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ABSTRACT
ACloudIoT solution typically connects thousands of IoT things with
cloud applications in order to store or process sensor data. In this
environment, the cloud applications often consist of microservices
which are connected to each other via message queues and must
reliably handle a large number of messages produced by the IoT
things. The state of a message queue in such a system can be a
challenge if the rate of incoming messages continuously exceeds
the rate of outgoing messages. This can lead to performance and
reliability degradations due to overloaded queues and result in the
unavailability of the cloud application.

In this paper we present a case study to investigate which per-
formance metrics to be used by a threshold-based auto-scaler for
scaling consuming microservices of a message queue in order to
prevent overloaded queues and to avoid SLA violations. We eval-
uate the suitability of each metric for scaling I/O-intensive and
compute-intensive microservices with constant and varying char-
acteristics, such as service time. We show, that scaling decisions
based on message queue metrics are much more resilient to mi-
croservice characteristics variations. In this case, relying on the
CPU utilization may result in massive overprovisioning or no scal-
ing decision at all which could lead to an overloaded queue and
SLA violations. We underline the benefits of using message queue
metrics for scaling decisions instead of the more traditional CPU
utilization particularly for I/O-intensive microservices due to the
vulnerability to variations in the microservice characteristics.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering→ Software performance; Software reli-
ability;
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1 INTRODUCTION
The uprising CloudIoT paradigm addresses the limitations of IoT by
merging it with a cloud infrastructure to provide virtually unlimited
computational and storage capabilities [4]. Bosch offers with the
Bosch IoT Suite a Platform-as-a-Service (PaaS) to provide a toolbox
to quickly build IoT applications and deploy them on the Bosch IoT
Cloud which is based on Pivotal CloudFoundry. A common usage
scenario in this environment is Sensing-as-a-Service (SaaS) which
describes the process of making sensor data available to clients and
applications over the cloud infrastructure [20]. Sensor data arise
from a range of domains like mobility to smart home and result in
a huge amount of data to be processed and stored on the cloud.

In recent years the focus in software industry has shifted from
monolithic architectures to the microservice architectural style [2].
This architectural style allows to leverage the capabilities of cloud
computing in terms of scalability and maintainability. Whereas tra-
ditional applications exhibit a monolithic architecture which tends
to put multiple functionality into a single process the microser-
vice architectural style separates functionalities into self-contained
services. Breaking down software to loosely coupled and highly
cohesive modules offers multiple benefits in terms of flexibility and
evolvability [7]. By supporting scaling operations on a fine-granular
level infrastructure costs can be reduced up to 70 % compared to a
traditional monolithic architecture [25].

Microservices are typically connected to each other via a light-
weight communication protocol, most commonly REST or message
queues [9]. In this paper we focus on the communication via mes-
sage queues provided by a message broker system. There are many
message broker systems which differ in their mechanism and fea-
ture set and a short survey describing the most popular message
broker systems can be found in [13]. The state of a message queue
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can be a challenge in such a system if the rate of incoming messages
continuously exceeds the rate of outgoing messages eventually re-
sulting in performance and reliability degradations. Due to the
accumulation of messages in the queue these issues can persist
even after the rate of incoming and outgoing messages is in balance
again. This underlines the need to reflect the message queue state
in scaling decisions.

The Bosch IoT Cloud offers a built-in threshold-based auto-
scaling mechanism to scale microservices in and out based on the
CPU utilization, HTTP latency or HTTP throughput. In this paper
we investigate the suitability of the CPU utilization for scaling mi-
croservices which are consuming messages from a message queue.
Furthermore we investigate which information of the state of the
message queue is suitable for scaling consuming microservices. We
focus on two classes of microservices: I/O-intensive and compute-
intensive. In the first class the time of processing a task is deter-
mined by waiting for I/O-operations to be completed whereas in the
second class it is determined by the computation power. We inves-
tigate the suitability of each metric to cope with the challenges in
this environment using a threshold-based rules auto-scaling setup.
This allows us to use a single performance metric and compare it
to other metrics in coping with the challenges in respect to each
microservice class. Subsequently we explore the vulnerability of
each metric to variations in the microservice characteristics.

