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ABSTRACT
Virtualized infrastructure is a key capability of modern enterprise

data centers and cloud computing, enabling a more agile and dy-

namic IT infrastructure with fast IT provisioning, simplified, au-

tomated management, and flexible resource allocation to handle a

broad set of workloads. However, at the same time, virtualization

introduces new challenges, since securing virtual servers is more

difficult than physical machines. HyTrust Inc. has developed an

innovative security solution, called HyTrust Cloud Control (HTCC),

to mitigate risks associated with virtualization and cloud technolo-

gies. HTCC is a virtual appliance deployed as a transparent proxy

in front of a VMware-based virtualized environment. Since HTCC

serves as a gateway to a customer virtualized environment, it is

important to carefully assess its performance and scalability as well

as provide its accurate resource sizing. In this work
1
, we introduce

a novel approach for accomplishing this goal. First, we describe

a special framework, based on a nested virtualization technique,

which enables the creation and deployment of a large-scale virtu-

alized environment (with 30,000 VMs) using a limited number of

physical servers (4 servers in our experiments). Second, we intro-

duce a design and implementation of a novel, extensible benchmark,

called HT-vmbench, that allows to mimic the session-based activ-

ities of different system administrators and users in virtualized

environments. The benchmark is implemented using VMware Web

Service SDK. By executing HT-vmbench in the emulated large-scale

virtualized environments, we can support an efficient performance

assessment of management and security solutions (such as HTCC),
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their overhead, and provide capacity planning rules and resource

sizing recommendations.
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1 INTRODUCTION
Many companies adopt virtualization and its ability to slice larger,

underutilized physical servers into smaller, virtual ones, to get

significant cost savings resulting from server consolidation. Nowa-

days, in the era of large multi-core servers this approach became

even more economically appealing to enterprise customers. Virtu-

alization and cloud introduce a set of new challenges for reliably

secure virtual servers and supporting additional authentication

procedures across a large set of virtual machines in the enterprise

environments. HyTrust Inc. developed a security solution, called

HyTrust CloudControl (HTCC) [1–3], to mitigate the security risks

and compliance gaps that exist in virtual and cloud environments.

In essence, any action issued by a privileged user is proxied, evalu-

ated, logged, and then forwarded to a vCenter (if approved). Since

HTCC serves as a gateway to a customer virtualized environment,

it is important to carefully assess its performance and scalability in

order to minimize the introduced overhead and provide adequate

resource sizing for managing and protecting customer’s large-scale

virtualized environment. To accomplish this goal there are two

main challenges to be addressed:

• First, to assess the scalability of the HTCC solution, we need

to emulate a large scale virtualized environment with tens

of thousands of virtual machines. This is a real challenge

since not every company or research organization has an

access to a production size virtualized environment needed

for such evaluation and performance experiments.
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• Second, we need to generate a variety of typical customer

workloads to drive the performance and scalability assess-

ment of HTCC in a large-scale virtualized environment. Cur-

rently, we are not aware of any available benchmark which

is representative of system administrators’ actions and users’

activities typically performed in virtualized environments.

In this work, we introduce our solution for solving both challenges:

• First, we describe an approach, based on a nested virtualiza-
tion technique [18, 19], which enables us to create a large

scale virtualized environment (with 30,000 VMs) using a

limited number of physical servers (4 servers in our experi-

ments). Nested virtualization is the ability to run a hypervi-

sor inside a virtual machine. This enables a recursive-based

approach for creating a high number of additional “slim"

VMs inside an original virtual machine deployed on a bare

metal hypervisor. This allows deploying a large-scale virtu-

alized environment without the need to actually have a large

number of dedicated physical machines.

• Second, we design and implement a novel, extensible bench-

mark, called HT-vmbench, which allows us to mimic session-
based activities of different system administrators and users

in virtualized environments. The benchmark is implemented

using VMware Web Service SDK [20]. HT-vmbench allows

issuing a set of typical operations in virtualized environ-

ments. These operations have strong interdependencies and

causalities. In addition, almost all the VM operations do take

seconds (i.e., they are far from being “instantaneous"), and

one needs to be very careful in avoiding the possibility of

introducing race conditions, i.e., when an operation over a

VM is issued while the previous operation over the same

VM is not yet finished. The proposed benchmark design

and implementation carefully considers such challenges and

provides means to correctly handle them.

