stages are now eligible to

start, changing their state fromWAIT ING to CAN_START .
By using a doubly-linked list storing the relevant information

about the tasks belonging to stages in the CAN_START state, it is

possible to determine which one can be executed without perform-

ing a full search on the complete set of tasks in the DAG. In this

sense, the approach provided by dagSim’s engine is original and

more efficient with respect to other scheduling mechanisms imple-

mented in general purpose tools such as JMT [5] or GreatSPN [7].

Algorithm 3.1 summarizes the procedure to simulate the execu-

tion of one job according to the given DAG. Initially (lines 2–5), for

each of the NUsers users accessing the system, a doubly-linked list

called UJD is populated with a set of information, notably i) the

number of stages ready to be started, ii) the remaining tasks that

need to be completed for each stage, iii) the state of each stage, iv)

the start and end time of each stage, and v) a pointer to a list of jobs

ready to start. The data structure modeling the execution nodes is
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initialized at line 6: it is mainly used to determine whether a node

is free or working on a task.

The algorithm continues by scheduling the time at which each

user submits her first job (lines 7–9) by adding a new event whose

timestamp corresponds to the think time. Events are collected in a

CalendarEvent data structure. Each job is characterized by a doubly-

linked list JobData, populated by i) a user identifier, ii) a job and a

stage status, and a iii) task identifier.

The most important part of the algorithm consists of the cycle

repeating the simulation for all the considered jobs (lines 11–37).

At line 12, the next simulation event is extracted (pop operation)

from the CalendarEvent structure.
If the event represents a user requesting the launch of a new

job (line 14), the function initUserJobData is invoked (line 15) to

initialize all the job’s stages to CAN_START orWAIT ING state

depending on whether the stage has dependencies or not.

The simulator assumes that nodes are locked for a job and that

they can be used by the next one only when they are no longer

needed by a user. This is implemented by exploiting a lock that is

set when a new job starts and reset when all its stages have been

started. If there are available computational nodes and no lock has

been set (line 16), the scheduleReadyTasksOnAvailNodes function
is invoked (line 17) to i) set a lock if a new job is started and ii)

schedule the waiting jobs on available nodes. If instead the job

cannot be started, it is inserted into an auxiliary list (line 19).

If the event identifies the end of a task (line 21), the corresponding

counter of the remaining tasks in the stage is decremented by one

unit (line 22). Function releaseNode is invoked (line 23) in order to

free the computational resources; this also removes the lock on the

nodes if the following conditions are met: i) no more tasks need to

be executed, ii) no other user has locked the node, and iii) there are

no other stages to start.

The stage is considered to be over if there are no tasks left

(line 24): in this case the stage state is updated to ENDED (line 25)

and the UpdateStageStatus function is invoked to see if the comple-

tion of this stage allows other stages to change their status from

WAIT ING toCAN_START . If another stage can start (line 27), the

new tasks are scheduled (line 28); otherwise the job is considered

to be completed. The job ending time (line 30) is set at the current

time and the next job from the same user is submitted after another

think time (lines 31-32). To allow the simulation to stop when the

total number of considered jobs has been executed, the number of

completed jobs is increased (line 33).

4 EXPERIMENTAL RESULTS
In this section, we present the results of a set of experiments we

performed to explore and validate the Task Precedence analytical

model as well as the dagSim simulator. Our evaluation considers

scenarios with different types of applications: the TPC-DS industry

benchmark and some reference machine learning (ML) benchmarks,

namely K-Means and Logistic Regression. In other words, our tests

include SQL workloads (obtained from the TPC-DS SQL queries

execution plan) and iterative workloads, which characterize ML

algorithms and are becoming more and more popular in the Spark

community [1]. All experiments were performed on the Microsoft

Azure cloud platform.

