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ABSTRACT

Energy consumption has become a core concern in computing sys-
tems. In this context, power capping is an approach that aims at
ensuring that the power consumption of a system does not over-
come a predeined threshold. Although various power capping
techniques exist in the literature, they do not it well the nature
of multi-threaded workloads with shared data accesses and non-
minimal thread-level concurrency. For these workloads, scalability
may be limited by thread contention on hardware resources and/or
data, to the point that performance may even decrease while in-
creasing the thread-level parallelism, indicating scarce ability to
exploit the actual computing power available in highly parallel
hardware. In this paper, we consider the problem of maximizing
the performance of multi-thread applications under a power cap
by dynamically tuning the thread-level parallelism and the power
state of CPU-cores in combination. Based on experimental observa-
tions, we design a technique that adaptively identiies, in linear time
within a bi-dimensional space, the optimal parallelism and power
state setting. We evaluated the proposed technique with diferent
benchmark applications, and using diferent methods for synchro-
nizing threads when accessing shared data, and we compared it
with other state-of-the-art power capping techniques.
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1 INTRODUCTION

Multi-core architectures are nowadays dominating the computer
system market. Thanks to hardware parallelism, they ofer pow-
erful environments allowing to efectively speed-up the execution
of multi-threaded workloads. These kinds of workloads span a
wide range of application domains, including Web applications,
transactional applications and HPC ones [15, 25]. However, one dis-
advantage of multi-core architectures is that powering many cores
requires more energy, and power demand of computing systems
raised up even more as a core concern to cope with.

Over the last years, computer system manufacturers introduced
some hardware mechanisms to control power consumption and,
consequently, to enable improvements in the energy eiciency.
Examples include Dynamic Voltage and Frequency Scaling (DVFS),
which allows lowering the voltage and the frequency (hence the
power consumption) of a processor/core in a controlled manner,
and Clock Gating, which disables some processor/core circuitry
during idle periods. Contextually, today’s Operating Systems ofer
power management toolsÐlike Linux CPUFreq Governor [16]Ð
which expose interfaces to dynamically change the power state
of CPU-cores via DVFS, thus allowing to tune the performance
of cores and their power consumption according to the end-users’
needs.

The approach of limiting the power consumption of a system is
generally known as power capping. In this context, an interesting
challenge is the one of regulating the usage of resources, thus includ-
ing power, of applications based on multi-threading technology and
share data accesses. More speciically, we consider the objective of
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maximizing the application performance under a power constraintÐ
the power capÐin scenarios where the applications themselves may
exhibit diferent degrees of scalability. This is due to diferent syn-
chronization schemes that can be used for regulating the accesses
to shared data (e.g. lock-based vs. speculative ones), as well as to
diferent incidence of conlicting accesses along the application
lifetime. Overall, in these applications, part of the computing power
needs to be devoted to manage synchronization (including hard-
ware level one) which is relected on both performance and energy
consumption in non-trivial manner, as already demonstrated by a
few results, e.g. [20].

In the literature various power capping techniques have been
proposed (e.g. [4, 10, 14, 18, 19, 21, 24, 24]). However, most of them
are application-agnostic, i.e. they enforce the power cap at the level
of a server machine, without accounting for workload features
(e.g. scalability) of running applications. As for the speciic case
of multi-threaded workloads, the problem of controlling resource
usage, in terms of number of used cores and core frequency, has
been addressed in some literature contributions, such as [1, 19, 26].
However, the proposed approaches sufer from some limitations. In
more detail, some of them still do not account for the diverse scala-
bility proiles of multi-threaded workloads. Other approaches rely
on strategies that do not always ind the best-performing conigu-
ration in terms of thread-level parallelism and frequency/voltage
of used cores.

Overall, to select the right combination of thread parallelism
and core power state which ensures the best performance under a
power cap, it looks mandatory to take into account the (possible)
limited scalability of the application, as it manifests at run-time due
to synchronization dynamics. Further, it is necessary to be able to
react to variations of the workload since the scalability proile of
an application may change depending on the workload proile.

To copewith this problem,we propose an adaptive technique that
uses a novel on-line exploration-based tuning strategy. We devised
our technique exploiting empirical observations of the efects on
both performance and power consumption associated with the
combined variation of thread-level parallelism and CPU-core power
state. Speciically, by the results of an experimental study, we show
that some scalability features of multi-threaded workloads, even in
the presence of non-negligible incidence of synchronization, remain
invariant with respect to the variation of the power state of CPU-
cores. Based on this, we deined an optimized tuning strategy where
the exploration moves along speciic directions that depend on the
power cap value and on the intrinsic scalability of the application.
Remarkably, we prove that the proposed technique inds the optimal
coniguration of concurrent threads and CPU frequency/voltageÐ
the coniguration that provides the highest performance among the
conigurations with power consumption lower than the power capÐ
in linear time. Also, we present a reinement of our technique that
exploits luctuations between conigurationsÐin terms of thread-
level parallelism and CPU-core power stateÐto further improve
the application performance and reduce the possibility and the
incidence of power cap violations.

We demonstrate the advantages of our proposal via an experi-
mental study based on various application contexts, including vari-
ous benchmarks that use diferent thread synchronization methods.
This allows us to robustly assess our technique via disparate test

cases where contention among threads afects the application scal-
ability in signiicantly diferent ways.

The remainder of this article is structured as follows. In Section
2 we discuss related work. Section 3 deines our target problem
and presents the results of the preliminary analysis. Section 4 il-
lustrates the proposed optimization technique, proves that the se-
lected coniguration is optimal, analyzes the time complexity of the
exploration procedure and inally presents the strategy based on
luctuations. Section 5 describes the most relevant implementation
details of a software architecture embedding our optimizer, and
presents the experimental results.

2 RELATEDWORK

As discussed, various power capping techniques have been devised,
which are aimed at limiting the overall power consumption of a
single (server) machine. Most of them are based on application-
agnostic approaches, thus not representing fully exhaustive solu-
tions. Less work has been carried out targeting the reduction (or the
optimization) of power consumption depending on the workload
features of running applications. In the following, we focus on this
kind of techniques and we discuss the diferences compared to our
proposal.