The remainder of this paper is organized as follows: Section 2 de-
scribes a running example which serves as a CloudIoT application
for the pre-processing and storing part of a SaaS use case. Section
3 explores the challenges in scaling consuming microservices. The
case study in section 4 evaluates the suitability of each performance
metric using a threshold-based auto-scaling system. Section 5 gives
a brief overview of related work. Section 6 concludes the results
extracted from the case study.

2 RUNNING EXAMPLE
One of the most common usage scenarios of the Bosch IoT Suite is
SaaS in the areas of mobility, industry 4.0 or smart home. The main
idea is to store data from things on the cloud and make it available
to clients and applications.

In the running example we examine the pre-processing and stor-
ing of sensor data on the cloud. Such a system needs to cope with
a high amount of data. An architecture to support this use case
was proposed by Cecchinel et al. [5]. In order to allow a more fine-
granular scaling we refine the proposed architecture. Instead of
processing and persisting sensor data within a single service we
propose a dedicated service for each of these functionalities to be
more in line with the microservice architectural style. The services
are connected to each other via message queues provided by a
message broker system. By using message queues consuming and
producing services are decoupled from each other and communica-
tion is asynchronous. Figure 1 illustrates the components in this
architecture.

Components – The Connection Service serves as a gateway for
connecting IoT things with the cloud. Typically it retrieves sensor
data via a lightweight communication protocol, e. g. REST or MQTT.
This sensor data is then enqueued in a message queue. As a con-
suming service the Data Processing Service retrieves messages

Figure 1: Illustration of the running example.

from this queue and pre-processes them. Pre-processed messages
are enqueued towards the Data Persistence Service. This service
retrieves processed messages and stores them by communicating
with an External Service, i. e. a database management system via
a RESTful API.

Constraints – Communication with the external service is syn-
chronous. To avoid losing sensor data, a consuming service must
acknowledge a message as processed before the message queue
releases it. In case of a service failure an unacknowledged message
can be retransmitted to a healthy service instance.

Microservice classes – We classify the Data Processing Service
as a compute-intensive microservice, since the processing of mes-
sages is in this example a mainly CPU-bound operation. We classify
the Data Persistence Service as an I/O-intensive microservice
since the time for processing a message is determined by commu-
nicating with the external service.

Environment – We deploy the running example on the Bosch
IoT Cloud which is based on Pivotal CloudFoundry. CloudFoundry
abstracts the underlying infrastructure and offers an interface to
deploy and manage applications with a customizable runtime envi-
ronment. For this reason an application developer scales application
instances instead of virtual machines. In our environment an ap-
plication instance of a lightweight microservice – like these in the
running example – is provisioned in less than one minute. Further-
more CloudFoundry offers self-healing capabilities by discovering
runtime failures of application instances and restarting them. As
a message broker system we use Pivotal RabbitMQ. It is an im-
plementation of the AMQP protocol which was initially designed
for financial transactions thus aiming for reliability and scalability.
In the most common scenario RabbitMQ enqueues and dequeues
messages in a first-come, first-served (FCFS) manner [1].

3 CHALLENGES IN SCALING CONSUMING
MICROSERVICES

In this section we address specific challenges for scaling microser-
vices consuming messages from message queues. The challenges
are motivated by issues we experienced on the messaging middle-
ware caused by an accumulation of messages in message queues
due to underprovisioned microservices on the consuming side.

Let q be a queue, l the number of messages in the queue, p the
production rate and c the consumption rate. Let the service policy
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of q be first-come, first-served (FCFS). This queue is illustrated in
Figure 2.

Figure 2: Illustration of a message queue.