By executing HT-vmbench, on an emulated large scale virtualized

environment, we can measure the latency of performed operations

as well as the benchmark throughput, and estimate the overhead

introduced by the HTCC proxy.

This paper is organized as follows. Section 2 provides back-

ground on HTCC. Section 3 describes nested virtualization for

creating large-scale virtualized environment using a limited set of

physical resources. Section 4 introduces the design of HT-vmbench
and discusses its main features. Section 5 evaluates the proposed

framework by using measurement and a variety of performance

experiments. Section 6 outlines related work. Section 7 summarizes

our contribution and gives directions for future work. For more

details on the architecture of HT-vmbench, we direct the interested
reader to the extended version of this paper [23].

2 BACKGROUND ON HYTRUST CLOUD
CONTROL SOLUTION

As companies continue to embrace virtualization and cloud by

migrating from physical to virtualized environments, they are under

increased pressure to secure user and corporate data and follow

multiple compliance regulations (many of them are country and

industry specific). With tighter control and higher penalties, the

new compliance laws in US and EU [3] enforce stricter requirements

for data protection of private and sensitive data.

In a traditional data center with physical servers, there is a

well understood set of demarcation lines for managing different

resources, e.g., server’s OS and storage within one physical server is

managed by a system administrator while the network is managed

by a networking specialist. Similarly, many security policies rely

on the separation of duties as well as physical barriers.

Virtualization and cloud have blurred these boundaries by merg-

ing many IT roles and functions during provisioning and config-

uration tasks over virtualized physical infrastructure. Moreover,

workload consolidation results in a higher density of information

assets with very different security requirements and data sensitivity

levels. All these challenges reduce the ability of security adminis-

trators to adequately monitor and audit workloads for compliance

and security management in virtualized environments.

HyTrust Cloud Control Solution (HTCC) was purposely designed

from ground up to address the security and compliance gaps exist-

ing in virtual environments. The HTCC solution provides a pow-

erful set of policy-based access controls as well as an automated

enforcement of industry specific compliance templates. HTCC is

a virtual appliance deployed as a transparent proxy in front of

a VMware-based virtualized environment (vSphere) as shown in

Figure 1.

Figure 1: vSphere Architecture with HTCC Appliance.

HTCC transparent proxy allows a single-entry gateway to a

protected virtual environment. It offers a non-intrusive security

control to all administrators and users actions. In essence, any action

issued by a privileged user (through any of VMware management

tools) is proxied, evaluated against the specified access rules, logged

for the audit trail, and then forwarded to vCenter (only if it was

approved).

The HTCC transparent proxy acts as a central point of control: it

seamlessly monitors and intercepts all the administrative requests,

originated from a variety of possible access mechanisms in VMware

vSphere as shown in Figure 2. The access mechanisms include

vSphere Client and vSphere Web Client to vCenter, as well as the

direct SSH user sessions to ESXi hosts.

The HTCC transparent proxy relies on the support of the follow-

ing five key components as shown in Figure 2:

• HTCC Policy Engine is the main enforcement mechanism

which allows to define Role Based Access Control in the

organization among its privileged users.

• HTCC Authentication Engine supports an enhanced security

layer along with the usual username and passwords.

• HTCC Inventory Engine supports the up to date “map" (inven-

tory) of the protected virtual infrastructure under control. It

is a critical component since VMs can be migrated, and the

entire infrastructure can be changed with just a few clicks,

e.g., adding a new vCenter.

• HTCC Compliance Engine provides and enforces the compli-

ances templates for various industry and government stan-

dards, e.g., HIPPA, DISA, PCI-DSS.
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Figure 2: HyTrust CloudControl Architecture.

• HTCC Logging Engine supports a complete audit trail of

privileged users’ activities. The HTCC’s logging engine also

captures the attempted actions that have been denied by

security policy.

