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ABSTRACT
Virtualization solutions based on hypervisors or containers are
enabling technologies for scalable, flexible, and cost-effective re-
source sharing. As the fundamental limitations of each technology
are yet to be understood, they need to be regularly reevaluated to
better understand the trade-off provided by latest technological
advances. This paper presents an in-depth quantitative analysis
of virtualization overheads in these two groups of systems and
their gaps relative to native environments based on a diverse set
of workloads that stress CPU, memory, storage, and networking
resources. KVM and XEN are used to represent hypervisor-based
virtualization, and LXC and Docker for container-based platforms.
The systems were evaluated with respect to several cloud resource
management dimensions including performance, isolation, resource
usage, energy efficiency, start-up time, and density. Our study is
useful both to practitioners to understand the current state of the
technology in order to make the right decision in the selection,
operation and/or design of platforms and to scholars to illustrate
how these technologies evolved over time.
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1 INTRODUCTION
Virtualization is a fundamental technology in cloud computing. The
motivations for adopting virtualization include increased flexibility,
dynamic resource allocation, and improved resource utilization.
Virtualization provides the ability to pack applications into fewer
physical servers and thereby reduce the power consumption of
both physical servers and their cooling systems. Consequently
the paradigm has become attractive, leading to the emergence of
different solutions over the years. These solutions can be broadly
categorized into hypervisor (H)-based and Operating system (OS)-
based virtualization methods.

H-based systems are the traditional virtualization systems sup-
ported bymany cloud computing platforms. For example, Rackspace
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and Amazon Web Services (AWS) use the XEN Hypervisor [28],
which has gained tremendous popularity because of its early open
source inclusion in the Linux kernel, and is one of the most mature
virtualization solutions available [29]. The Kernel-based Virtual
Machine (KVM) [1], a relatively new open source H-based system,
has gained momentum and popularity in recent years [37]. It has
found its way into more recently established clouds such as those
operated by AT&T, HP, Comcast, and Orange [29]. KVM has be-
come a natural choice for Linux VMs because it is included in the
upstream Linux kernel. It is also a de facto standard for the open
source cloud management platform OpenStack [15].

Hypervisor-free OS-based virtualization systems are widely used
by successful cloud providers such as Google to manage their clus-
ters, and have attracted considerable interest because they offer new
possibilities for easy provisioning and fast deployment environment.
Google has stated that it launches over 2 billion containers a week
across all of its data centers [5]. Several OS-based systems have been
released, including Linux Container (LXC) [19], Docker [16], BSD
Jails [39], and Windows Containers [7]. Docker is the most widely
used, whereas LXC, which is included in most Linux distributions,
is used by cluster management frameworks such as Mesos [6] and
YARN [8] to achieve stronger resource isolation among applications.

Significant efforts have been made to characterize the effects
of virtualization on application performance [46, 49, 50]. However,
less effort has been invested in the various additional resource over-
heads that virtualization imposes. For example, a Virtual Machine
(VM) process may use other virtualization components (e.g. Dom0
in the case of the XEN, the hypervisor) to handle requests, which in
turn generate additional resource overhead and application perfor-
mance penalties. Moreover, there is a lack of detailed quantitative
studies comparing H-based and OS-based platforms and their gaps
relative to native environments across multiple resources under a
diverse set of workload types. Co-located applications can cause in-
terference problems due to the absence of strong performance and
fault isolation, which is an important but under-explored concern
for public multi-tenant clouds. In addition, the energy efficiency
of different virtualization methods has not been well analyzed.
Finally, many earlier works have focused on specific application ar-
eas [34, 49] and overlooked opportunities for optimization exposed
by individual technologies, leading to under- or over-stated results.

Consequently, a comprehensive, detailed, and up-to-date com-
parative analysis of H- and OS-based virtualization solutions is
needed to allow data center operators make the best possible de-
cisions relating to issues such as resource allocation, admission
control, and migration, to accurately bill cloud customers and to
improve the overall performance and energy efficiency of their
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infrastructures. In addition, a better understanding of the key fac-
tors that contribute to overheads can be used to guide efforts to
improve existing systems. For example, efforts such as CoreOS have
significantly reduced the slow (in minutes) VM booting time to as
fast as few seconds (10s). Container systems are also advancing, for
instance in security, e.g. the latest 1.8 version [25] of Kubernetes
provides enhanced security support.