There are three basic states for a queue q based on the growth
∆l = p − c:

• Steady: A queue q is in a steady state if ∆l = 0
• Filling: A queue q is in a filling state if ∆l > 0
• Draining: A queue q is in a draining state if ∆l < 0

A filling state leads to the accumulation of messages in the queue.
Since the policy is FCFS they induce a delay on application-layer
caused by a wait time for each message in the queue. Let tq (m)

be the delay for a messagem to pass through a queue q and Tmax
the maximal desired delay, e. g. derived using the applications SLA.
Let Lmax be the maximal length of a queue q the message broker
system is able to cope with. We define the following conditions:

• Congested: A queue q is considered as congested if tq (m) >

Tmax
• Flooded: A queue q is considered as flooded if l > Lmax

A congested queue degrades the performance on application-
layer since each message experiences a delay. In a flooded state
a message broker system may try to stabilize the queue by block-
ing and unblocking the connection to keep the rate of incoming
messages at a level the consumers can handle. In RabbitMQ this be-
havior is calledflow control mode. On application-layer a flooded
queue induces like a congested queue a delay but furthermore leads
to a degradation of reliability by rejecting messages. A congested
or flooded queue may remain after a queue has been stabilized
from a filling state to a steady state. For this reason we identify the
following challenge:

• Challenge I – Recover or avoid flooded or congested queues.

The underlying issue of a congested or flooded queue is based
on the provisioning of consuming microservices. Underprovisioned
microservices lead to a filling queue state since the consumption
rate is lower than the production rate. For this reason it eventually
transits to a congested or flooded state inducing a performance
degradation on application-layer and may result in reliability issues
such as a rejection of messages. Overprovisioned microservices
have a low utilization but do not degrade the message queue state
since the consumption rate exceeds the production rate. However,
due to the typical pay-as-you-go cost model, each provisioned
resource increases the operating costs.

Since the microservices are consuming messages from the mes-
sage queue, information about the state of the message queue could
be beneficial if utilized for scaling decisions. For this reason we
identify the following challenges regarding microservices in respect
to the message queue:

• Challenge II – How to utilize informations of the state of
the message queue to prevent underprovisioning of consum-
ing microservices?

• Challenge III – How to utilize informations of the state of
the message queue to prevent overprovisioning of consum-
ing microservices?

4 CASE STUDY
The rationale of this case study is to investigate the suitability
of a set of performance metrics in a threshold-based rules auto-
scaling setup for different microservices classes to cope with the
challenges which were mentioned in section 3. Furthermore we
investigate how vulnerable an auto-scaling system is to variations
in the microservice characteristics in terms of elasticity and the
message queues state in respect to each performance metric.

Threshold-based rules auto-scaling. This class of auto-scaling is
one of the most common strategies to address under- and overpro-
visioning in cloud environments. It exhibits a widespread use in
industry due to the simplicity and high availability among com-
mercial cloud providers like Amazon EC2. Rules in this context
consist of a condition and an action to be executed. Usually they
define a lower and upper threshold for a performance metric. If the
current value of the metric exceeds a threshold, the auto-scaling
systems scales application instances in or out. The quality of scal-
ing decisions of an auto-scaling systems can be evaluated via its
elasticity. Elasticity in this context describes the degree to which a
system is able to adapt to workload changes by provisioning and
de-provisioning resources [12].

Performance metrics. A set of performance metrics for scaling
decisions is listed in the survey [15]. The internal state of the mes-
sage broker system poses a challenge in the running example. For
this reason we want to compare the suitability of relying directly
on message queue metrics for scaling decisions instead of the tra-
ditional CPU metric. Many message brokers such as RabbitMQ
support the monitoring of queue-specific metrics like arrival rate
(ingress), departure rate (egress) and queue length. In order to ap-
proximate the queueing delay we measure the end-to-end latency
between message transmission and receiving in a consuming mi-
croservice. Arrival rate and departure rate are conceptually not
viable for scaling decisions in a threshold-based rules auto-scaling
setup. For example: the arrival rate is not influenced by scaling
decision thus offers no feedback. For this reason we investigate the
queue growth which includes both metrics. The following list gives
an overview over the set of investigated metrics:

• Microservice – CPU: The average CPU utilization is a pop-
ular proxy of the current systems workload.

• Message Queue – Length: The queue length describes the
number of enqueued messages.

• Message Queue – Growth: The queue growth is the differ-
ence between arrival and departure rate thus describing the
current growth in the queue.

• Message Queue - Delay: The queueing delay describes the
wait time for a message in the queue before being processed.
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4.1 Research Questions
We propose the following research questions to address the suit-
ability of performance metrics to represent the systems workloads
in a manner which allows an auto-scaling system to cope with the
described challenges:

• RQ1 – What degree of elasticity achieves a threshold-based
rules auto-scaling system for each performance metric and
each microservice class?