Since the HTCC proxy acts as a main gateway to protected

virtualized and cloud environments and it controls and intercepts

all the administrative requests as shown in Figure 2, it is important

to measure and evaluate the performance overhead introduced by

the HTCC proxy. In order to answer the scalability questions, i.e.,

evaluate HTCC proxy overhead for different sizes of the protected

environment, we should be able to efficiently emulate these large-

scale virtualized environments. In the next section, we describe our

approach for accomplishing this goal.

3 USING NESTED VIRTUALIZATION FOR
EMULATING LARGE-SCALE VIRTUAL
ENVIRONMENTS

Nested virtualization is a novel virtualization technique first pro-

posed by IBM, which offers an opportunity to run a hypervisor

inside a virtual machine. It has actively evolved over the last decade

and is available on many virtualization platforms, such as Xen,

VMware, and KVM. The general theory behind the nested virtu-

alization, its implementation and performance characteristics are

described in more detail in [7].

Applied to VMware solutions, the nested ESXi involves running

ESXi on top of ESXi within a virtual machine. As shown in Figure 3,

a typical deployment of ESXi and virtual machines consists of Layer

0 through Layer 2.

The hypervisor that runs on the real hardware is called Level

0 (or L0); the hypervisor that runs as a guest on L0 is called Level

1 (or L1); a guest that runs on the L1 hypervisor is called a Level

2 (or L2). In a nested ESXi deployment the third layer (Layer 3)

is introduced by creating one level of recursion within the nested

ESXi hypervisor at Layer 2.

With nested virtualization and its ability to run a hypervisor

inside a virtual machine, we can apply a recursive-based approach

for creating a high number of additional “slim" VMs inside an

original virtual machine deployed on a bare metal hypervisor. Let

us show how the scale of the deployed environment is defined (i.e.,

the numbers of deployed ESXI hosts and VMs) when we use the

traditional approach for creating the virtual environment versus

the nested virtualization approach. Let us consider a modern two

Figure 3: Nested Virtualization Approach.

socket, multi-core server (say, with 10 physical cores per socket, or

20 hyper-threaded virtual cores), with 256GB DRAM.

• Under the traditional approach with a ESXi hypervisor that

runs on real hardware (at Layer 1), we can realistically deploy,

say, 100 VMs per server at Layer 2. Therefore, if we need to

create a virtual environment of 10,000 VMs, we would need

to have 100 physical hosts under the traditional approach.
• Under the nested virtualization approach, we could recur-

sively deploy inside of each VM at Layer 2, vESXi hypervisor

(as shown in Figure 3). Then on top of each vESXi hypervi-

sor, we can deploy 100 “slim" VMs at Layer 3. This way, we

could get a large-scale virtual environment with 10,000 VMs

deployed on a single physical host.

Following the described above logic, one can create a variety of

different templates of large-scale environments for evaluating the

scalability dimensions of the tested management solution under

the test. Note, that similarly, we can deploy a number of vCenter

appliances which manage the deployed ESXi hosts and VMs, and

could be used as a gateway for created virtual environments.

4 HT-VMBENCH DESIGN AND
IMPLEMENTATION

In this section, we present the design, main features, and imple-

mentation of HT-vmbench. First, we introduce the main terms and

notations. Then we explain the idea and the formal algorithm of

organizing VM operations as user sessions, and the execution of

user sessions. Finally, we discuss the set of metrics reported at the

end of the benchmark execution.

4.1 VM Operations and Interdependencies
A lifecycle of a VM starts with its creation and ends up with its

deletion as shown in Figure 4. User can create a VM, then perform

operations such as clone, migrate, snapshot before delete operation.
In addition, power_on and power_off operations can happen on a

created VM, and user can reboot a powered_on VM.

Figure 4: Lifecycle of a VM.

Some operations can be considered as paired operations (or pairs,
for brevity), such as:
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• (create, delete),
• (clone, delete),
• (power_on, power_off ).