A work speciically focused on optimizing the power eiciency
of applications with multi-threaded workloads is presented in [19].
The proposed technique, called Pack and Cap, aims at selecting
the best coniguration, in terms of number of CPU-cores to be
assigned to an application and the related CPU-core frequency,
which ensures a given power cap. Based on experimental mea-
surements of the performance and power consumption obtained
running benchmarks from the Parsec suite, the authors conclude
that the coniguration that provides the highest performance at a
given level of power consumption always assigns to the application
the highest possible number of CPU-cores. However, as shown
in our experimental analysis through a direct comparison with
our proposed technique, this selection strategy is not optimal for
multi-thread applications with sub-linear scalability.

The work in [26] considers the problem of maximizing perfor-
mance under a power cap while also taking into account the efects
of thread contention on scalability. This solution deines an ordered
set of power knobs that are progressively tuned by performing a
binary search on the respective domain, selecting the setting that
provides the highest performance for the considered power knob
while operating within the power cap. Speciically, it irst selects
the optimal number of CPU-cores that should be assigned to an
application. Subsequently, once ixed this number, it progressively
increases the frequency/voltage of the CPU-cores until the power
consumption is below the power cap. However, this approach may
not ind the coniguration ensuring the best performance. Indeed,
there may be some other coniguration with, e.g., a lower number
of threads and a higher frequency/voltage, providing higher perfor-
mance still within the power cap. In our experimental analysis (see
Section 5), we present data that compare this approach with our
technique.

The paper by Portield et al. [17] presents a technique that re-
duces the energy consumption of OpenMP programs by throttling
concurrency when both power and memory bandwidth usage is

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

17



high. Throttled threads are put in a low-power mode by modify-
ing the duty cycle of individual CPU-cores. This is a lightweight
approach, but achieves low power reduction compared to thread
pausing or modifying the frequency/voltage of CPU-cores. Never-
theless, the proposed technique does not tune the power state of
the CPU-cores running non-throttled threads and does not consider
power constraints.

Diferent literature contributions rely on Intel RAPL [4, 9] as
a building block to enforce power capping at hardware level for
diferent subsystems (e.g. CPU package or memory). They estimate
the power consumption by observing diferent low-level hardware
events, and then select the optimal CPU frequency and voltage such
that the average power consumption of a speciic subsystem is lower
than the power cap. In our technique, we do not exploit the power
capping capability ofered by RAPL, although we exploit RAPL ex-
clusively as a power measuring tool. This choice is motivated by the
fact that RAPL cannot enforce power capping for whichever sub-
set of CPU-cores. Thus, it is not adequate for application-oriented
power capping, i.e. for tuning the power consumption of a speciic
subset of CPU-cores used by a given application, according to the
fact that such number of cores well matches the scalability level of
the application. Also, RAPL is a proprietary technology only sup-
ported by recent Intel x86 processors. Conversely, our technique
directly controls the power state of CPU-cores via the abstraction of
P-state, which is a standard supported by various processors from
diferent manufacturers, also with diferent instruction sets.

Exploiting RAPL, Gholkar et al. [7] propose a 2-level hierarchical
technique that uses an exploration-based approach to optimize the
performance of a cluster under power constraints. This technique
partitions the power budget of the cluster between diferent jobs.
Then, for each job, it determines the set of nodes for assigning the
job, and sets the node power level via RAPL. Diferently from our
proposal, this technique operates at cluster-level and does not deal
with thread-level parallelism. Thework presented in [1] proposes an
exploration-based technique that improves the performance under
a power cap for OpenMP applications. For each parallel region, it
selects the appropriate number of threads, scheduling policy and
chunk size using the Nelder-Mead search algorithm [6]. The search
is performed at a ixed RAPL power-cap setting. Given that the
search space may be large, it searches within a restricted space (e.g.
2, 4, 8 or 16 threads), which is a-priori determined to reduce the
computation time. Obviously, this approach does not guarantee to
ind the optimal solution.

Other works in literature investigate the problem of improving
the application performance under power constraints considering
diferent power management variables. FastCap [13] deines an
approach for optimizing performance under a system-wide power
cap considering both CPU and memory DVFS. It deines a non-
linear optimization problem solved through a queuing model that
considers the interaction between CPU-cores and memory banks
communicating over a shared bus. Unfortunately, althoughmemory
DVFS has not been proposed recently [3, 5], it is not yet available
in commercial systems.

Kanduri et al. propose to use approximation in computation as
another knob that can be used in power capping, combined with
DVFS and concurrency throttling, to ofer a trade-of between per-
formance and accuracy of the results [11]. Obviously, this approach
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Figure 1: Throughput vs. number of concurrent threads and

P-state

is applicable only to applications where approximation is tolerated.
Another drawback is that applications require multiple implemen-
tations to allow to dynamically switch between diferent levels of
accuracy. PPEP [24] is an online prediction framework that, based
on hardware performance events and on-chip temperature mea-
surements, estimates the performance, power consumption and
energy eiciency for each diferent CPU P-state. Therefore, it al-
lows the deinition of a power capping technique that can meet
power targets in a single step without requiring any exploration.
However, it does not consider the possibility of altering the num-
ber of CPU-core assigned to an application, thus it would provide
sub-optimal performance for multi-thread applications with limited
scalability.

3 PROBLEM STATEMENT AND

PRELIMINARY ANALYSIS

As discussed, we consider the problem of maximizing the perfor-
mance under a power cap for applications with multi-threaded
workload that may show diverse scalability proiles. We consider
two tuning parameters, the number of concurrent threads and the
power state of the CPU cores. We also note that tuning the num-
ber of threads implies that the application is designed in such a
way to permit such a change without damages to the correctness
of its execution. In particular, we focus on CPU/memory bound
applications based on the working thread pool paradigm which is
adopted by wide-spread real-world applications such as commodity
multi-threaded application servers or modern scientiic computing
platforms [15, 25].