• RQ2 – How suitable is such an auto-scaling system in avoid-
ing a congested or flooded message queue?

In a dynamic environment like CloudIoT changes or variations
in the characteristics of microservices can be expected. For example:
the I/O-intensive microservice exhibits a dependency to an external
service, how does an already configured auto-scaling system cope
with changed external service times? How well does an already
configured auto-scaling system copewith variations of the compute-
intensive tasks?

• RQ3 – How vulnerable is a configured threshold to varia-
tions in the microservice characteristics for each microser-
vice class in respect to the auto-scalers elasticity?

• RQ4 – How vulnerable is a configured threshold to varia-
tions in the microservice characteristics for each microser-
vice class in respect to avoiding a congested or flooded mes-
sage queue?

4.2 Methodology
We use a synthetic setup with a threshold-based rules auto-scaling
system to perform horizontal scaling operations based on a single
performance metric for different microservice classes which are
described in the running example in section 2. In this synthetic
setup we can directly set the characteristics of the external service
and the configuration of the internal services. In order to evaluate
each metric for the specific microservice class we investigate the
auto-scaling system as a whole since it relies on the metric and its
thresholds to trigger actions. To answer the research questions we
need to evaluate the elasticity of the auto-scaler and the state of
the message queue.

Evaluate scaling decisions. In order to qualify elastic adaptations
we apply the elastic speedup measure proposed by SPEC RG Cloud
[11]. The elastic speedup measure reflects the difference between
supplied and demanded resources within the measurement period
regarding timing and accuracy aspects. Whereas the timing aspects
are expressed by the share of time in an under- or overprovisioned
state the accuracy describes the absolute deviation of each state in
respect to the demanded resources. Both aspects are normalized
over the measurement period and each aspect is aggregated to a
single accuracy and timeshare metric using a custom weight for
under- and overprovisioning. The elastic speedup measure is based
on a speedup vector sk for a benchmarked platform k . The speedup
vector sk is computed with the accuracy and timing aspects of the
benchmarked platform k and a baseline platform base:

sk = (
accuracybase
accuracyk

,
timesharebase
timesharek

) = (accuracy, timeshare)

The elastic speedup measure for a benchmarked platform k is
the geometric mean of its speedup vector sk :

elasticspeedupmeasure =
√
skaccuracy + skt imeshare

In our test setup we weight all metrics equally. To obtain the
baseline metrics we execute a configured workload on the system
using no auto-scaling system. The baseline is used to compute the
elastic speedup measure for each configuration of the auto-scaling
system in identical workload setups. In this paper we refer to the
elastic speedup measure as the elasticity score.

Evaluate queue state. In order to evaluate the suitability of avoid-
ing a flooded or congested message queue we compare the average
queue length for each setup run. A queue length aiming towards
zero indicates that the auto-scaling mechanism based on the per-
formance metric is suitable to avoid a flooded or congested queue.

Threshold optimization. Threshold-based rules auto-scaling sys-
tems rely on an upper and lower threshold for deciding scaling
operations. The performance of a threshold-based auto-scaling sys-
tem depends on the configured threshold. An application developer
has degrees of freedom to configure the thresholds to achieve a
specific goal regarding reaction speed, costs or performance. We
optimize the thresholds for each metric with a heuristic algorithm
using the achieved elasticity as fitness function to capture the ac-
curacy and timing aspects of scaling decisions. By optimizing the
thresholds for each performance metric we can compare them to
each other. The concrete steps for the compute-intensive and I/O-
intensive microservices are as follows:

(1) Configure themicroservice characteristics for a specific setup.
(2) Configure the workload and execute it on the systemwithout

using an auto-scaler to define the baseline score.
(3) For each metric approximate the optimal threshold constel-

lation. In this phase we apply differential evolution (DE) as a
heuristic to find the global minima [23]. As fitness function
we use the elasticity score.

(4) Compare the results of each optimal threshold metric run in
order to quantify the suitability of each metric.