To this end, this paper presents the results of a comprehensive
investigation into the performance, power, and resource usages
overhead of four virtualization technologies widely used in modern
data centers (LXC, Docker, KVM, and XEN) running four differ-
ent workload types (CPU–intensive, memory-intensive, network-
intensive, and disk-intensive) under varying intensities. We also
compare the virtualization platforms with respect to performance
isolation, resource over-commitment, start-up time, and density.
To the best of our knowledge, this is the first such comprehensive
comparative study to be reported. The empirical results presented
in this work are useful for practitioners to understand the current
state of the technology so as to make a proper decision in choosing
the best technology for a given situation, in making relevant trade-
offs, and possibly designing systems that address the limitations.
It is also useful for academia to illustrate how these technologies
evolved over time and to call upon further research to uncover the
underlying causes for each of these platform in the areas where they
under-perform. To facilitate comparison, we developed a method-
ology for virtualization that automates the testing process.

In particular, our contributions are:
(1) A methodology to quantify the resource and power usage

overheads of virtualized systems. We present methods for
automatic and synchronized monitoring of the utilization of
virtual instances, the device driver domain, the virtualization
engine/hypervisor, and the physical machine along with
server power usages for a diverse set of workloads.

(2) A comprehensive comparison of the selected virtualization
techniques in terms of performance (throughput, and la-
tency), resource, and power usages overheads along with
analysis of the impact of co-location, scheduling techniques,
resource over-commitment, start-up latency and density.

(3) Evaluation results of each platform from several dimensions
demonstrates that there is no single technology that outper-
forms in all cases. This fact provides useful insights in how
to choose the best technology for a specific scenario, how to
make trade-offs in optimizing systems, or on what to do dif-
ferently when designing platforms. The results also reveals
that part of the limitations of each platform are technological
obstacles that did/can improve over time.

2 BACKGROUND
This section introduces the core concepts of H-based and OS-based
virtualization platforms, and provides brief overviews of the four
state-of-the-art platforms considered in our evaluation.
2.1 H-based platforms
In H-based systems, a hypervisor or a virtual machine monitor
is used to emulate the underlying physical hardware by creating
virtual hardware. As such, the virtualization occurs at the hardware
level. The hypervisor manages the execution of virtual machines
(VMs) and the underlying physical hardware. Because hypervisors

isolate the VMs from the host system, the platform is OS-agnostic
in the sense that multiple instances of many different OSes may
share the virtualized hardware resources. Hypervisors are gener-
ally classified into two categories: Type-1 (native or bare-metal)
hypervisors that operate directly on the host hardware (e.g. XEN),
and Type-2 (hosted) hypervisors that operate on top of the host’s
operating system. However, the distinction between the two types
of hypervisors is not always clear. For example, KVM has charac-
teristics of both types [24]. In this paper, we focus on two H-based
systems that are widely used in production systems: XEN and KVM.

2.1.1 XEN. XEN is well known for its paravirtualization (PV)
implementation. In PV, the interface presented to the guest OS
differs slightly from the underlying hardware and the kernel of
the guest OS is modified specifically to run on the hypervisor. As
guests are aware that they are running on a hypervisor, no hardware
emulation is needed and overhead is reduced.

To achieve virtualization, XEN relies on special privileged VMs
called Domain-0 (Dom0). The Dom0 VM provides access to the
management and control interface of the hypervisor itself and
manages other unprivileged VMs (DomU). Each DomU VM runs a
simple device driver that communicates with Dom0 to access the
real hardware devices.

2.1.2 KVM. KVM is an open source solution that allows VMs
to run with unmodified guest OS. Guest VMs need not be aware
that they are running in a virtualized environment. KVM is imple-
mented as a loadable kernel module, reducing the hypervisor size
significantly by reusing many Linux kernel facilities such as the
memory manager and scheduler. From the host’s perspective, every
VM is implemented, scheduled, and managed as a regular Linux
process. QEMU is used to provide emulation for devices such as
the BIOS, PCI bus, USB bus, disk controllers and network cards.
KVM can also be used with a standard paravirtualized framework,
VirtIO, to increase I/O performance for network and block devices.
Recently introduced processors include hardware-assisted virtual-
ization features (such as Intel-VT and AMD-V) that KVM uses to
reduce complexity and overhead.
2.2 OS-based platforms
OS-based platforms, which are also known as container-based sys-
tems, virtualize resources at the OS level. They do not achieve vir-
tualization in the same sense as VMs, but can be used for many of
the same reasons one would use VMs [34]. The OS kernel is shared
among containers, with no extra OS installed in each container.
The containers, which are created by encapsulating the standard
OS processes and their dependencies, are collectively managed by
the underlying OS kernel. More specifically, the container engine
(CE) performs the same duties as the hypervisor in a traditional
virtualization, managing containers and images while leveraging
the underlying OS kernel for core resource management and allo-
cation. Because containers are sandboxed environments running
on the kernel, they take up fewer resources than traditional VMs,
making them a light weight alternative to H-based virtualization.