We assume that the power state of CPU-cores can be changed
via DVFS. We adhere to the ACPI standard notation, where P0 iden-
tiies the CPU core state with maximum power and performance,
and progressively P1, P2, ... identify states with less power and per-
formance. When a CPU-core has no instructions to execute (e.g.
when there is no candidate thread to be executed on that core), it
can be transited from the full operating state, denoted with C0, to
some of the available idle state, progressively denoted with C1, C2,
... . When residing in one of these states, the core power consump-
tion is highly reduced. Accordingly, when the number of running
threads of the application is below the number of available CPU-
cores, the transition of unused cores to some idle states is favored,
thus reducing the overall power consumption.

Runtime Adaptation ICPE’18, April 9̶–13, 2018, Berlin, Germany

18



To illustrate the efects on power consumption associated with
the variation of P-state and the number of concurrent threads, we
show in Figure 1 the results of an experiment where we run Intruder,
which is one of the applications included in STAMP benchmark
suite [2]. This suite ofers various applications with multi-threaded
workloads for performance analysis of in-memory transactional
multiprocessing systems [22]. Intruder emulates a signature-based
network intrusion detection system where network packets are
processed in parallel by a tunable number of concurrent threads.
We executed diferent runs of this applicationwhile changing P-state
and the number of concurrent threads up to the number of available
CPU-cores in the underlying machine. We used a machine with
two Intel Xeon E5, 20 physical cores total, 256 ECC DDR4 memory,
with core clock frequency ranging from 1.2 GHz (whose P-state is
denoted as P11) to 2.2 GHz (denoted as P1), and TurboBoost from
2.2 GHz to 3.1 GHz (denoted as P0). Since we focus on the efects of
the joint variation of the power state of CPU-cores and the thread-
level parallelism, we consider power consumption relative to the
CPU and memory subsystems, which we measured via the Intel
RAPL interface [9]. The plot shows that the power consumption
always increases while incrementing the number of concurrent
threads or while decrementing P-state. We observed this behaviour
also with all the other benchmark applications that we used in our
study (as shown in Section 5). After all, this is not a surprising result.
Indeed, addingmore threads leads to keepingmore CPU-cores in the
operating state, thus increasing the overall power consumption, and
decreasing P-state leads to use more power per core. Accordingly,
we reasonably assume that this holds true with any workload.

We denote a system coniguration with the couple (p, t ), where
p denotes the P-state and t is the number of threads. Given a power
cap value C , if S is the set of all possible conigurations, we denote
as Sac ⊆ S the subset of all acceptable conigurations, that is the
conigurations for which the power cap value is not violated. Denot-
ing with pwr (p, t ) the power consumption with coniguration (p, t ),
then pwr (p, t ) ≤ C for each (p, t ) ∈ Sac . Based on our experimental
observations, pwr (p, t ) is a monotonically increasing function with
respect to both p and t . Thus, the subsets of acceptable and unac-
ceptable conigurations are separated by a frontier line. In Figure 2
we show an example of frontier line for the Intruder test case with
C = 50 Watts.

Our goal is to ind the coniguration (p, t )∗ ∈ Sac for which the
performance of the application is maximized. Without loss of gen-
erality, we consider the application throughput as the performance
metric. In any case, a diferent performance metric could be used,
such as the response time. We denote as thr (p, t ) the application
throughput with the coniguration (p, t ).

In Figure 3, we report the results of an experimental study we
conducted to analyse the throughput curve thr (p, t ) while varying
p and t . We used four multi-thread applications (still taken from
STAMP), namely Intruder, Genome, Vacation and Ssca2. We se-
lected these applications since they show very diferent behaviour
in terms of scalability. Also, to carry out a more in-depth study on
how contention and synchronization scenarios materialize, in our
experiments we used two diferent implementations of each appli-
cation. They are based on two diferent approaches to synchronize
the accesse of threads to shared data. The irst implementation uses
a coarse-grained locking approach, where shared data accesses are
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igurations with C=50 watts

implemented as critical sections protected by a single global lock.
The second one uses a ine-grained approach, relying on Software
Transactional Memory [8], where shared data accesses are executed
as (concurrent) transactions. This allowed us to analyze the scala-
bility for antithetical synchronization techniques, spanning from
pessimistic lock-based techniques to optimistic/speculative ones.

All plots in Figure 3 conirm our observations on the proile
of the throughput curve. Indeed, in some cases, it shows an ini-
tial ascending part followed by a descending part. In other cases,
the ascending part or the descending part do not exist. Also, the
plots show that, when changing the application and/or the syn-
chronization approach, the shape of the throughput curves may
change. Particularly, the number of threads that provides the high-
est throughput may be diferent. In our experiments, it ranges from
1 (in the case of workloads with very limited scalability, such as for
Intruder Lock-based, Vacation Lock-based and Ssca2 Lock-based) to
20 (in the case of scalable workloads as Genome Transaction-based
or Vacation Transaction-based). Notably, in some cases it is in the
middle (as for Intruder Transaction-based, Genome Lock-based or
Ssca2 Transaction-based).

Another observation that comes out from the plots in Figure 3 is
that, ixed the application and the synchronization approach, the
throughput curves preserve the shape when varyingp. The diferent
curves appear translated, but the number of threads for which each
curve reaches the maximum value (i.e. the highest throughput) does
not change, unless for small and unpredictable variations generated
by the measurement noise. Finally, the plots show that, keeping
ixed the number of threads, the throughput value increases when
decreasingp. We exploit these experimental indings to optimize our
exploration-based technique that we presents in the next section.

4 THE ADAPTIVE POWER CAPPING

TECHNIQUE

The adaptive power capping technique we propose is based on an
on-line tuning strategy that periodically performs an exploration
procedure. This procedure inds the optimal coniguration (p, t )∗,
which is actuated and kept until the exploration procedure restarts
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Figure 3: Throughput vs. number of concurrent threads

after a pre-established period. This allows to capture possible vari-
ations of the workload proile along time, which may lead to a
diferent optimal coniguration.