As operations paired together, every delete VM operation follows

after a create or clone VMoperation. Thus every delete VMoperation

has an existing VM to be performed on. Similar, for power_on and

power_off, with the concept of paired operations, every power_off
VM operation has a powered_on VM to execute on.

For the remaining operations, snapshot, migrate and reboot, they
are regarded as single operations. To make things more structured,

we introduce the concept of operation units. An operation unit is

either a single operation or a pair of operations. Some operation

units may require preconditions:

• The paired operation (create, delete) can be executed if there

are enough resources available for creating a new VM;

• The paired operations (clone, delete), (power_on, power_off ),

and the single operations migrate and snapshot require a

precondition that there is at least one VM existing in the

system;

• The reboot operation requires a precondition that there is at

least one VM powered on to execute.

All the paired operations change the system state. We use two

counters Num_VM and Num_VM_Powered_On to represent the sys-

tem state:

• Num_VM: the number of VMs existing in the system. Create,
clone and delete operations change Num_VM;

• Num_VM_Powered_On: the number of powered_on VMs. It

can be changed by power_on and power_off operations.

With these two counters, all these preconditions can be easily

satisfied and implemented.

4.2 User Sessions
The goal of HT-vmbench is to simulate VM operations performed

by administrators on managed virtualized environments. We in-

troduce the concept of a user session, a sequence of VM operations

issued by an administrator. Each user session follows a close-loop
model, i.e., the next request is issued only when the response to the

previous request is received by the user. To reflect the ordering of

VM operations, we use a pseudo-timeline. The pseudo-timestamps

are numbers generated randomly, for the purpose of operation or-

dering, i.e., for defining which VM operation should be executed

before the other one.

Every user session has its own counters Num_VM and

Num_VM_Powered_On. To construct a user session, HT-vmbench or-

ganizes VM operations as operation units, and inserts them into the

user session’s timeline according to the interdependencies between

the operations.

4.3 Transaction Mix
A transaction mix determines the percentage and combination of

operations in a single benchmark run. User sessions should follow

the specified transaction mix. A well-formed mix should satisfy the

following constraints:

• Num_Create + Num_Clone = Num_Delete;
• Num_Power_On = Num_Power_Off ;

• If Num_Reboot > 0, then Num_Power_On > 0.

Although we define Num_Create + Num_Clone = Num_Delete,
our design still supports Num_Create+Num_Clone ≥ Num_Delete.

This relaxation of restriction allows the creation of special “test"

transaction mixes, such as 100% create VM operations. These “test"

cases are executed with an additional clean-up phase, implemented

in the benchmark, to meet the close-loop benchmark design.

4.4 User Session Creation and Execution
This section discusses in detail the algorithm of the user session
creation, and the execution of user sessions.

4.4.1 Priority. Every operation unit has its own priority. Prior-

ities are assigned according to interdependencies between opera-

tions, shown in Table 1 (a smaller number means a higher priority):

Table 1: Priorities of Operation Units

Operation Unit Priority

create & delete 1

power_on & power_off 2

clone & delete 3

migrate 4

snapshot 5

reboot 6

• The create & delete pair has the highest priority, since they
start and end a VM’s lifecycle.

• The power_on and power_off pair has the second highest

priority. Note, because of the significant resource pressure

introduced by power_on operation, we force the power_on &

power_off pairs to be inserted as neighbours, i.e., there is no

other power_on or power_off VM operations between a pair

of power_on & power_off. By putting power_on and power_off
as neighbours, the randomness of insertion is decreased.

To remain as much randomness as possible, power_on and

power_off pairs are given the second highest priority.

• The clone & delete pair has the third highest priority, because
they also change counter Num_VM.

• The other operations such as migrate, snapshot, and reboot
VM operations have the lowest priorities.

4.4.2 Algorithm for user session creation. Algorithm 1 below

shows the pseudo-code of constructing user sessions. To explain

the algorithm, consider the following example. Let the transaction

mix be as shown in the second column of Table 2, with the number

of operations Num_Ops = 24, and the number of user sessions

Num_User_Session = 2. First, all operations in the transaction mix

are evenly distributed among the specified number of user sessions

(Algorithm 1, Line 2). In our example, the two specified user sessions

have the same subset of operations, see the third column of Table 2.