Algorithm 3.1 Simulation engine algorithm

1: function solve(Model M, Users U, CalendarEvent ce)

2: UserJobData **UJD;

3: for useri ∈ Users do
4: UJD[i] = createUserJobData(M);

5: end for
6: NodeData *ND = initNodeData(M);

7: for useri ∈ Users do
8: nEv = AddEvent( ce, ThinkTime);

9: end for
10: int TotalJobEnded = 0;

11: while TotalJobEnded < maxJobs(M) do
12: event = pop(CE);

13: Job *jd = event->data;

14: if isNewJobStarting(event) then
15: initUserJobData(jd->userId, M);

16: if (ND->freeNodes > 0) AND (!lock(ND)) then
17: scheduleReadyTasksOnAvailNodes(ce, ND);

18: else
19: addToAux(event, WAITLIST);

20: end if
21: else
22: remainingTasksXStage[jd->stageId]–;

23: releaseNode(currTime, ce, ND, UJD);

24: if remainingTasksXStage[jd->stageId] ≤ 0 then
25: setstatus(sk , ENDED);
26: UpdateStageStatus(UJD, M)

27: if NewStageCanStart(Ji , M) then;
28: scheduleReadyTasksOnAvailNodes(ce, ND);

29: else
30: SetJobEndTime(currTime);

31: nEv = addEvent(ce, T);

32: nEv->data = populateJobData();

33: TotalJobEnded++;

34: end if
35: end if
36: end if
37: end while
38: end function

4.1 Scenarios
Our experimental scenarios cover themost widely used applications

on Spark [1]. The ML benchmarks, namely K-means and Logistic

Regression, are core activities in machine learning applications

and represent important steps on such data processing pipelines.

They are iterative algorithms. We also selected the TPC-DS Q26

and Q52 queries as examples of interactive SQL queries that are

currently popular on Spark. Indeed nowadays big data applications

are moving from the early days’ batch processing to more interac-

tive workloads. Note that while TPC-DS DAGs are rather simple,

including up to 7 stages, ML DAGs are very complex and introduce

a high level of parallelism, up to 114 stages for Logistic Regression.

We conduct our experiments on two types of virtual machine

environments on the Microsoft Azure HDInsight PaaS [17], namely

D12v2 and D4v2. The goal is to explore different deployments of

what the provider has to offer, including general purpose, CPU,

and memory optimized instances. Considering that fault-tolerant

parallel systems such as Spark are built to run on commodity clus-

ters, it is important to guarantee the stability of the methods across

different resource configurations.

Two different Spark versions have also been taken in account.

For what concerns the D12v2 VMs, the Spark 1.6.2 release and

Ubuntu 14.04 were considered. The D4v2 VM featured Ubuntu 16.04

and Spark 2.1.0. All the scenarios had two dedicated master nodes

over D12v2 VMs. In the D12v2 case, the workers’ configuration
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Table 1: Scenarios Description

# Application VM Configuration (nodes; cores; data)

1 TPCDS Q26 D12v2 3-13; 4 cores per node; 500GB

2 TPCDS Q52 D12v2 3-13; 4 cores per node; 500GB

3 K-Means D4v2 3 and 6; 8 per node; 8GB,48GB,96GB

4 Log. Regression D4v2 3 and 6; 8 per node; 8GB,48GB,96GB

consisted of 12 up to 52 cores. The D4v2 deployments consisted of

24 cores and 48 cores, on three and six nodes respectively.

Table 1 describes the set of scenarios we analyze. Each TPC-DS

query and ML benchmark was run 10 times for each considered

configuration.

We evaluate the Task Precedence analytical model and the dagSim

simulation with respect to prediction accuracy and average execu-

tion time. Prediction accuracy is estimated by the relative error εr,
computed using the average real execution time (T

real
), measured

on the real system, and the execution time predicted by the model

(T
predict

), for each application:

εr =
T
real

−T
predict

T
real

. (3)

Note that negative values of εr imply overestimates, while posi-

tive values correspond to underestimates.