In short, the exploration procedure records the measures of the
power consumption and the throughput of the application while
moving along conigurations within a speciic path. At the end of
the exploration, the onewith the highest throughput is selected. The
procedure is able to identify the optimal coniguration by exploring
only a subset of all possible conigurations. We note that the full
set of conigurations may be very large, particularly when a large
number of CPU-cores and/or p-states are available. Thus, reducing
the exploration space is fundamental for an on-line exploration-
based strategy.

4.1 The Exploration Procedure

The exploration procedure takes as input a starting coniguration
(ps , ts ) and a power cap value C and returns (p, t )∗. For the irst
execution of the procedure, the starting coniguration can be arbi-
trarily selected, while in subsequent executions it starts from the
output coniguration of the previous one. We note that the shapes
of the throughput curves and the observations that we made in our
preliminary analysis allow to exclude some conigurations from

the exploration, thus reducing the coniguration exploration space.
Speciically, if during the exploration:

(1) a coniguration (p j , tk ) such that thr (p j , tk ) ≤ thr (p j , tk−1)
is found then all conigurations (p, t ) where t ≥ tk , for
whichever p, can be excluded (since we are in the descending
part of the throughput curve and since the throughput curves
preserve the shape while varying P-state).

(2) a coniguration (p j , tk ) such that pwr (p j , tk ) ≤ C is found
then all conigurations (p, tk ) with p > pk can be excluded
(since increasing P-state reduces the application throughput).

(3) a coniguration (p j , tk ) such that pwr (p j , tk ) > C is found
then all conigurations (p, t ) where t ≥ tk and p ≤ pk can be
excluded (since decreasing P-state or increasing the number
of concurrent threads increments the power consumption).

Based on the above observations, we built an exploration procedure
articulated in 3 phases, plus a inal selection phase. The phases are
described below. To help the reader while reading the description,
a graphical example is shown in Figure 4, which refers to a test
case where the number of concurrent threads providing the highest
throughput is equal to 15.
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basic strategy

Phase 1. This phase starts from the initial coniguration (ps , ts ),
and aims at inding, keeping ixed ps , the number of threads pro-
viding the highest throughput without violating the power cap.
We denote as (ps , t1) the coniguration returned by this phase. It
performs a search inspired by the hill-climbing technique [23].
Speciically, it starts incrementing by one the number of threads,
and continues if the throughput increases and the power cap is
not violated (if the throughput increases it means that it is moving
along the ascending part of the throughput curve). It stops when
the throughput starts decreasing, when the power cap is violated
or when the maximum number of threads (which optionally can
be pre-established by the user) has been reached. Finally, it returns
the coniguration for which it measured the highest throughput
and which is within the power cap. If the throughput does not
grow after the irst increment, or the power cap is violated, it starts
decreasing the number of threads (since it is moving along the de-
scending part of the throughput curve, or the power consumption
must be reduced) until the throughput starts decreasing. Then, it
returns the coniguration with the highest throughput if it does not
violate the power cap. Otherwise, if all the explored conigurations
violate the power cap, or if the exploration reaches a number of
threads equal to 1, it returns (ps , 1). In the example in Figure 4, the
exploration during phase 1 is represented by the green line. It starts
with (ps , ts ) = (6, 5), then increases the number of threads and
terminates when it reaches coniguration (6, 13) since it violates
the power cap. It returns (ps , t1) = (6, 12), which is within the
power cap.
Phase 2. This phase starts from the coniguration (ps , t1) returned
by phase 1 and is executed only if this coniguration does not violate
the power cap (otherwise we jump to the next phase). The goal of
phase 2 is to continue the exploration along lower values of P-state
(we remark that increasing the value of P-state leads to both higher
core performance and higher power consumption). Speciically, it
moves from the current coniguration (p, t ) to coniguration (p −

1, t ). If the latter coniguration does not violate the power cap, it
continues to reduce the value of P-state. If a coniguration such that

pwr (p, t ) > C is reached, it starts reducing the number of threads,
thusmoving to coniguration (p, t−1), then (p, t−2) and so on (since
decreasing the number of concurrent threads reduces the power
consumption) until the power cap is not violated. After, it restarts
the exploration by decreasing the value of P-state. The exploration
terminates when p reaches 0 and the current coniguration does not
violate the power cap, when it reaches coniguration (0, 1), or when
a coniguration with t = 1 violates the power cap. Then, among the
explored conigurations, Phase 2 returns the coniguration (that we
denote as (p2, t2)) with the highest throughput within the power
cap, or (0, 1) if none of the explored conigurations is within the
power cap. In Figure 4, the exploration of Phase 2 is shown by the
blue line. It starts from (ps , t1) = (6, 12), and then explores up to
coniguration (0, 1). It returns (p2, t2) = (3, 6).
Phase 3. This phase starts again from the coniguration returned
by Phase 1, i.e. (ps , t1), and aims at continuing the exploration for
higher values of P-state. If the coniguration returned by Phase
1 is such that t1 is the number of threads providing the highest
throughput and is within the power cap, Phase 3 is not executed
(since decrementing the value of P-state leads to lower throughput).
If not, it increments by one the value of P-state and starts increasing
the number of concurrent threads until the power cap is violated or
the throughput decreases. In the former case, if the maximum value
of P-state has not been reached, it increments by one the value of
P-state and starts again incrementing the number of threads. In all
the other cases the exploration terminates. Then, phase 3 returns
the explored coniguration (that we denote as (p3, t3)) with the
highest throughput within the power cap, or it returns (pmax , t

1)

(where pmax is the maximum value of P-state) if all the explored
conigurations are within the power cap. In Figure 4, the exploration
of Phase 3 is represented by the yellow line. It starts from (ps , t1) =

(6, 12), then explores up to coniguration (8, 16), where it stops
since the throughput decreases (we remark that in the example the
number of concurrent threads providing the highest throughput is
equal to 15). It returns (p3, t3) = (8, 15).
Final phase: this phase selects the coniguration with the highest
throughput between the conigurations (ps , t1), (p2, t2) and (p3, t3),
which does not violate the power cap, or returns null if none of
them is within the power cap.