OS-based platforms can further be classified as either system con-
tainers or application containers. System containers allow multiple
processes to be run in a single container, as can be done in a VM.
They are designed to provide a complete runtime environment but
with a more lightweight design. OS-based platforms that use system
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containers include LXC, OpenVZ [21], and Linux VServer [17]. Ap-
plication containers, on the other hand, are designed to run a single
process, and are a lightweight alternative for deploying applications
based on distributed microservices. Platforms that use application
containers include Docker and Rocket [22]. The OS-based platforms
examined in this paper are LXC and Docker.

2.2.1 LXC. LXC is an OS virtualization method for running mul-
tiple isolated containers on a host using a single Linux kernel. Each
container has its own process and network space, which provides
the illusion of a VM but without the overhead of having a separate
kernel. Resource management is performed by the kernel names-
pace and CGroup. CGroup is used to partition and restrict resources
amongst different process groups, and the kernel namespace is used
to isolate resources from the host and any other containers.

2.2.2 Docker. Docker is an open-source platform for container
deployment and management. In Docker, containers are built on
top of decoupled images in a multi-layer filesystem model, usually
powered by AUFS (Another Union File System). A single OS image
can be used as a basis for many containers while each container
can have its own overlay of modified files. The host OS launches a
Docker daemon, which is responsible for managing Docker images
as well as creating and monitoring containers. Docker introduces a
new level of granularity in virtualization in terms of fast deployment
and easy management of systems. Like LXC, Docker uses CGroups
and namespaces for resource allocation and isolation.

3 BENCHMARKS, METRICS, AND
MEASUREMENT METHOD

3.1 Benchmarks and performance metrics
We chose a representative set of benchmarks to address differ-
ent resource consumption characteristics across applications. The
benchmarks chosen for each resource type have relatively little
impact on other resources, and are described below.

3.1.1 CPU-Sysbench. To investigate the effect of virtualization
overhead on CPU resources, we used the CPU-bound benchmark
from the SysBench [14] package to compute prime numbers from 1
to N (user-specified). The application was loaded with a maximum
of 4,000,000 requests. The number of threads (and hence target
CPU utilization) was changed during the course of the experiments
to evaluate the behaviour of each platform under different work-
load intensities. The benchmarking tool reports the 95th percentile
latency as well as the total number of requests and elapsed time,
which are used to calculate the average throughput.

3.1.2 Memory-STREAM. Memory performance was evaluated
using STREAM [2], a synthetic benchmark program that measures
sustainable memory bandwidth for four vector operations (Copy,
Scale, Add, and Triad). STREAM is configured to use datasets much
larger than (more than 4X the size of) the available cache memory
in the physical machine to ensure that only the time to access RAM
is measured and not the cache access speed.

3.1.3 Disk I/O-FIO. Disk I/O performance was investigated us-
ing the Flexible I/O (FIO) [10] benchmark, which measures the file
system’s read and write performance. It spawns a number of pro-
cesses that perform particular kinds of disk I/O operations specified
by the user. We used sequential and random read/writes with differ-
ent file sizes, using the default block size of 4 KiB. The value of the
ioengine parameter was set to libaio, meaning that the benchmark

used a Linux-native asynchronous I/O library. Direct I/O mode was
used to disallow prefetching and writing behind the filesystem’s
buffer cache. The benchmark measured disk I/O operations per
second (IOPS), bandwidth (KB/s), and the 95th percentile latency.

3.1.4 Network I/O-netperf. The impact of virtualization on net-
work performance was measured using the netperf [38] benchmark.
We used the TCP STREAM (TCP_STREAM) unidirectional bulk
data transfer option for throughput and the TCP request-response
(TCP_RR) mode to test round-trip latency. Netperf has two com-
ponents: netserver and netperf. Netserver is run on one machine,
and waits for netperf client connections from another machine.
The client connects to the server, does a short handshake, and then
sends data to the netserver. To reduce performance variation due to
network congestion or other issues, we configured both the server
and the client to run in the same network. Table 1 summarizes the
workloads, metrics, and load intensities used for evaluating various
resource management dimensions. Refer Table 6 under Section 4.4
for additional benchmarks used for resource isolation tests.
Table 1: Benchmarks, performance metrics, and workload intensities used.
Resource Metric Benchmark Workload intensity

CPU
Throughput (reqs/s)

Sysbench CPU(%) 1, 30, 60, 90, 99
Latency (ms)

Memory Throughput (MB/s) Stream

Disk

Throughput (KB/s-sequential)