Execution times of the analytical model and simulator have been

gathered on a Ubuntu 16.04 Virtualbox VMwith eight cores running

on an Intel Nehalem dual socket quad-core system with 32 GB of

RAM. The virtual machine has eight physical cores dedicated with

guaranteed performance and 4 GB of memory reserved. Unless

otherwise stated, we report the average of 10 runs.

Before presenting our results, we first compare the execution

time of dagSim against the one of the JMT tool.

4.2 Comparison with JMT
In this section, we compare the average execution time of dagSim

with that of the event based QN simulator available within the

JMT 1.0.2 tool suite. JMT is very popular among researchers and

practitioners and since 2006 has been downloaded more than 58,000

times. The comparison focuses on the average execution time at

95% confidence level. JMT accuracy analyses are reported in our

previous work [3], where we obtained an average percentage error

up to 33% while the mean of its absolute value was around 14.13%.

The ratio between the average simulation times of JMT and dagSim

for two considered scenarios are reported in Figure 1. dagSim is

clearly much faster than JMT (about 70 times on average and up to

115 times in the very worst case for the Q26 DAG, which includes

a larger number of stages), also with slightly better accuracy than

JMT (as will be discussed extensively in the following sections).

4.3 Results on the D12v2 VMs (Scenarios 1 & 2)
This section presents the results obtained by the Task Precedence

model and the dagSim simulator in scenarios 1 and 2, over Spark 1.6.2

executed on Azure HDInsight D12v12 VMs. Real and predicted ap-

plication execution times for each scenario and various configura-

tions (i.e., numbers of nodes and cores) are shown in Table 2. In this
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Figure 1: JMT and dagSim execution time ratio

table (as in the following ones), relative errors of each tool in each

scenario/configuration are presented in parentheses, and maximum

and minimum errors are shown in bold and shaded, respectively.

For scenario 1, both the Task Precedence model and the dagSim

simulator showed very good estimates, with errors ranging from

4.4% to 20.7% and −0.1% to 16.2%, respectively. Similar results were

also obtained in scenario 2: the errors of the Task Precedence model

varied between 8.1% and 23.7%, whereas dagSim showed excellent

accuracy, with errors below 1%.

Table 2: Scenarios 1 & 2: Real and predicted execution times
(seconds).

Nodes Scenario 1 (error %) Scenario 2 (error %)

(cores) Real Task Prec. DagSim Real Task Prec. DagSim

3(12) 722.2 690.2 (4.4) 682.3 (5.5)719.9 660.8 (8.2) 716.0 (0.6)

4(16) 582.9 543.9 (6.7) 526.5 (9.7)562.7 517.3 (8.1) 559.6 (0.6)

5(20) 515.9 469.0 (9.1) 455.3 (11.8)471.8 412.7 (12.5) 468.3 (0.8)

6(24) 447.6 398.3 (11.0) 394.3 (11.9)417.7 358.3 (14.2) 415.3 (0.6)

7(28) 415.7 367.2 (11.7)348.4 (16.2)364.1 304.7 (16.3)360.7 (0.9)
8(32) 366.1 316.5 (13.5) 312.4 (14.7)324.7 265.0 (18.4) 322.3 (0.7)

9(36) 306.1 256.1 (16.3) 290.3 (5.2)306.8 247.0 (19.5)304.2 (0.9)
10(40) 287.5 236.8 (17.6) 270.3 (6.0)275.2 215.2 (21.8) 273.1 (0.8)

11(44) 259.7 209.6 (19.3) 250.6 (3.5)258.8 200.2 (22.7) 257.0 (0.7)

12(48) 248.6197.2 (20.7) 249.0 (-0.1)250.0190.7 (23.7) 248.3 (0.7)

13(52) 220.2 181.4 (17.6) 221.0 (-0.4)226.1 179.3 (20.7) 224.2 (0.8)

Overall, taking absolute values, average errors were 13.45% and

16.92% for the Task Precedence model, and 7.73% and 0.74% for

dagSim, in scenarios 1 and 2, respectively. These are very good

estimates, given the complexity of the environment and workloads,

especially for practical purposes of planning and managing the

resource requirements. The greater errors of the analytical model

are probably due to the several sources of approximations embedded

in this solution (see Section 3.2 and [16]).