4.2 Proof of Optimality

In this section we prove that the proposed exploration procedure
inds the optimal coniguration in the bi-dimensional space of con-
igurations deined by all combinations of active threads and CPU
P-state. We note that solving this problem in linear time is not
trivial, since the approach of inding the optimal solution for each
dimension independentlyÐwhich might be trivial with some hill-
climbing approach under Assumption 1Ðdoes not compose to the
bi-dimensional optimum.We initially present the set of assumptions
our proof relies on. We recall that all these assumptions originate
from the experimental results we discussed in Section 3.

Assumption 1. Fixed P-state and increasing t from 0 to tmax ,
the throughput curve behaves as follows:

(1) initially increases, reaches its maximum value, then de-
creases, otherwise

(2) monotonically increases, otherwise
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(3) monotonically decreases.
Assumption 2. If thr (p j , tk ) > thr (p j , tk + 1) then for each

p we have thr (p, tk ) > thr (p, tk + 1). Also, if thr (p j , tk ) >
thr (p j , tk−1) then for eachpwe have thr (p, tk ) > thr (p, tk−

1). In other words, if for some P-state and tk threads the
throughput decreases (increases) when adding (removing)
one thread, then this holds true for whichever P-state.
Overall, the ordering relations on the throughput values
when changing the number of threads are not efected by
P-state.

Assumption 3. if p j < pk then thr (p j , t ) > thr (pk , t ) for
whichever t . In other words, when decreasing the value
of P-state the throughput always increases for whichever
number of threads;

Assumption 4. If p j < pk then pwr (p j , t ) > pwr (pk , t ), and
if t j > tk then pwr (p, t j ) > pwr (p, tk ). In other words, the
power consumption increases when decreasing P-state or
when increasing the number of threads.

STATEMENT. The exploration procedure presented in Section 4.1
is guaranteed to ind the optimal coniguration of CPU P-state and
thread-level parallelism.

Proof. We partition the search space into three disjoint sub-
spaces, based on the value of P-state of the initial coniguration, i.e.
ps . Speciically:

• S1 is the sub-space of conigurations such that p = ps ;
• S2 is the sub-space of conigurations such that p < ps ;
• S3 is the sub-space of conigurations such that p > ps .

We show that Phases 1, Phase 2 and Phase 3 ind the optimal conig-
uration for sub-spaces S1, S2 and S3, respectively. This is suicient
to prove that the overall optimal coniguration is found, since Final
phase simply selects the optimal one among them.
Outcome by Phase 1. Phase 1 explores conigurations within S1.
Speciically, it keeps ixed ps and explores while varying only the
number of threads t . Phase 1 uses the hill-climbing search. By As-
sumption 1, the function thr (ps , t ) has only one local maximum,
thus it corresponds to the global maximum. Accordingly, the hill-
climbing search trivially can ind the maximum [23], which is the
optimal coniguration in S1. The only exception is when the conig-
uration with the global maximum violates the power cap. In this
case, the exploration terminates as soon as the coniguration with
the highest number of threads which is within the power cap is
found. Also in this case, it is the optimal coniguration in S1.
Outcome by Phase 2.We recall that Phase 2 starts exploring from
the coniguration returned by Phase 1, denoted as (ps , t1), which
is the optimal one with P-state equal to ps , unless none of the
conigurations with P-state equal to ps is within the power cap. In
the latter case, Phase 1 returns (ps , 1). Also, we recall that Phase
2 explores moving towards lower P-states and a lower number of
threads. For Assumption 2, the number of threads that provides the
maximum throughput does not change when decreasing P-state.
Accordingly, if (ps , t1) is the optimal coniguration ixed ps , then
the optimal coniguration for the sub-space S2 must have a number
of threads less than or equal to t1. Speciically, if pwr (ps −1, t1) < C

then the optimal coniguration with P-state equal to ps − 1 has still
t1 threads. Otherwise, if the power cap is violated, the number

of threads has to be reduced to stay within the power cap. Also,
this mean that reducing the number of threads leads to reduce the
throughput, since the above situation can arise only if we are in the
ascending part of the throughput curve. Accordingly, in this case the
optimal coniguration is the irst one that is within the power cap
while reducing the threads. Phase 2 follows exactly this behaviour,
i.e. it irst moves to P-state equal to ps −1 , and if pwr (ps −1, t1) > C

then it reduces the number of threads until it inds a coniguration
that does not violate the power cap. Thus, Phase 2 inds the optimal
coniguration for P-state equal to ps − 1, unless none of them is
within the power cap. We remark that Phase 2 performs this search
for each P-state such that p ∈ [0,ps − 1]. Thus, it inds the optimal
coniguration for each P-state in the sub-space S2. Finally, it selects
the optimal one of them, thus inding the optimal coniguration in
the sub-space S2.
Outcome by Phase 3. We remark that Phase 3 starts exploring
from the coniguration returned by Phase 1, and explores moving
towards higher P-states and a higher number of threads. Also, we
remark that Phase 3 is not executed if the coniguration returned
by Phase 1 is such that t1 is the number of threads that provides the
highest throughput and is within the power cap. Indeed, in this case,
the throughput for any coniguration with a number of threads
higher than t1 and any higher P-state is lower for Assumption 2.
Hence, Phase 3 is executed only if the number of threads that pro-
vides the highest throughput is higher than t1, but it violates the
power cap with P-state equal to p1. This means that t1 is along the
ascending part of the throughput curve due to Assumption 1. Also,
this holds true for any P-state higher than p1 for Assumption 2. Ac-
cordingly, the throughput with any coniguration in the sub-space
S3 with a number of threads less than t1 is lower. Consequently,
the optimal coniguration for P-state equal to ps + 1 must have a
number of threads higher than t1. Phase 3 irst moves to P-state

equal to ps + 1, then it starts increasing the number of threads and
stops when the power cap is violated or the throughput decreases.
Accordingly, it inds the optimal coniguration for P-state equal to
ps + 1. After, Phase 3 performs this search for each P-state such
that p ∈ [ps + 1,pmax ]. Thus, it inds the optimal coniguration for
each P-state in the sub-space S3. Finally, it selects the optimal one
of them, thus inding the optimal coniguration in the sub-space
S3. □