Lines 3-6 (Algorithm 1) refer to the preprocessing process before

inserting operations. For every user session, operations are paired

according to the operation interdependencies, and each operation

unit is assigned a priority based on Table 1. Then, we sort the

operation units by priority, and get a list of operation units, as

shown in Figure 5.

Next, we construct a sequence for every user session (Algo-

rithm 1, Line 7). In our example with two user sessions, we first

construct a sequence for user session A, and then in a similar way,

for user session B. All operation units in user session A are inserted

into the pseudo-timeline from high priority to low priority:
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Algorithm 1 Construct a sequence for a user session

Input: Transaction_Mix; Num_User_Session; Num_Ops
Output: List of user sessions User_Session_List
1: function Create_user_sessions()

2: evenly distribute operations to user sessions

3: for all user session do
4: pair the operations (create,delete), (clone,delete) and

(power_on,power_off)
5: assign priority to every operation unit

6: sort operation units by priority to get Op_Unit_List
7: Construct_a_seqence()

Table 2: Example of a Transaction Mix of a Single Bench-
mark Run

Operation

Type

Number of

Operations

Number of Operations

per User Session

create 6 3

delete 8 4

power_on 2 1

power_off 2 1

clone 2 1

migrate 2 1

reboot 2 1

Figure 5: An Example of Operation Unit List.

• Referring to the list Op_Unit_List_A in Figure 5, the first

operation unit is a pair of operations, create & delete. The
create VM operation is given a random number representing

the pseudo-time, and inserted into the timeline; then the

delete VM operation is randomly inserted into the interval

after the create VM operation, as shown in Figure 6(a). The

counter Num_VM is calculated, shown in the Table below

the timeline.

• Other two create and delete pairs are inserted in the same

way, resulting in Figure 6(b). Create and delete pairs can be

neighbours, as the ( ) pair and [ ] pair; also, create and delete
pair can be nested, as the ( ) pair and { } pair. Each time when

the pair is inserted, the counter Num_VM is refreshed.

• After inserting all create & delete pairs, the next step is the in-
sertion of power_on & power_off pairs. The pair of power_on
& power_off should be inserted as neighbours into the inter-

vals, where Num_VM > 0 (as shown in Figure 6(c) ). Counter

Num_VM_Powered_On is calculated after each insertion.

• Figure 6(d) shows the insertion of clone & delete pair. First,
we find some interval, where Num_VM is larger than 0, and

Figure 6: An Example of User Session Creation.

insert clone VM operation into this interval; then delete VM
operation is randomly inserted after the clone into the same

interval. After each insertion, the counter Num_VM is up-

dated.

• After the insertion of clone & delete pair, all the pairs are in-
serted into the timeline. The remaining single operations are

a migrate VM operation and a reboot VM operation. The mi-
grate VM operation can be inserted into any interval, where

Num_VM > 0; the reboot VM operation can only be inserted

into the intervals, where Num_VM_Powered_On > 0, i.e.,

between a pair of power_on & power_off. In this way, we get

the timeline of user session A as shown in Figure 6(e).

Table 3 (left column) shows a sequence of operations that cor-

responds to the constructed user session A. Similarly, we can con-

struct a user session B, resulting in the sequence of operations

shown in the right column of Table 3.
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Table 3: Constructed User Sessions

User Session A User Session B

create create
create delete

power_on create
clone clone
reboot power_on

power_off migrate
delete delete
delete reboot
delete power_off
create delete
migrate create
delete delete

The detailed pseudo-code of Construct_a_sequence is shown in

Algorithm 2, with four basic insertion functions.

• insert_create_delete_pair_op(): The create & delete pairs can
be inserted randomly into any place in the sequence, with

delete following after create. After insertion, the counter

Num_VM is calculated and updated as a set of intervals Ex-
ist_VM_Intervals_Set, shown in the algorithm 2, Line 7.