Table 3 reports, as an example, the quartiles of Q26 and Q52 at 16

cores. The table displays both the simulated quartiles and the ones
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Table 3: Real and predicted execution time quartiles

Query Quartile dagSim [s] Real [s] εr [%]

Q26 Q1 492.496 515.449 4.66

Q26 Q2 495.077 537.436 8.56

Q26 Q3 497.800 597.302 19.99

Q52 Q1 509.974 509.810 0.03

Q52 Q2 511.676 515.547 0.76

Q52 Q3 513.454 520.582 1.39

derived from 20 sample runs on the real system. The estimated quar-

tiles are quite accurate, with a worst case relative error of 19.99%,

but at an average as low as 5.90%. Note that percentile distributions

can be obtained only through simulation based approaches and

cannot be provided by the Task Precedence method.

4.4 Results on the D4v2 VMs (Scenarios 3 & 4)
In scenarios 3 and 4 we executed the Task Precedence model and

dagSim simulator considering Spark 2.1.0 logs for two machine

learning algorithms, namely Logistic Regression and K-Means. The

ML workloads are iterative algorithms and characterized by a larger

number of stages than the scenarios 1 and 2. For these applications,

data partitions are cached and accessed multiple times during the

iterations. As noticed, these workloads present a higher variability

since each iteration consists of data processing and RDD partitions

re-computation in case of RDD cache eviction.

As detailed by Table 4, for both algorithms, the Task Precedence

model prediction error is inversely correlated to the size of data

sets, i.e., the larger the data sets, the lower the prediction error.

Since processing larger data sets requires more tasks to be exe-

cuted, the experiments yield a lower variance on the application

response times. Analogously, a smaller number of tasks would re-

sult in higher variance across multiple runs. We also found that

the model produces somewhat higher errors for larger cluster sizes.

This is attributed to the accumulation of synchronization delays

over a larger number of distributed tasks running in multiple cores.

We further looked into the response times measured for indi-

vidual runs of each algorithm on each configuration and observed

that the setup with the largest errors for the two benchmarks for

Task Precedence (8 GB on 48 cores) coincides with the scenario

with the highest variance across multiple runs. The large number of

cores used on a relatively small dataset, which might occasionally

cause resource underutilization, may explain the slightly worse

performance of the model in this setup.

In contrast, dagSim did not show any error pattern and its worst-

case error (−25.6%) is achieved for K-Means.

With regards to errors taken in absolute value, once again we

find that both Task Precedence and dagSim provide very good pre-

diction accuracy across the considered set of experiments, covering

different platforms and configurations. Average errors for the ana-

lytical model are 9.03% and 1.62% for scenarios 3 and 4, respectively.

Average errors for dagSim were somewhat higher — 16.45% and

2.42%, respectively — though still very low for practical purposes.

Table 4: Scenarios 3 & 4: Real and predicted execution times
(seconds).

Nodes

(cores)

Data set

size (GB)

Real

Task Prec.

(error %)

dagSim

(error %)

Scenario 3: K-Means

3 (24) 8 99.0 81.9 (17.3) 75.6 (23.6)

3 (24) 48 342.2 325.1 (5.0) 364.6 (-6.5)

3 (24) 96 862.1 845.9 (1.9) 788.4 (8.5)

6 (48) 8 90.3 74 (18.1) 70.3 (22.1)

6 (48) 48 195.0 178.8 (8.3) 219.2 (-12.4)

6 (48) 96 594.3 572.9 (3.6) 746.2 (-25.6)

Scenario 4: Logistic Regression

3 (24) 8 164.6 159.5 (3.1) 156.1 (5.1)

3 (24) 48 669.4 664.4 (0.7) 671.7 (-0.3)

3 (24) 96 1418.8 1414.1 (0.3) 1404.9 (0.9)