4.3 Time Complexity Analysis

We estimate the time complexity of the exploration procedure as
the number of exploration steps required to return the optimal
coniguration. We evaluate the time complexity of each exploration
phase separately:

• Phase 1. Each coniguration with a diferent number of
concurrent threads and p = ps is explored at most once, thus
the time complexity is O (tmax );
• Phase 2. Starting from a coniguration (p, t ), Phase 2 either
reduces the value of p or reduces t . Starting from the conig-
uration returned by Phase 1, it can reduce p at most pmax

times, and can reduce t at most tmax times. Thus, the time
complexity of Phase 2 is O (pmax + tmax );
• Phase 3. Starting from a coniguration (p, t ), Phase 3 either
increments the value of p or increments t . Thus, for the same
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reasoning used in Phase 2, the time complexity of Phase 3 is
O (pmax + tmax ).

Therefore, the overall time complexity of the exploration procedure
is O (pmax + tmax ).

4.4 The Enhanced Tuning Strategy

In this section, we present an improvement of our tuning strategy
that allows to further improve performance and reduce the proba-
bility to violate the power cap. It takes advantage of two practical
factors:

(1) The power consumption with the optimal coniguration
(p, t )∗may be lower than the power cap, thusC−pwr (p, t )∗ >
0. This is a consequence of the discrete set of power consump-
tion values resulting from the discrete domain of P-states.
Statistically, the greater the diference of power consumption
between adjacent conigurations, the larger the diference
between C and pwr (p, t )∗.

(2) The power consumption with the optimal coniguration
(p, t )∗ may change along the time interval in-between two
subsequent exploration procedures due to possible variations
of the workload proile. Thus, pwr (p, t )∗ could increase over
the power cap. Similarly, the application power proile might
change such that some coniguration with both higher per-
formance and power consumption than (p, t )∗ might enter
the set of acceptable conigurations.

Our enhanced tuning strategy performs luctuations between
diferent conigurations to mimic a continuous domain of power
consumption values, while also accounting for possible variations
of the application power proile. It relies on the same exploration
technique used by the basic strategyÐwithout introducing any
further step in the explorationÐbut in addition to pwr (p, t )∗ it also
selects two other conigurations:

• (p, t )H the explored coniguration with highest throughput
such that pwr (p, t )H < C ∗ (1 + h), and
• (p, t )L the explored coniguration with highest throughput
such that pwr (p, t )L < C ∗ (1 − h).

The parameter h deines the ideal distance between the power con-
sumption of (p, t )H and (p, t )L with respect to the power cap. We
note that thr (p, t )L ≤ thr (p, t )∗ ≤ thr (p, t )H . In the time interval
between the end of the exploration procedure and the start of the
next one, the enhanced strategy performs luctuations between
(p, t )H , pwr (p, t )∗ and pwr (p, t )L to maximize the performance
over a windoww , while keeping the average power consumption
along the window lower thanC . When pwr (p, t )∗ < C , the strategy
moves between (p, t )∗ and (p, t )H , selecting the former whenever
the average power consumption along the window is above the
power cap, while selecting the latter in the opposite case. The re-
sult of this luctuation can provide a performance increase over
thr (p, t )∗. Diferently, if pwr (p, t )∗ > C the variation of conigu-
rations is performed between (p, t )∗ and (p, t )L , using the latter
to reduce the average power consumption over the window. In
this scenario, the enhanced strategy can provide a reduction in the
power cap violation compared to the static exploitation of (p, t )∗.
To limit the luctuation frequency, an upper and a lower tolerance
threshold like C + l and C − l can be used. Temporary power cap

Figure 5: Example of luctuations of conigurations per-

formed by the enhanced strategy in-betweendiferent explo-

ration procedures.Window size is set to 8. O denotes the con-

iguration (p, t )∗, H the coniguration (p, t )H and L the con-

iguration (p, t )L . These conigurations are ixed along each

window but their power consumption could change.

violations of a few milliseconds are not relevant as power consump-
tion is generally computed as an average value at the granularity
of seconds.

To adapt to workload variations, at the end of each window, if
pwr (p, t )L > C the P-state of (p, t )∗ is shifted up by one in order to
reduce its power consumption.Moreover, (p, t )H and (p, t )L are also
set to diferent conigurations such that they have the same number
of threads as (p, t )∗ but with P-state decremented or incremented
by one respectively. This lowers the overall power consumption of
the conigurations, thus allowing to promptly adapt to the increase
in the application power proile. Otherwise, if pwr (p, t )H < C , the
same modiications are applied except that the P-state of (p, t )∗ is
shifted down by one instead of up. The possibility of increasing the
power consumption of the conigurations creates the opportunity
for further performance gains. In both situations, we only modify
the P-state and set for all conigurations the number of threads equal
to the coniguration (p, t )∗ as modifying the P-state always provides
either an increase or a decrease in both performance and power
consumption while changing the number of threads might provide
diferent performance results based on the workload characteristics.

A pseudo-code representation of the algorithm implemented by
the enhanced strategy is presented below.