Variations in microservice characteristics. To address research
question 3 and 4 we configure the characteristics of each microser-
vice class. For the compute-intensive microservice we variate the
computational operation to require more or less processing steps in
order to simulate a change in task. For the I/O-intensive microser-
vice we vary the service time of the external service SText and
investigate the influence of the transferred payload Ndata .

4.2.1 Auto-Scaling system. The setup of the auto-scaling sys-
tem is illustrated in Figure 3. The scaling system monitors a single
microservice and uses the CPU or message queue metrics as under-
lying performance metrics for scaling decisions. In this setup we
scale application instances in and out (horizontal scaling). After a
scaling decision the system enters a cooldown-period which ends
after the scaling decision has actually an impact, i. e. the scaled
application instance is destroyed or ready, which occurs usually
within 20-40 seconds.
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Figure 3: Illustration of the threshold-based rules auto-
scaling system

Metric Threshold Avg. Q.-Length Score
CPU 60 / 100 [%] 1.76 [msg] 305.94
Queue Delay 0.75 / 1.25 [sec] 3.17 [msg] 259.13
Queue Growth 0 / 1 [msgs/sec] 95.96 [msg] 247.16
Queue Length 0 / 10 [msgs] 8.41 [msg] 221.01
Baseline - / - - 100

Table 1: Elasticity score for each performance metric adapt-
ing the compute-intensive microservice

The workload consists of three phases to observe the systems be-
havior for an increasing, steady and decreasing workload intensity.
We send a total of 4000 messages over a duration of 10 minutes. We
configure both microservices to process a message in circa 400 ms.

4.3 Results
In the first test setup we optimize the thresholds of each perfor-
mance metric for a specific microservice characteristic.

Compute-intensive microservice. Table 1 shows the ranking of
each metric in respect to the elasticity score and also shows the
average queue length in order to address the second research ques-
tion. Figure 4 shows the adaptation behavior of each scaling system
in respect to the demanded and supplied number of application
instances.

The CPU-metric achieves a substantially high ranking by ex-
hibiting a stable and accurate behavior. Message queue metrics are
inferior by having a high number of adaptations which increases
the non-ideal timeshare and inaccuracy. All metrics except queue
growth tend to have an empty queue, indicating that they are suit-
able to cope with the challenges of a message broker system.

I/O-intensive Microservice. In the next setup we investigate the
achieved elasticity for each performance metric to scale an I/O-
intensive microservice. We define as external service time SText =
400ms and as transferred payload Ndata = 15kB. Table 2 shows the
ranking and Figure 5 the adaptation behavior of each metric.

Figure 4: Adaptation behavior of a threshold-based rules
auto-scaler for each performance metric in a compute-
intensive microservice setup.
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Figure 5: Adaptation behavior of a threshold-based rules
auto-scaler for each performance metric in an I/O-intensive
microservice setup.

Metric Threshold Avg. Q.-Length Score
Queue Delay 0.75 / 1.25 [sec] 2.89 [msg] 270.78
CPU 0.4 / 0.9 [%] 3.99 [msg] 253.98
Queue Length 0 / 0 [msgs] 4.32 [msg] 228.13
Queue Growth 0 / 1 [msgs/sec] 163.87 [msg] 219.24
Baseline - / - - 100

Table 2: Elasticity score for each performance metric adapt-
ing the I/O-intensive microservice

The CPU-metric is in this setup a suitable metric. Its threshold
is in a narrow and small area induced by waiting for the external
service. This renders this metric vulnerable to background processes
on the same system. Queueing delay has achieved the highest score
but has as the other message queue metrics a high number of
adaptations.

Discussion. If the microservices have a constant behavior all
metrics are suitable for scaling decisions and exhibit a high score.
However, message queue metrics suffer from oscillation which
can increase the costs depending on the pricing model. CPU is a
suitable proxy to represent the current work on the system in both
microservice classes. Queue growth is the only metric which has a
high number of messages in the queue. The queue growth metric
considers the relation of arrival and departure rate thus aiming to
a steady state of the queue. If the queue length is not zero and the
arrival rate is zero such a system tends to scale down since it has a
negative growth resulting in a slow draining of the accumulated
messages in the queue.

To answer the third and fourth research question we vary the
service characteristics and observe the behavior of each configured
auto-scaling system.