6 (48) 8 166.5 161.0 (3.3) 156.5 (6.0)
6 (48) 48 368.2 362.5 (1.5) 362.9 (1.4)

6 (48) 96 1200.7 1192.6 (0.6) 1193.9 (0.5)

4.5 Summary of Results
In sum, we observe that the Task Precedence model achieved errors

that vary from 0.8% to 20.7%, being on average 11.70% (average

computed across all errors taken in absolute values). The errors

achieved by dagSim, on the other hand, vary from −0.1% up to

−25.6%, but with an average of only 6.06%. It is important to observe

that in the performance evaluation literature, 30% errors (consistent

across cluster sizes) in execution time predictions can be usually

expected, especially from analytical models (see [15]). Thus, both

approaches are suitable for predicting the performance of big data

applications. Moreover, we notice that dagSim outperforms the Task

Precedence model in the scenarios with interactive queries, whereas

the latter was the best approach for the iterative ML algorithms.

Figure 2 summarizes our results.
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Figure 2: Prediction errors across analyzed scenarios (aver-
ages computed across errors taken in absolute values)
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Moreover, both tools ran very quickly and are suitable for on-

line predictions. The average execution times of dagSim were 3.09

seconds for scenario 1 and only 0.76 seconds for scenario 2, with

very low variability across multiple runs (coefficient of variation
3

(CV) of 0.06 in both cases). Vice versa, JMT took on average 156

and 83 seconds, respectively.

For scenarios 3 and 4, despite the higher variability (CVs of 0.9

and 0.8, respectively), the average execution times were still short,

1.2 and 2.4 seconds, respectively. Note that in this latter scenario

the higher variability was due to the different size of the underlying

dataset (which has an impact on the number of tasks within stages

and the number of simulated events).

The execution times of the analytical Task Precedence model

was very short, varying from only 4.18 milliseconds (for scenario

2) to up to 40 milliseconds (for scenario 4). They were also mostly

stable (i.e., low CVs) across all scenarios. The average execution

times are 5.35 ms, 4.59 ms, 9.42 ms and 28.38 ms for scenarios 1 to 4,

respectively, whereas the corresponding CVs are 0.12, 0.05, 0.32, and

0.29. Thus, comparing both tools, dagSim’s execution times exceed

those of our analytical model by some orders of magnitude: their

ratio varies from around 10 to over 680. However, the Task Prece-

dence model is limited to assess average execution time, whereas

dagSim can provide also percentiles of application performance,

thus enabling much finer-grained analyses.

5 CONCLUSIONS
In this paper, we analized an analytical models and proposed an ad-

hoc simulator for the performance prediction of Spark applications

running on cloud clusters.

Multiple cloud configurations and workloads (including SQL

and iterative machine learning benchmarks) have been considered.

From the results we achieved, Lundstrom and the dagSim simula-

tor perform very well for predicting the average system response

time and are effective in capturing the dynamic resource assign-

ment implemented in Spark, achieving 11.07% and 6.06% average

percentage error across all the experiments, respectively.

In our future work, we plan to extend our models to cope with

scenarios where multiple applications run concurrently competing

to access the resources in the same clusters. Finally, we will em-

bed the models into a run-time optimization tool for dynamically

managing cloud resources with the aim of providing application

execution within an a priori fixed deadline while minimizing cloud

operational costs.

ACKNOWLEDGEMENT
The authors’ work has been partially funded by the EUBra-BIGSEA

project by the European Commission under the Cooperation Pro-

gramme (MCTI/RNP 3rd Coordinated Call), Horizon 2020 grant

agreement 690116. This research was also be partially funded by

CNPq and FAPEMIG, Brazil.