Figure 5 shows the luctuations performed by the enhanced strat-
egy along a window withw = 8. From step 0 to step 4 the strategy
luctuates between (p, t )∗ and (p, t )H , allowing increased perfor-
mance compared to the basic strategy. In step 5, to decrease the
average power consumption along the window, the coniguration
(p, t )∗ is selected. However, its power consumption has increased
since its last exploitation and has become higher than the power cap.
In step 6, the enhanced strategy selects (p, t )L to reduce power cap
violations compared to the basic strategy which would have been
static to coniguration (p, t )∗ until the next exploration procedure.
Coniguration (p, t )∗ is selected in step 7 to conclude the window.
Despite no coniguration shows a power consumption similar to
the power cap, the average power during the window converges to
its value.
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Algorithm 1 Fluctuation algorithm used in the enhanced strategy

procedure Fluctuate

Require: Power cap C

Require: Coniguration O, T and H with attributes (pstate, threads,
power)

Require: Power cap threshold l
Require: Window size w

step← 0

windowPower← 0

windowTime← 0

selectedConig← O

while step < w do

currentPower, time← getMeasurements(selectedConig)

set power of the measured coniguration to currentPower

windowPower← (windowPower ∗ windowTime+

currentPower ∗ time)/(time + currentTime)

windowTime← windowTime + time

slot← slot + 1

if windowPower < C ∗ (1 − l) then

selectedConig← H

else if windowPower > C ∗ (1 + l) then

if O.power < C then

selectedConig← O

else

selectedConig← L

else ▷ window power consumption close to power cap
if H.power < C then

selectedConig← H

else if O.power < C then

selectedConig← O

else

selectedConig← L

if H.power < C or L.power > C then

if H.power < C then ▷ can increase the power
consumption

O.pstate← O.pstate − 1

else ▷ should reduce power consumption
O.pstate← O.pstate + 1

H.threads← O.threads

L.threads← O.threads

H.pstate← O.pstate − 1

L.pstate← O.pstate + 1

5 EXPERIMENTAL RESULTS

In this section, we present the results of an experimental study we
conducted to assess the proposed power capping technique. As in
previous studies on power capping (e.g. [12, 19]), we consider two
evaluation metrics, the application performance and the average
power cap error. The latter is the average diference between the
power consumption and the power cap value along time intervals
where the power cap is violated. When assessing performance and
power cap errors, we also include measurements gathered along
the exploration procedure. We run experiments for all application
scenarios that we considered in our preliminary study (see Section
3). Thus we use Intruder, Genome,Vacation and Ssca2 as benchmark

applications from STAMP, with either locks or transactions as the
synchronization method. As hinted, these applications (and the
diferent instances of the synchronization support) were speciically
selected to cover a wide range of diferent scalability scenarios. We
compared our technique with:

(1) a reference power capping technique, referred to as baseline,
that selects the coniguration with the lowest P-state from
the set of conigurations such that the number of threads is
the highest among the conigurations with power consump-
tion lower than the power cap. It implements the selection
strategy proposed in [19];

(2) a technique, referred to as dual-phase, that initially tunes
the number of threads starting from the lowest P-state, and
subsequently tunes the CPU P-state keeping the number of
threads ixed. The initial phase is equivalent to phase 1 of
the proposed exploration procedure. The selection strategy
of this technique is similar to the one presented in [26].

The comparison of our proposal with the technique in point (1)
allows to quantify the performance beneits achievable by properly
allocating the power budget taking into account the scalability level
of the speciic multi-threaded workload. Additionally, the inclusion
of the dual-phase technique listed in point (2) in the evaluation
allows quantifying the possible performance beneits achievable
by exploring the whole bi-dimensional space of conigurationsÐ
as we do in our approachÐover two distinct mono-dimensional
explorations, which might not ind the optimal coniguration. We
should note that, despite exploring a larger set of conigurations,
the technique we propose has the same time complexity of the
dual-phase technique.

5.1 Implementation Details

We developed a controller module that implements our technique
and the baseline technique.1 All software of our experimental study,
including benchmark applications, is developed in C language for
Linux. The controller module alters the number of concurrent
threads exploiting the pause() system call and thread-speciic sig-
nals for reactivation. The CPU P-state is regulated through the
cpufreq Linux sub-system, while energy readings are obtained from
the powercap sub-system. Both these sub-systems are included by
default in recent versions of the Linux kernel and expose their
respective interface through the /sys virtual ile system.

At each step, the exploration procedure relies on statistical re-
sults of a previous step, such as average power consumption and
throughput, to deine the subsequent coniguration to explore. Each
step of statistics collection is determined by a ixed amount of units
of work processed. We cannot rely on application independent met-
rics, such as the number of CPU retired operation, since it would
also consider instructions related to spin-locking or aborted trans-
actions that do not provide execution progress. For applications
based on locks we deined the unit of work as the execution of
one critical section guarded by a global lock. Diferently, for trans-
actions we deine the unit of work as one commit. The statistics
are collected in a round-robin fashion by all the active threads to
reduce execution overhead and provide NUMA-aware results in
modern multi-package systems.

1See github.com/HPDCS/EPADS
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Figure 6: Speed-up and power cap error with locks

For the executions presented in the experimental results, we set
the units of work per step to 5000, resulting in tens of milliseconds
per step for all the considered applications and synchronization
methods. In addition, we set to 150 the number of steps required
to restart the exploration procedure after the conclusion of the
previous exploration. Regarding the parameters of the enhanced
strategy, we set the window size (w) to 10, the maximum power
consumption for (p, t )H and (p, t )L to respectively the 10% higher
or lower than the power cap(h) and the luctuation threshold (l ) to
1%. We always used the same parameters for all applications and
synchronization techniques. Autonomic tuning of these parameters
at run-timeÐpossibly leading to increased performance beneitsÐ
will be explored in a future work. With the tested parameters,
the overheads of changing conigurationÐdominated by P-state

switchingÐand the cost of performance and power measurements
are lower than 2% for all the considered executions.

5.2 Experimental Results

We consider both the tuning strategies of our technique referred
to as basic strategy and enhanced strategy. We analyze the perfor-
mance results of our strategies in terms of speed-up with respect to
the throughput of the baseline technique. As anticipated, we also
compare the average power cap error. For each test case, we present
the results with three diferent power cap values, i.e. 50, 60 and 70
watts.