Compute-intensive microservice. To investigate the influence of
varying computational time on the performance of a configured
threshold-based rules auto-scaling system we vary the computa-
tional steps required to process a message. Figure 6 shows the
elasticity score and Figure 7 the average queue length.

With decreasing computation time the throughput of the mi-
croservice increases. For this reason the resource demand can be so
small that no scaling operation is required and the baseline exhibits
an ideal provisioning. Therefore the score of each metric is approx-
imating the baseline score. With increasing computation time the
difference between baseline – with a potentially massive under-
provisioning – and scaling operations based on the performance
metrics is more prominent leading to a generally higher score.

The elasticity score is heavily influenced by the computation
time but is in nearly all the cases above the baseline score. The
length of the message queue is stable in all cases, coping with the
challenge of a flooded queue.

I/O-intensive Microservice. We address research questions 3 and
4 by varying the service time of the external service in a range of
0ms − 1200ms . The thresholds for each metric were optimized for
an external service time of 400ms . Figure 8 shows the ranking of
each metric in dependency to the external service time and Figure
9 the average queue length.
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Figure 6: Elasticity for each performance metric with opti-
mized thresholds for varying computational service time of
a compute-intensive microservice.

Figure 7: Average queue length for each performancemetric
with optimized thresholds for varying computational ser-
vice time of a compute-intensive microservice.

The CPU utilization is sensitive to changes of the external service
time. The underlying issue is the strong influence of the external
service time on the microservices CPU utilization. We observe that
with an increasing external service time the CPU utilization de-
creases and with an decreasing external service time it increases.
For this reason the auto-scaling system will scale out with a de-
creasing external service time even though the throughput of the
microservice is increased. With an increasing external service time
the auto-scaling system scales in even though the throughput of the
microservice is degraded. Whereas the first case leads to high costs,

Figure 8: Elasticity for each performance metric with opti-
mized thresholds for a specific external service time setup
of an I/O-intensive microservice.

Figure 9: Average queue length for each performance met-
ric with optimized thresholds for a specific external service
time setup of an I/O-intensive microservice.

the second case leads eventually to a flooded queue thus degrading
both performance and reliability.

Discussion. This set of experiments has shown that the CPU
is sensitive to changes in the external service characteristics and
shows a significantly worse behavior than relying on message
queue metrics. Thresholds for message queue metrics are much
more resistant to changes in microservice characteristics. For this
reason we underline the benefits on relying on message queue
metrics for I/O-intensive microservices instead of the traditional
CPUmetric. However, if the microservices have a constant behavior
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the CPU is more suitable due its capability to proxy the work on
the system.

4.4 Discussion
In this section we investigate the influence of the external service
time and the transferred payload on the microservices CPU utiliza-
tion in order to understand the results of the previous section.

The I/O-intensive microservice of the running example commu-
nicates with the external service via the lightweight REST-protocol
in a synchronous manner. The previous evaluation has already
revealed an intense influence on the CPU utilization and through-
put of a microservice in dependency to the characteristics of the
external service. We assume that the response time for a single
request is driven by the external service time SText , the internal
service time STint and the transfer time Ttransf er . Thus leading
to the following throughput model in a fully utilized service:

X =
1

SText + STint +Ttransf er

The average CPU utilization UCPU is the fraction of the CPU
busy time TCPU to the average response time Tr esponse = 1

X :

UCPU = 100 ∗
TCPU

Tr esponse

To simplify the relation between CPU and data transfer let λ be
a factor of the transfer timeTtransf er to describe a linear influence
on the CPU time such as TCPU = TBaseCPU + λ ∗Ttransf er .

The transfer time Ttransf er is influenced by the transfer rate v
such as Ttransf er (Ndata ) =

Ndata
v This leads to the final model

for the throughput X and CPU utilization UCPU :

X (SText ,Ndata ) =
1

SText + STint +Ttransf er (Ndata )

UCPU (SText ,Ndata ) = 100 ∗
TBaseCPU + λ ∗Ttransf er (Ndata )

Tr esponse

To parameterize this analytical model we perform two measure-
ments with SText = 1ms and Ndata = [1Byte, 10MByte] for the
sending and receiving scenario. In the first case we neglect the
influence of data transfer to retrieve the base service time STint
and base CPU time TBaseCPU per request. In the second case we
calculate the transfer speed and can derive the factor λ for the CPU
utilization. We solve this formula analytically to predict the CPU
utilization and throughput in dependency to the external service
time and the transferred payload. The measurements and prediction
results for the receiving scenario are shown in Figure 10, 12 and for
the sending scenario in Figure 11, 13. The dashed line shows the
predicted value whereas the solid line shows the measured values.