REFERENCES
[1] [n. d.]. Apache Spark Survey 2016 Results Now Available. ([n. d.]). https:

//databricks.com/blog/2016/09/27/spark-survey-2016-released.html

[2] [n. d.]. The Digital Universe in 2020. ([n. d.]). http://idcdocserv.com/1414

3
Ratio of standard deviation to mean value.

[3] D. Ardagna, S. Bernardi, E. Gianniti, S. Karimian Aliabadi, D. Perez-Palacin, and

J. I. Requeno. 2016. Modeling Performance of Hadoop Applications: A Journey

from Queueing Networks to Stochastic Well Formed Nets. In ICA3PP. 599–613.
https://doi.org/10.1007/978-3-319-49583-5_47

[4] E. Barbierato. 2016. dagSim Documentation. Technical Report. Politec-

nico di Milano. https://github.com/eubr-bigsea/dagSim/blob/master/simlib/

Documentation/scheduler/manual/1.63/manual.html

[5] M. Bertoli, G. Casale, and G. Serazzi. 2009. JMT: Performance Engineering Tools

for System Modeling. ACM SIGMETRICS Performance Evaluation Review 36, 4

(2009), 10–15.

[6] K. Chen, J. Powers, S.Guo, and F. Tian. 2014. CRESP: Towards Optimal Resource

Provisioning for MapReduce Computing in Public Clouds. IEEE TPDS 25, 6 (2014),
1403–1412. https://doi.org/10.1109/TPDS.2013.297

[7] G. Chiola. 1985. A Software Package for the Analysis of Generalized Stochastic

Petri Net Models. In International Workshop on Timed Petri Nets. 136–143.
[8] G. Ciardo, R. L. Jones, III, A. S. Miner, and R. I. Siminiceanu. 2006. Logic and

Stochastic Modeling with SMART. Perform. Eval. 63 (June 2006), 578–608. Issue
6. https://doi.org/10.1016/j.peva.2005.06.001

[9] H. Derrick. 2015. Survey Shows Huge Popularity Spike for Apache Spark. (2015).

http://fortune.com/2015/09/25/apache-spark-survey

[10] W.J. Fokkinkk. 2000. Introduction to Process Algebra. Springer.
[11] J. Hillston. 1996. A Compositional Approach to Performance Modelling. Cambridge

University Press, New York, NY, USA.

[12] M. Leeser J. Bhimani, N. Mi. [n. d.]. Scalable Performance Prediction Techniques

for Big Data Processing in Distributed Multi-Core Systems. ([n. d.]). http:

//hdl.handle.net/2047/D20215315

[13] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstanti-

nou, Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014. Big Data

and Its Technical Challenges. Commun. ACM 57, 7 (July 2014), 86–94.

[14] J. Laskowski. 2016. Mastering Apache Spark. (2016). https://www.gitbook.com/

book/jaceklaskowski/mastering-apache-spark

[15] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. 1984. Quantitative
System Performance. Prentice-Hall. http://homes.cs.washington.edu/~lazowska/

qsp/

[16] V. W. Mak and S. F. Lundstrom. 1990. Predicting Performance of Parallel

Computations. IEEE Trans. Parallel Distrib. Syst. 1, 3 (July 1990), 257–270.

https://doi.org/10.1109/71.80155

[17] Microsoft. [n. d.]. Sizes for Windows Virtual Machines in Azure. https://docs.

microsoft.com/en-us/azure/virtual-machines/windows/sizes. ([n. d.]). [Online;

accessed 15-January-2017].

[18] Microsoft. 2016. What is PaaS? (2016). https://azure.microsoft.com/en-us/

overview/what-is-paas/

[19] R. D. Nelson and A. N. Tantawi. 1988. Approximate Analysis of Fork/Join Syn-

chronization in Parallel Queues. IEEE Trans. Computers 37, 6 (1988), 739–743.
[20] A. D. Popescu. 2015. Runtime Prediction for Scale-Out Data Analytics. Ph.D.

Dissertation. IC, Lausanne. https://doi.org/10.5075/epfl-thesis-6629

[21] W. Reisig, G. Rozenberg, and P. S. Thiagarajan. 2013. In Memoriam: Carl Adam
Petri. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–5. https://doi.org/10.