Throughput (IOPS-random) Fio Disk I/O-R/W (KB/s)
Seq Rand Rand-mix

Latency (us) 5, 20, 30 30 50R/50W

Network
Throughput (Mb/s)

netperf Network I/O (KB) 0.5, 1, 4, 8, 16
Latency (s)

3.2 Virtualization overhead metrics
Virtualization overhead was quantified in terms of performance,
power, and resource usages overhead. The performance overhead is
the performance loss relative to the baseline scenario (i.e. execution
in the native environment), and is defined as:

Per fovh =
|Per fvir t − Per fnative |

Per fnative
, (1)

where Per fovh is the performance overhead, computed by divid-
ing the performance under virtualization (Per fvir t ) by that in the
native (Per fnative ) environment.

The power usage overhead is the extra power usage relative to
running in the native environment. It is defined as:

Powerovh =
|Powervir t − Powernative |

Powernative
. (2)

For resource utilization overhead, we use a more fine-grained
approach that takes into account the resource usage of different
components involved in virtualization (guests, Dom0, and/or hy-
pervisor/container engine). The resource overhead is defined as the
extra resources used by the virtualization system relative to the
resources used by the guest alone. More precisely, it is defined as:

Uj−ovh =
|
∑
U i
j−дuest −Uj−vir t |∑

U i
j−дuest

, (3)

where
∑
U i
j−дuest is the summation of the j resource (j=CPU, mem-

ory bandwidth, disk or network I/O) utilization of all instances
running on a server,Uj−vir t is the overall j resource usage of the
virt (LXC,Docker,KVM, or XEN) virtualization system including
usages for guests, Dom0, and/or hypervisor/container engine.
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3.3 Measurement methods and tools
To understand the utilization overhead of multiple resources, it is
important to monitor resource usage at all levels of virtualization.
There are several tools that measure resource usage, but none of
them can simultaneously measure every resource of interest in
this work. We therefore extended a set of previously developed
scripts [30] for analyzing the resource utilization of the XEN plat-
form using one benchmark. The extended scripts can be used to
analyze resource usage based on several benchmarks for each plat-
form considered in this work (XEN, KVM, LXC, Docker, native).
The scripts incorporate various tools (shown in Table 2) for dif-
ferent resource types, and performs automatic and synchronized
measurements.

The scripts implement the following stepwise procedure for each
virtualized platform:
(1) It logs into the system under test (SUT), i.e. the native or virtu-

alized environment, and starts running a benchmark.
(2) It waits for a user-specified period X (we used a 5s warm-up in-

terval) for the benchmark to stabilize before startingmonitoring.
We sampled monitoring data once per second.

(3) After running the benchmark and monitoring resource usage
at multiple virtualization levels (VM/host, Dom0, H/CE/PM) for
a user-specified period Y, the script triggers the termination of
the benchmark and monitoring tools.

(4) The script then waits for a user-specified interval, Z, before
running the next benchmark to increase the reliability of the
results. The length of this interval depends on the benchmark.

(5) The test is completed after repeating the above steps for a user-
specified number of times (4 repeats were used in this work).

(6) The script then summarizes the measured information into one
file per VM/container and PM, and compiles these files into a
single log file containing results for all used machines. Finally
the results are averaged over the duration of the run.

We collected utilization data using standard tools available for the
Linux OS platform (top, free, mpstat, vmstat, and ifconfig) and
specialized tools provided with the tested virtualization platforms
for monitoring instances: xentop (XEN), virt-top (KVM), ctop and
lxc-info (LXC), and Docker stats (Docker).
Monitoring overhead: We evaluated the overhead of our chosen
Table 2: Measurement tools used for the virtualization systems under study.

XEN

VM DOM0 H/PM
CPUMem I/O Net CPUMem I/O Net CPUMem I/O Net

xentop Y Y Y Y Y Y
free Y∗ Y

KVM

VM H/PM
CPU Mem I/O Net CPUMem I/O Net

virt-top Y Y Y
free Y∗ Y

LXC

Container CE/PM
CPU Mem I/O Net CPUMem I/O Net

ctop Y Y Y
lxc-info Y
free Y

Docker

Container CE/PM
CPU Mem I/O Net CPUMem I/O Net

Docker stats Y Y Y Y
free Y

All

VM/Container H/CE/PM
CPUMem I/O Net

mpstat Y
vmstat Y
ifconfig Y

Power snmp PM
∗-need to run inside the VM.