• insert_power_on_off_pair_op(): The power_on & power_off
pairs are inserted to a randomly chosen interval, where

the counter Num_VM is larger than 0 as neighbours. In

other words, there is no operation between the power_on
and power_off operations which come from the same pair.

Similarly, counter Num_VM_Powered_On is refreshed after

inserting power_on & power_off pairs.

• insert_generic_pair_op(): This method inserts a generic pair

to a proper position according to the requirement of pre-

conditions. If the operation pair requires at least one VM

powered on, the pair will be inserted to a randomly chosen

interval where the counter Num_VM_Powered_On is larger

than 0; if the operation pair requires at least one VM but

not necessarily powered on, the pair will be inserted to a

randomly chosen interval where the counter Num_VM is

larger than 0; if the operation pair has no preconditions, the

pair can be inserted to any position in the sequence.

• insert_single_op(): Every single operation is inserted into a

sequence according to the random number assigned under

the requirements of preconditions.

Algorithm 2 takes the operation units from Op_Unit_List, checks
the type of this operation unit, and finally calls the corresponding

function to do the insertion. After inserting all the operation units,

a sequence is constructed.

4.4.3 User Session Execution. After constructing all user ses-

sions, each user session has a sequence of VM operations. Next,

HT-vmbench starts the preparation of VM operation execution, in-

cluding creating user session cache, loading vCenter information,

and populating host information. Then, all user sessions are sub-

mitted to start their execution. Finally, after all the executions are

finished, results are processed. There is an additional clean-up phase
to clean up the remaining VMs created by the benchmark execution.

HT-vmbench gets the access to execute VM operations on the

virtualized environment by invoking the APIs provided by vSphere.
Every user session holds a close-loop model. Corresponding to the

time spent by administrators to make decision between operations,

Algorithm 2 Construct a sequence for a user session

Input: List of operation units Op_Unit_List
Output: Sequence S
1: function Construct_a_seqence()

2: Exist_VM_Intervals_Set = null
3: Powered_On_VM_Intervals_Set = null
4: for each operation unit op_unit in Op_Unit_List, priority

from high to low do
5: if op_unit is Create_Delete_Pair_Op then
6: insert_create_delete_pair_op()

7: find all intervals of Num_VM > 0, and add to Ex-
ist_VM_Intervals_Set

8: else if op_unit is Power_On_Off_Pair_Op then
9: insert_power_on_off_pair_op()

10: find all intervals ofNum_VM_Powered_On > 0, and

add to Powered_On_VM_Intervals_Set
11: else if op_unit is Generic_Pair_Op then
12: insert_generic_pair_op()

13: else if op_unit is Single_Op then
14: insert_single_op()

15: function insert_create_delete_pair_op()

16: insert Create_Delete_Pair_Op to Sequence S
17: function insert_power_on_off_pair_op()

18: randomly choose an interval (a,b) from Ex-
ist_VM_Intervals_Set

19: insert Power_On_Off_Pair_Op to Sequence S between a and
b as neighbours

20: function insert_generic_pair_op()

21: if Generic_Pair_Op requires at least one VM powered on

then
22: randomly choose an interval (a,b) from Pow-

ered_On_VM_Intervals_Set
23: insert Generic_Pair_Op to Sequence S between a and b
24: else if Generic_Pair_Op requires at least one VM existing

then
25: randomly choose an interval (a,b) from Ex-

ist_VM_Intervals_Set
26: insert Generic_Pair_Op to Sequence S between a and b
27: else if no precondition then
28: insert Generic_Pair_Op to Sequence S
29: function insert_single_op()

30: if Single_Op requires at least one VM powered on then
31: randomly choose an interval (a,b) from Pow-

ered_On_VM_Intervals_Set
32: insert Single_Op to Sequence S between a and b
33: else if Single_Op requires at least one VM existing then
34: randomly choose an interval (a,b) from Ex-

ist_VM_Intervals_Set
35: insert Single_Op to Sequence S between a and b
36: else if no precondition then
37: insert Single_Op to Sequence S

we introduce think time between operations in a single user session,

defined as the random variable Think_Time. To give the system

maximum pressure, we set the think time to 0 as default.