1007/978-3-642-38143-0_1

[22] G. Song, Z. Meng, F. Huet, F. Magoules, L. Yu, and et al. 2013. A Hadoop MapRe-

duce Performance Prediction Method. In HPCC. 820–825.
[23] D. Towsley, J. C.S. Lui, and R. R. Muntz. 1998. Computing Performance Bounds

of Fork-Join Parallel Programs under a Multiprocessing Environment. IEEE
Transactions on Parallel & Distributed Systems 9, 3 (1998), 295–311. https://doi.
org/10.1109/71.674321

[24] S. K. Tripathi and D. Liang. 2000. On Performance Prediction of Parallel Compu-

tations with Precedent Constraints. IEEE Transactions on Parallel & Distributed
Systems 11 (2000), 491–508. https://doi.org/10.1109/71.852402

[25] K. S. Trivedi. 2002. SHARPE 2002: Symbolic Hierarchical Automated Reliability

and Performance Evaluator. In DSN. IEEE Computer Society, Washington, DC,

USA, 544.

[26] E. Varki and L. W. Dowdy. 1996. Analysis of Balanced Fork-join Queueing

Networks. SIGMETRICS Perform. Eval. Rev. 24, 1 (May 1996), 232–241. https:

//doi.org/10.1145/233008.233048

[27] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkinson, H. Kuno,

and U. Dayal. 2013. Analytical Performance Models for MapReduce Workloads.

International Journal of Parallel Programming 41, 4 (2013), 495–525. https://doi.

org/10.1007/s10766-012-0227-4

[28] Gu. Wang, A. R. Butt, P. Pandey, and K. Gupta. 2009. A Simulation Approach to

Evaluating Design Decisions in MapReduce Setups. InMASCOTS. IEEE Computer

Society, 1–11.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. 2010. Spark:

Cluster Computing with Working Sets. In HotCloud. USENIX Association, Berke-

ley, CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=1863103.1863113

Cloud Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

199

https://databricks.com/blog/2016/09/27/spark-survey-2016-released.html
https://databricks.com/blog/2016/09/27/spark-survey-2016-released.html
http://idcdocserv.com/1414
https://doi.org/10.1007/978-3-319-49583-5_47
https://github.com/eubr-bigsea/dagSim/blob/master/simlib/Documentation/scheduler/manual/1.63/manual.html
https://github.com/eubr-bigsea/dagSim/blob/master/simlib/Documentation/scheduler/manual/1.63/manual.html
https://doi.org/10.1109/TPDS.2013.297
https://doi.org/10.1016/j.peva.2005.06.001
http://fortune.com/2015/09/25/apache-spark-survey
http://hdl.handle.net/2047/D20215315
http://hdl.handle.net/2047/D20215315
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark
http://homes.cs.washington.edu/~lazowska/qsp/
http://homes.cs.washington.edu/~lazowska/qsp/
https://doi.org/10.1109/71.80155
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://doi.org/10.5075/epfl-thesis-6629
https://doi.org/10.1007/978-3-642-38143-0_1
https://doi.org/10.1007/978-3-642-38143-0_1
https://doi.org/10.1109/71.674321
https://doi.org/10.1109/71.674321
https://doi.org/10.1109/71.852402
https://doi.org/10.1145/233008.233048
https://doi.org/10.1145/233008.233048
https://doi.org/10.1007/s10766-012-0227-4
https://doi.org/10.1007/s10766-012-0227-4
http://dl.acm.org/citation.cfm?id=1863103.1863113

	Abstract
	1 Introduction
	2 Related Work
	3  Performance Prediction Models
	3.1 Spark Overview and Model Assumptions
	3.2 Task Precedence Model
	3.3 dagSim Simulator

	4 Experimental Results
	4.1 Scenarios
	4.2 Comparison with JMT
	4.3 Results on the D12v2 VMs (Scenarios 1 & 2)
	4.4  Results on the D4v2 VMs (Scenarios 3 & 4)
	4.5 Summary of Results

	5 Conclusions
	References