resource monitoring tools, including resource and power usages,
by running them alone for the four virtualization platforms. Mon-
itoring was a light weight process in all cases (CPU and memory
usage by less than 1%), and hence the results are not shown here.
This reflects that virtualization overheads are essentially unaffected
by the resource monitoring systems used in the benchmarks.
4 EXPERIMENTATION
4.1 Hardware setup
All the experiments were performed on physical machines with 32
cores (AMD OpteronTM6272), 12288KB of L3 cache, 56 GB of RAM,
4x500 GB SATA disks, and a 1 GB network adapter. The CPU had
two sockets, each socket had 2 NUMA nodes, and each node had 8
cores. One of these machines was used to run the script for starting
the benchmarks and monitoring tools. Power management for the
SUT host was disabled to reduce the effects of resource scaling and
to increase the comparability of the results. The physical server’s
power consumption was monitored using HP Intelligent Modular
PDUs, which provide per-power-socket power usage data using
the Simple Network Management Protocol (SNMP). These PDUs
have a resolution of 0.01A (*230V = 2.3W), updated every 0.5s. The
server’s idle power consumption was 130W, and its cores operate
at 1.7GHz. To analyze the average boot-time latency of the studied
techniques, we instrumented the boot process of KVM and XEN
VMs using the bootchart [9] tool, used the systemd-analyze tool for
CoreOs-based VMs and measured instance creation times for LXC
and Docker by using the Linux time command to determine the
duration of the container-start up execution commands.

We used the Ubuntu 14.04 LTS Linux distribution for the native,
VM, and container environments. We also used the same kernel
version (3.19) for all systems because the use of different kernel
versions could introduce experimental noise. Virtualization was
achieved using LXC 1.0.9, Docker 1.12.3, QEMUwith KVM 2.0.0, and
Xen 4.4.2. We used the standard default installations for containers
and VMs unless otherwise stated. Each instance was allocated the
same amount of memory (10 GB), and CPU allocations were set on
a per-instance basis depending on individual needs. The cpuset.cpus
and memory.limit CGroup subsystems were used to limit specific
CPUs and the amount of memory per container. We used virsh’s
setvcpus and xm vcpu-set to assign cores to KVM and XEN VMs
respectively. The VMs were created with 50GB hard disk images.
To measure the overhead imposed by the virtualization layer, we
first ran all the workloads on the bare-metal OS in a PM.

We ran the different benchmarks with different intensities us-
ing single- and multi-instance (for additional overhead, isolation,
and over-commitment) configurations to investigate the impact
of virtualization on overall performance (throughput and latency),
isolation, resource usage, power consumption, and start-up time.
4.2 Single-instance virtualization overhead
We evaluated the performance and resource/power usage overhead
incurred by using single VMs/containers, and compared them to
results obtained in the native environment. This made it possi-
ble to determine the overhead imposed by virtualization and the
additional overhead imposed by running multiple instances.

4.2.1 CPU. Figure 1 presents the results of the CPU-bound
sysbench benchmark analysis for LXC, Docker, KVM and XEN at
different levels of CPU load. We normalized the result of each test
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against the native performance. The results presented in Figures 1a
and 1b for throughput and latency, respectively, show that OS-based
systems achieved similar performance to the native environment.
Howerver, some correlation between performance and input size is
apparent for KVM and XEN: their performance decreases slightly
as the CPU load increases (a maximum overhead of 4.6% for XEN
at full utilization). This aside, the H-based systems do not impose
a greater performance penalty than the OS-based platforms when
only a single instance is being run in the system.

The resource and power usage associated with the results shown
in Figure 1 are presented in Figure 2. We only present CPU utiliza-
tion data, shown in Figure 2a, because the benchmark had minimal
effects on other resources for any instance or virtualization layer.
CPU usage overhead was negligible in all cases. The power usage
data, shown in Figure 2b also reveal no large or interesting dif-
ferences between the virtualization platforms. One platform may
consume less power for a lightly loaded CPU workload while it may
consume higher if the intensity of workload increases (e.g. Docker).
All of the tested platforms incur only a small power overhead when
compared to the native environment (avg. overhead of 1.5%). An-
other observation is the lack of energy proportionality (EP) in the
system, i.e., the energy consumed does not decrease linearly with
load. At lower loads, power usage is primarily dominated by idle
power consumption. In the idle scenario, KVM and XEN use 1.46%
more power than the native environment (due to issues such as the
cost of supporting a complete guest OS). Interestingly, the dynamic
power usage (i.e. the power usage after discounting idle power) of
the virtualized systems is far greater than would be expected at low
utilizations. Figure 2c shows the percentage of the dynamic peak
power usage. Although Docker makes the system more EP than
the rest, on all the tested systems the average power usage is about
43% of their peak power at very low utilization (1% CPU load).
Summary: For the CPU-bound benchmark, the overhead of both H-
based and OS-based virtualization platforms are rather insignificant
when running a single VM/container. At low workload levels, the
systems draw far more power than expected, making them less EP.
The insight can be used by system designers to make power-aware
workload placement decisions.
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Figure 1: CPU performance at different load levels.