When generating user sessions, we focus on the operation types

(specified by the transaction mix) rather than specifying which
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specific VM is going to be operated on. A VM operation may take

seconds to finish, so if different user sessions submit VM operations

performing on the same VM, a race condition occurs. To avoid

these race conditions, a blocking queue is used to record all the

VMs involved in the current state of the benchmark. When a VM

operation is issued, a VM (in the required state) is dequeued from

the blocking queue, and the VM operation is performed on this

VM. After the operation is finished, the VM is enqueued into the

blocking queue again. Note, the create VM operation creates a VM

directly, and puts the new VM into the blocking queue; the delete
VM operation gets a VM from the blocking queue and deletes this

VM. This blocking queue ensures that there is always at most one

operation performing on the same VM. This way the race conditions

are avoided.

4.5 Benchmark Output and Metrics
To characterize the performance characteristics of a deployed vir-

tualized environment as well as the performance of the HTCC

proxy protecting it, the benchmark measures two sets of metrics:

latency of performed operations (in seconds) and the overall sys-

tem throughput in operations per second (ops/sec). Additionally, the
benchmark collects and outputs (i) the detailed log of performed

operations with measured latency of each operation and (ii) the
summary output (computed from the detailed log) with the average

latency per performed operation.

The execution of benchmark can be divided into three phases:

• warm-up: Before the slowest user session starts its execution;
• main: All the user sessions are executing their VM opera-

tions;

• cool-down: After the fastest user session finishes its execu-

tion.

The reported throughput and operation latencies are calculated

in the main phase of the benchmark execution.

5 EVALUATION
The emulated large scale virtualized environment is deployed on

four physical servers, each machine is DellC6320, with two sockets

Intel Xeon E5-2640 v4, 2.4 GHz processors (Broadwell family), each

processor with 10 physical cores (20 virtual processors, due to

hyper-threading), i.e., 40 virtual processors per server, with 256 GB

of RAM. Each server had 2 x 10Gb/s network.

We deployed (via nested virtualization) the VMware-based vir-

tualized environment with two clusters: 10K and 20K VMs. Each

cluster is configured with two vCenters. In such a way, by combin-

ing the resources of these clusters, we can perform experiments

in large-scale virtualized environments having 10K, 20K, and 30K

VMs.

By executing HT-vmbench on an emulated large scale virtualized

environment, wemeasured the latency of performed operations.We

performed a set of experiments using two types of environments:

• virtual-original: an emulated large scale VMware-based vir-

tualized environment (with 10K, 20K, 30K VMs);

• virtual-protected: an emulated large scale VMware-based

virtualized environment (with 10K, 20K, 30K VMs) protected

by HTCC solution deployed as a gateway (transparent proxy)

to the original virtualized environment.

We performed 500 operations for every user session during each

HT-vmbench run, configured with the following transaction mix:

Figure 7: Average Latency of Different VM operations.

Figure 8: Average Latency and Throughput of VM operations in
10K VMs Environment.

• create =20%
• delete =20%
• power_on =20%

• power_off =20%

• snapshot =20%
Figure 7(a) shows the average latency of VMoperations in virtual-

original or virtual-protected environment of 10K object clusters with

3 user sessions. When running in virtual-protected environment,

the execution time of operations is slightly higher than the exe-

cution time in virtual-original environment, due to the overhead

introduced by HTCC. As results show, HTCC has a very reasonable

performance overhead for most operations in virtualized environ-

ment tested by our benchmark.

Figure 7(b) shows the average latency in 20K object clusters with

3 user sessions, for both virtual-original and virtual-protected envi-
ronment. These numbers are similar compared to the 10K cluster

result shown in Figure 7(a). It indicates that the scale of virtualized

environment does not have a significant impact on the performance

overhead introduced by HTCC proxy.

Figure 8 shows the latency and throughput of VM operations

as a function of the number of user sessions. As the number of

user sessions grow, latency and throughput also increase. The la-

tency is slightly higher, since the system is more crowded, and the

throughput is increasing rapidly due to the paralellism.