The model has a relative error in predicting the CPU utilization
of 22.0 % in the sending scenario and 21.6 % in the receiving. The
relative error of the throughput is 5.2 % and 3.9 %, respectively. We
assume that the relative high error of predicting the CPU utilization
is caused by modeling a linear relationship between CPU utilization
and transfer time since the prediction is much more precise for
variations in service time.

Figure 10: Influence of the external service time on the CPU
utilization and throughput of the I/O-intensivemicroservice
in a receiving scenario. With an increasing external service
time the wait time increases leading to a decreased CPU uti-
lization and throughput.

Ext. Service Time Payload CPU Utilization Throughput
0 ms 1,25 MB 12.92 % 4.13
50 ms 15 kB 11.16 % 23.07

Table 3: Variations of throughput with a similar CPU utiliza-
tion.

The influence of the external service time SText is intuitive as it
directly affects the throughput. However, by increasing the payload
Ndata the CPU utilization grows in a receiving and shrinks in a
sending scenario. This is counter-intuitive and requires further
investigation.

Some constellation of the external service characteristics can
lead to fundamentally different throughput with a similar CPU uti-
lization. Especially when using static thresholds the CPU threatens
to be a false indicator of the actual performance. We measure a
difference up to 600 % with a roughly equal CPU utilization in some
configurations for the external service, as shown in Table 3.

Another factor is the transfer rate v , which is strongly influ-
enced by the network bandwidth. Since many cloud environments
like Amazon AWS or Microsoft Azure exhibit a varying network
throughput on the same configuration [18][19] variations affect the
transfer time and influence CPU and throughput.
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Figure 11: Influence of the external service time on the CPU
utilization and throughput of the I/O-intensivemicroservice
in a sending scenario. With an increasing external service
time the wait time increases leading to a decreased CPU uti-
lization and throughput.

4.5 Threats to validity
In this section we consider the four classes of validity of a case
study [22]:

4.5.1 Internal validity. In the running example the I/O-intensive
microservice utilizes a single thread to process messages and com-
municate with the external service. By relying on a single blocking
thread, the characteristics of the external service have a stronger
influence on the microservice thus limiting the influence of other
factors.

4.5.2 External validity. The running example is a simplified
model of a real-world application for the SaaS use case. Nevertheless
the fundamental architecture is already discussed in academia and
derived of the work of [5]. For this reason we assume that it is
sufficient to represent this class of cloud applications.

Message queues offers built-in benefits for the communication of
microservices by supporting a loose coupling and reliability. How-
ever, often microservice communication is based on the typically
synchronous REST paradigm. Relying on such a communication
paradigm would abolish the challenge regarding the message queue
state of a message broker system. However, the influence of the
external service characteristics on a microservice in terms of CPU

Figure 12: Influence of the transferred payload on the CPU
utilization and throughput of the I/O-intensivemicroservice
in a receiving scenario. With increasing payload the CPU
utilization increases whereas the throughput decreases.

utilization and throughput are still present in this case so it is possi-
ble to generalize the results for microservices which do not utilize
a message queue.

4.5.3 Construct validity. Threshold-based rules auto-scaling is
one of the simplest mechanisms to provision resources in a cloud
environment. In this setup we identified that the quality of per-
formance metrics for scaling decisions depends on microservice
characteristics. We cannot exclude the possibility that other scaling
mechanisms are more adaptive to changes in the microservice char-
acteristics and their influence on the performance metrics. However,
since we perceive threshold-based rules as one of the most common
scaling strategies in industry we see validity of our investigation
in real-world scenarios. By creating an analytical model of the in-
fluence of the external service characteristics on the microservices
CPU utilization and throughput we emphasize the validity of the
case study in an analytical manner.