4.2.2 Memory: The STREAM benchmark supports four vector
kernels (Copy, Scale, Add and Triad). We only present results for
the Triad operation here because it is most practically relevant to
large systems [4].

As shown in Table 3, H-based systems had poorer memory
throughput than OS-based systems: KVM has a 11% performance
overhead, while XEN achieved the worst performance, with an
overhead of 22% relative to the native environment. The memory
performance of the OS-based platforms was comparable to that of
the native environment.
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Figure 2: Resource utilization at different level of CPU load.

As the main determinant of performance is the bandwidth to
the main memory, the benchmark is less dependent on the total
amount of memory or other resources [32]. We therefore do not
discuss resource usage across the execution environments. Note
that the benchmark was run using default and non-tuned memory
configurations, allowing the tested systems to use any NUMA node.
Performance could be improved by ensuring execution was done
using a single NUMA node. A more detailed analysis of the effect
of NUMA is left for future work.
Summary: H-based virtualization imposes a much higher memory
access overhead than OS-based virtualization.

Table 3: Throughput of Triad operation using STREAM benchmark.
Native LXC Docker KVM XEN

(MB/s) 4384 4389 4289 3882 3419

4.2.3 Disk I/O. For KVM and XEN, the file system is mounted
inside the VMs and both use raw file formats. LXC uses the default
directory backing store as file system. We tested Docker with two
file stores, AUFS and volume. We first show the results for AUFS,
the default storage driver for managing images and layers and later
for volumes that are suited for write-heavy workloads. We mea-
sure the performance of Disk I/O when reading and writing files of
5GB to 30GB using sequential and random access modes. Figure 3
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(b) Latency.
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(c) CPU utilization.
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(d) Power usage.
Figure 3: Performance, CPU and power usage for sequential operations.

shows the sequential read and write throughput, latency, CPU, and
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Table 4: Average CPU and disk I/O usage for read and write operations.
VM/container Hypervisor/PM Dom0

CPU (%)

LXC 2.2 0.3
Docker 2.8 0.2
KVM 6.9 0.23
XEN 4.2 1.16 2.5

Disk I/O
(KB/s) XEN 73371 87932 0

power usage for the tested systems during the I/O benchmarking
experiments. LXC and Docker achieved native-like performance,
but KVM and XEN were slower. As shown in Figure 3a, the av-
erage throughput overhead of KVM and XEN were 69% and 35%
respectively. The latency overhead for disk I/O using KVM was
much more severe – 256%, as shown in Figure 3b. This is mostly due
to the greater overhead (buffering, copying, and synchronization)
involved in pushing filesystem activities from the guest VM via the
Dom0/hypervisor to the disk device. Each guest I/O operation must
go through the paravirtualized VirtIO drivers, which cannot yet
match the performance of OS-based systems.

Figures 3c and 3d show the measured CPU and power usage
values. While the CPU usage never rose above 12% during the disk-
intensive benchmarks, KVM and XEN exhibited larger increases in
CPU usage, and therefore used more power (8% more, on average).
As shown in Table 4, the extra CPU overhead imposed by virtual-
ization with XEN (46%) was greater than that for the other tested
platforms due to the CPU utilization of Dom0 and the hypervisor.
XEN also imposes extra disk I/O overhead on the H/PM; the mag-
nitude of this extra overhead is equal to (for read) or greater than
(for write) than that for the VM’s I/O. The remaining techniques
do not impose extra I/O utilization on the H/PM. Therefore, we do
not show any corresponding results for these platforms.

We investigated the KVM disk I/O process in more detail to iden-
tify possible pitfalls in its performance, focusing on the impact of
cache settings, image formats, and disk controllers. Experiments
were performed using different KVM caching policies: no caching,
write-through (read-only cache), and the default write-back (read
and write cache). The write-back technique outperformed the read-
only and write-only options by 40% for write operations and/or 20%
for read operations. We also changed the disk controller from the
VirtIO to the IDE driver, but found that this caused a performance
loss of around 66%. These results indicate that using VirtIO pro-
duces a much lower virtualization overhead than regular emulated
devices. We also compared the raw file format to the copy-on-write
(QCOW2) format. While QCOW2 is well known for its snapshot
support, the overhead associated with its I/O operations is greater
than that for raw storage. In our experiments, it achieved only 80%
of the raw-storage performance for write operations.