Results for the case of lock-based synchronization are reported
in Figure 6. Overall, the results show an evident performance im-
provement with both strategies of our technique with respect to the
baseline technique. Only for the case of Genome the performance
is comparable. In the best cases, i.e. with Intruder, the performance
improvement reaches 2.2x (2.32x) and 2.15x (2.19x) for the basic

(enhanced) strategy when the power cap is equal to 50 and 60 watts
respectively, and it is close to 1.9x for both the proposed strategies
with power cap set to 70 watts. The enhanced strategy further im-
proves performance compared to the baseline technique by up to
12.5% in Intruder at 50 watts, and by 5.3% on average. For lock-based
synchronization, the results of the dual-phase technique are similar
to those achieved by the baseline technique.

As for the power cap error, with both the strategies of our tech-
nique and the dual-phase technique, it is clearly reduced compared
to the baseline. Also, the results show that with the enhanced strat-
egy in many cases there is a reduction of the power cap error
compared to the basic strategy. Indeed, except for the case of Vaca-
tion with power cap set to 60 watts, where it is increased by less
than 0.1%, the error with the enhanced strategy is lower. In the best
case it is about 0.1%, while it is about 2% and 4.8% with the basic
strategy and the baseline technique, respectively.

Results for the case of transaction-based synchronization are
reported in Figure 7. Overall, the performance results conirm the
advantage of our technique compared to the baseline technique.
However, with transactions the speed-up is generally slightly lower
than with locks. In the best cases, it reaches about 1.9x. Also, there
is one case (with Genome and power cap = 50 watts) where it is
slightly less that 1 with both the strategies. As for the power cap
error, it increases with the basic strategy compared to the case with
locks, overcoming the error of the baseline technique in most of
the cases. However, it does not overcome 2% in all cases. The error
is considerably reduced with the enhanced strategy. Particularly, it
is clearly lower than the baseline technique with all applications
when the power cap is equal to 50 watts and with Intruder when
the power cap is equals to 60 watts, while the results are similar for
the other power cap values. In addition, the enhanced strategy can
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Figure 7: Speed-up and power cap error with transactions

further increase performance by up to to 8% (Vacation with power
cap set to 50 watts) and by 3.5% on average. Diferently from the
lock-based case, both strategies of the proposed technique show an
higher speed-up compared to the dual-phase technique by up to 21%
(ssca2 with power cap set to 50), and by 7.7% and 10.7% on average
for the basic strategy and the enhanced strategy respectively.

5.3 Analysis of the Results

As a irst observation, the results show that in various cases with
locks, the error of our technique and of the dual-phase technique
is very close to zero. This is due to the fact that, in our study,
the scalability is limited for all applications when using locks. In
these scenarios, the number of concurrent threads providing higher
throughput (that is selected by our technique and by the dual-phase
technique) is low, thus the value of P-state can be changed up to 0
while the power cap frontier is still far. This keeps the error very
close to 0 since it is unlikely that the power cap is violated during
the exploration procedure or due to workload variations.

The error is generally reduced with the enhanced strategy com-
pared to the basic strategy, while also improving performance. This
arises since the former is able to react along the time between two
consecutive exploration procedures to the possible variations of
the power consumption of the selected conigurations, as discussed
at the end of Section 4.4.

The speed-up with our technique is less than 1 only in one case,
i.e. for Genome with transactions when the power cap value is
equal to 50 watts. We note that Genome with transactions is highly
scalable (see Figure 3). This leads both the baseline technique and
our technique to select 20 as the number of concurrent threads.
As shown by the plot in Figure 3, the throughput of Genome with
transactions is subject to noise when close to 20 threads . Also, we

remark that our technique is able to react to workload variations
also in terms of scalability. In this scenario, these factors cause lower
performance with our technique due to noise, which sometimes
(wrongly) leads to temporarily selecting a less than optimal number
of concurrent threads.

As expected, for lock-based synchronization the proposed tech-
nique shows similar results to the dual-phase technique since both
techniques return the same coniguration when the ascending part
of the throughput curve is missing. For transaction-based synchro-
nization, the best speed-up improvements over the dual-phase tech-
nique are obtained for Ssca2 and Genome which show a less than
linear ascending part of the throughput curve for each ixed P-state

(Figure 3). As the most signiicant example, in Ssca2 the throughput
slightly increases when increasing the number of threads from 6
to 15 which makes the dual-phase technique select a coniguration
with 15 threads. Diferently, the proposed technique allocates the
power budget more eiciently by selecting a coniguration with a
lower number of threads at an increased frequency. We should note
that the beneits of the proposed technique over the dual-phase
technique are not limited to applications that rely on transactional-
based synchronization. Efectively, performance beneits should
be obtained for any application with a throughput function that
shows an ascending part followed by a descending one, or only an
ascending part that is less than linear.

Overall, the results of our experiments study show that it is pos-
sible to achieve signiicant performance beneits by appropriately
selecting the number of concurrent threads and CPU P-state tak-
ing into consideration the scalability of the speciic multi-threaded
workload. As expected, compared to the baseline technique, the
proposed solutions achieve the best results with poorly scalable
applications, i.e. where contention is not minimal. Compared to the
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dual-phase technique, the exploration of the whole bi-dimensional
space of conigurations performed by the proposed technique can
provide an appreciable improvement in performance for some ap-
plications, while achieving the same results for others. Finally, the
enhanced strategy manages to further improve performance and
reduce the power cap error over the basic strategy.

6 CONCLUSIONS

In this paper, we have proposed a novel power capping technique for
dynamic tuning the number of concurrent threads and core power
states for the case of multi-thread applications that materialize
diverse scalability levels, also depending on the speciic support
for synchronizing the accesses to shared data. The technique is
able to ind the optimal coniguration in linear time, ensuring the
maximum performance achievable within the power cap. We also
present an improvement of the technique that induces luctuations
between diferent conigurations to eiciently exploit the full power
budget, resulting in both increased performance and reduced power
cap errors.We have shown that, compared to the baseline technique,
our strategy provides an average speed-up of 1.48x, with individual
test cases reaching up to 2.32x. Furthermore, we have shown that,
by exploring the overall bi-dimensional space of conigurations,
the proposed technique can improve performance by up to 21%
compared to techniques that tune the number of threads and the
CPU performance state independently.
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