In the case study we investigate the behavior based on a ho-
mogeneous workload. In practice the workload is expected to be
heterogeneous, varying in size and computational requirements.
However, since microservices usually deliver one functionality it
mitigates the heterogeneity of workload compared to a monolithic
application.
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Figure 13: Influence of the transferred payload on the CPU
utilization and throughput of the I/O-intensivemicroservice
in a sending scenario. With an increasing payload the CPU
utilization and the throughput decreases.

4.5.4 Reliability. By describing the concrete environment, the
workload characteristics and the functionality of the microservices
and the threshold-based rules auto-scaling system we strongly
assume that the results are reproducible thus making it possible for
another researcher to conduct the same study and obtain the same
or very similar results. We see a limitation in the dynamic nature
of the cloud environment which could possible change the optimal
thresholds based on the time of experiment.

5 RELATEDWORK
Runtime management is a well researched area in cloud comput-
ing with resource provisioning in an automatic manner as one of
the main strategies. Extensive surveys can be found in [15] and
[6]. An usual technique are threshold-based rules auto-scalers but
there are approaches based on control theory, queueing theory,
reinforcement learning or time-series analysis. More sophisticated
approaches like [3] rely on workload forecasting, online resource
demand estimation and performance models to improve the adap-
tation behavior. These techniques deeply rely on metrics which are
able to represent the condition of the cloud system.

The performance of microservices is discussed in [10] and [7].
Whereas the first work addresses performance engineering for

microservices the second work discusses challenges for the perfor-
mance of microservices in general and mentions reliability chal-
lenges through the message-passing mechanisms. Both works do
not discuss challenges associated with using performance metrics
for scaling message consuming microservices in this environment.

With the uprising microservice architectural style message bro-
ker systems gain more importance. A short survey can be found in
[13]. An approach to scale message queues is proposed in [24].
Whereas it offers the possibility to mitigate the challenge of a
flooded or congested queue by replicating queues it does not address
the underlying challenge of a long-pending imbalance in consump-
tion and production rate. However, it is still a suitable strategy to
improve the performance by reconfiguring the middleware if the
number of consumers and producers exceeds the capacity of the
message broker system. In [8] an approach is presented to load
balance message queues to ensure that provisioned resources are
used at max capacity. Furthermore it scales message queues and
consumers in case of an overload. However, this is a sophisticated
approach which does not address scaling consuming microservices
in a generic threshold-based auto-scaling setup.

Since message queues resemble structurally a queueing system
performance modeling of this area could be transferable. Perfor-
mance modeling of queueing systems is described in-depth in [16].
Furthermore simulation of queueing petri nets like [14] could be
suitable to performance analyze cloud applications with message
queues in order to have a fine-granular view of the message queue
state at design- and run-time.

The disadvantages of relying on the CPU utilization are ad-
dressed in [21]. In this work they measured a 150 % variation in
response time of an E-Commerce benchmark with an equal CPU
utilization of 80 %. In [17] the disadvantages of relying on a single
performance metric – like CPU utilization – is mitigated bymerging
heterogeneous metrics into a single representation.

To the best of our knowledge we cannot identify related work
which investigates the suitability of performance metrics for scal-
ing different microservice classes and evaluates the resilience of
thresholds to changes in the microservices characteristics.

6 CONCLUSION
In this paper we investigated the suitability of a set of performance
metrics in a threshold-based rules auto-scaling system for scaling a
SaaS cloud application in terms of elasticity and coping with the
message queue state. We have shown, that the CPU utilization is
a suitable metric for scaling all classes of microservices if they ex-
hibit constant characteristics. However, it is a vulnerable metric for
changes in the microservice characteristic. Especially if the CPU
utilization of an I/O-intensive microservice is used as performance
metric, it can result in no scaling decisions at all, threating the ap-
plication in performance and reliability. We modeled the influence
of the external service time and the transferred payload on the CPU
utilization and identified further factors which renders the CPU
unreliable. We have shown that thresholds based on message queue
metrics are much more resilient to changes in the microservice
characteristics. For this reason we underline the benefits on rely-
ing on message queue metrics instead of the microservices CPU
utilization in similar setups.
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