By executing HT-vmbench in the emulated large-scale virtual-

ized environments, we can support an efficient performance assess-

ment of management and security solutions (such as HTCC), their

overhead, and provide capacity planning rules and resource sizing

recommendations.

6 RELATEDWORK
Benchmarking Virtualized Environments: Over the last

decade virtualization has gained popularity in enterprise and cloud

environments as a software-based solution for creating shared hard-

ware infrastructures. VMware released a VMmark benchmark [21]

for quantifying the performance of virtualized environments. This

benchmark aims to provide some basis for comparison of differ-

ent hardware and virtualization platforms in server consolidation
use cases, and therefore, aims to evaluate very different scenarios

compared to HT-vmbench.
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Application performance and resource consumption in virtu-

alized environments might be quite different compared to their

execution on bare metal hardware because of additional virtual-

ization overheads, which are typically caused by I/O processing

and the application interactions with the underlying virtual ma-

chine monitor (VMM). Different papers describe various VMM

implementations and analyze virtualization overhead when exe-

cuting specially selected microbenchmarks or macrobenchmarks

(e.g., [6, 8, 12, 22]). The reported virtualization overhead greatly

depends on the server hardware used in such experiments. This

extensive body of previous benchmarks characterizes performance

in virtualized environments from a very different angle compared

to the goals and functionality of HT-vmbench.
Nested Virtualization Technique:During the last decade soft-

ware virtualization solutions for x86 systems were broadly adopted,

forcing both Intel and AMD to add virtualization extensions to their

x86 platforms [5, 17]. There was a stream of efforts to incorporate

nested virtualization in Xen hypervisor [4, 10]. Nested virtualization

has many potential uses: e.g., platforms with hypervisors embed-

ded in firmware might need to support other hypervisors as guest

virtual machines. In the Cloud, IaaS providers might offer a user the

ability to run the user-controlled hypervisor as a VM. In such a way,

the user can manage his own virtual environment with with the

choice of his favorite hypervisor. This might significantly simplify

many management tasks, such as the live migration of their virtual

machines as a single entity, e.g., for disaster recovery or load balanc-

ing. It could also be used for testing, demonstrating, benchmarking

and debugging hypervisors and virtualization setups.

Nested virtualization enables new approaches to security in

virtualized environments, such as honeypots capable of running

hypervisor-level rootkits [14], hypervisor-level rootkit protec-

tion [13, 15], hypervisor-level intrusion detection [9, 11] for both

hypervisors and operating systems. Nested virtualization is a foun-

dation of the AERIE reference architecture [16]: it supports a set of

components and services in a managed platform to reduce the level

of trust required for IaaS providers. It helps to increase control and

isolation and improve the system security and data protection.

In our work, we applied nested virtualization for creating a large

scale virtualized environment using a limited number of physical

servers to perform scalability assessment of security management

solution (HTCC). This approach is of interest to many startups,

small companies, and research organizations, which might not

have access to a production size virtual environment needed for

their scalability studies and performance experiments.

7 CONCLUSIONS
Engineering teams face many challenges when they implement

new management and security solutions in large-scale virtual en-

vironment. They need to assess performance and scalability of

such management solutions, analyze their performance overheads,

and perform solution’s capacity planning and resource sizing. In

this paper, we introduce a novel approach for accomplishing these

performance goals. We offer an extensible benchmark, called HT-
vmbench, which allows users to mimic session-based activities of

system administrators in virtualized environments. To perform

scalability studies with HT-vmbench, the users need access to large-

scale testbeds (that mimic the production virtual environments). To

solve this challenge, we describe and promote an approach, based

on a nested virtualization technique, which enables us to create

a large scale virtualized environment (with 30,000 VMs) using a

limited number of physical servers (4 servers in our experiments).

We believe that more interesting opportunities are available for

constructing specialized virtual environment using this approach.

Combined with an extensible nature of HT-vmbench, the proposed
framework offers a powerful solution for performance assessment

of differentmanagement and security solutions in large-scale virtual

environments.
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