To quantify the disk I/O performance of using different file stores
other than AUFS for Docker, we tested the use of volumes, which
mounts a file system in the container, and direct device mapping
that exposes the host directory to the container. The test involved
reading and writing 30 GB on an existing file. Table 5 shows the
results for the three file stores. AUFS exhibited significant overhead
due to the copy up operation it performs in its image layering
implementation: it copies the entire file even if only a small part
of the file is being modified. If the file is being modified for the
first time, the entire file is copied up from the underlying image
to the container’s top writable layer, producing the worst possible
write performance (0.552 bytes/s). Subsequent reads and writes

are faster, however, because the operations are performed on the
file copy that is already available in the container’s top layer. The
use of Docker volumes confers a noticeable performance increase
over AUFS, and direct device mapping offers a smaller increase.
Hence, the performance penalty of AUFS must be balanced against
its advantages in terms of fast start-up times and efficient use of
storage and memory. The magnitude of the penalty depends on
the size of the file being manipulated, the number of image layers,
and/or the depth of the directory tree.
Table 5: Docker sequential disk I/O performance with AUFS, volumes, and
direct device mapping.

Operation AUFS Volume Direct mapping

Write-30G (KB/s)
First 0.55

161793 128407Second 84251
Subsequent 153378

Read-30G(KB/s) 172493 319754 184458

Figure 4 presents measured IOPS results relative to native for
random read, write, and mixed (50% read/50% write) operations on
30 GB files. The OS-based systems achieved similar performance
as native, followed by KVM. XEN showed worst performance (40%
overhead) on random read operation. However, it performs better
than the rest on random write operations, calling for more investi-
gation on possible optimization available in the platform.
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Figure 4: Disk performance for random operations.

Summary: Virtualization technology should be selected with ex-
tra care in case of disk intensive workloads due to variations in
performance and resource usage.

4.2.4 Network. LXC, KVM and XEN use bridged networks for
public IP addresses, whereas Docker uses the default docker0 bridge.
Figure 5 shows the throughput and latency for Netperf benchmark.
Figure 5a shows the unidirectional bulk transfer throughput for out-
going communication. For packet sizes of 4K bytes and above, LXC,
Docker and XEN all achieved the maximum possible throughput
and equaled the performance of the native environment, showing
that bulk data transfer can be handled efficiently by both H- and
OS-based systems. KVM achieved the worst throughput, showing
that H-based systems still suffer from a significant performance gap.
Smaller packet sizes (512B and 1K) require more CPU resources and
power (as shown in Figure 6). Figure 5b shows the results obtained
from Netperf request and response (TCP_RR) test. KVM increased
the round trip latency and has an overhead of 250% overhead, while
the latency overhead for LXC, Docker, and XEN were 7%, 12% and
58%, respectively.

Making use of the host’s networking instead of bridged network
allows Docker containers to achieve near-native performance. Fig-
ure 7 shows the impact of this approach relative to the default
network setting. Bridged networking achieves worse performance
in terms of both throughput and latency for smaller message sizes,
as shown in Figures 7a and 7b, respectively. Although host net-
working gives direct access to the host network stack and improves
performance, it removes the benefits of network namespaces and
isolation between the host machine and containers.
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(a) TCP bulk transfer throughput.
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(b) Round trip latency.
Figure 5: TCP bulk transfer throughput and round trip latency.
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(a) CPU utilization.
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(b) Server power consumption.
Figure 6: CPU utilization and server power usage for TCP bulk transfer.
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Figure 7: Network performance of Docker under two network configurations.

4.3 Multi-instance virtualization overhead
We conducted another set of experiments to study how virtualiza-
tion overhead for the selected platforms is affected by co-location.
The intent here is to quantify the change in overhead and hence not
show the observations similar to single instance run. Figure 8 shows
the performance, and CPU/power usage for compute-, network-,
and disk intensive workloads run on a PM hosting four concurrent
instances. In all cases, the load was distributed equally across the
instances to match the baseline single instance test.

Figure 8a shows the sums of the measured throughout, CPU
and power usage for the compute-bound benchmark over four
instances. The workload run on each individual instance is equal
to 25% of that used in the single instance tests. The results clearly
show that co-locating CPU-bound instances (in the absence of
resource contention) does not impose any significant overhead on
throughput, CPU usage, or power consumption for any platform.

Figure 8b shows the total bandwidth, CPU, and power usage
for the network-bound benchmark based on a test in which each
instance sends a 512 byte packet (the corresponding single instance
test used 2k byte packages). XEN achieved similar bandwidth to
the baseline value, whereas LXC, Docker and KVM exhibited 1.1x,
1.45x, and 7x bandwidth improvements, respectively. The use of
multiple instances had no appreciable effect on CPU or power usage
for Docker. However, LXC, KVM and XEN exhibited CPU usage
increases of 40%, 426%,and 100%, respectively, and power usage
increases of 4.7%, 79%, and 38%, respectively. The increased CPU
usage was attributed to increases in the CPU usage of individual in-
stances and the virtualization layers in order to serve the workload.
Figure 9a shows the distribution of CPU usage for both OS- and
H-based systems. In general, instance CPU usage increased for all

techniques. While the Docker and LXC container engines exhibit
minimal increments, the KVM hypervisor and XEN Dom0 incur
more overhead when running multiple VM instances (increment of
270% and 111%, respectively, compared to single VMs). This could
significantly affect the performance of applications with high CPU
requirements in oversubscribed systems.

Figure 8c shows the total disk I/O performance, CPU and power
usage for instances reading/writing 5GB of files. Every platform per-
formed better (particularly on read operations) in themulti-instance
test but had higher CPU usage. KVM exhibited the largest increase
in CPU usage (234% ) for read and write operations, and offered
smaller performance gains due to scaling. Figure 9b shows the dis-
tribution of CPU usage for read operations on each platform. While
the increase in CPU usage for KVM is due to an increase in the CPU
usage of the VMs themselves, much of the extra CPU usage under
XEN is due to DOM0 and the hypervisor for the co-located guest
VMs (224% and 109%, respectively). The throughputs of the individ-
ual instances in our multi-instance memory-bandwidth experiment
were similar to those for the single instance test. Therefore, results
for the memory benchmark are not shown.
Summary: H-based systems use more resources in co-located envi-
ronments, particularly on disk- and network-intensive workloads.

  0.00

  0.20

  0.40

  0.60

  0.80

  1.00

  1.20

Throughput CPU Power

re
la

ti
v
e 

to
 s

in
g
le

 i
n
st

an
ce

LXC

Docker

KVM

XEN

(a) CPU.

  0.00

  1.00

  2.00

  3.00

  4.00

  5.00

  6.00

  7.00

  8.00

Throughput CPU power

re
la

ti
v
e 

to
 s

in
g
le

 i
n
st

an
ce

LXC

Docker

KVM

XEN

(b) Network.
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(c) Disk.
Figure 8: Throughput, CPU and power usage of multiple instances for differ-
ent benchmarks.
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Figure 9: CPU usage for network bandwidth- and disk-intensive workloads.

4.4 Resource isolation
So far, we have discussed the virtualization overhead in terms of
performance, resource usage, and power consumption for physical
machines running single andmultiple instances for each benchmark
described in Table 1. Our focus now is to highlight the interference
caused by deploying a diverse range of co-located applications on
shared hardware resources as commonly done in a cloud. To this
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end, we performed isolation tests using the four environments, with
two guests running on the same host machine.

We first ran a baseline application in one guest and used the
obtained data to compare to the results obtained when running the
same application side-by-side with another application. The second
application was chosen to complement the baseline application,
compete with it, or have an adversarial impact. The summary of
experimentation performed based on Table 6 is shown in Figure 10.
The sections below present analysis of the results obtained in terms
of CPU, memory, disk, and network resources.

Table 6: Benchmarks used for isolation tests.
CPU Memory Disk Network adversarial

CPU
Sysbench

lookbusy [18] Memtester [20] FIO Netperf ForkBomb [12]

Memory
Blogbench [11]

lookbusy Blogbench FIO Netperf MallocBomb [13]

Disk
Fio lookbusy Memtester FIO Netperf Bonnie++ [3]

Network
Neperf

lookbusy Memtester FIO Netperf TCP SYN

Figure 10: Performance of applications when co-located with instances run-
ning different workload types.

4.4.1 CPU isolation. The top row of Figure 10 shows how the
performance of Sysbench was affected by the different co-located
applications. All the virtualization systems performed within a rea-
sonable range of their baseline performance for complementary
workloads. When co-located with the adversarial fork-bomb work-
load – a classic test that loops to create new child processes until
there are no resources available, KVM and XEN achieved 83% and
80% of their stand-alone performance. On the other hand, LXC and
Docker were unable to complete the benchmark: the container that
ran Sysbench was starved of resources and thus unable to serve its
requests. Although it is possible to prevent the forkbomb effect by
using the pids cgroup in LXC or the nproc cgroup in Docker to limit
the number of processes allowed, preventing this type of extreme
starvation generally requires careful accounting for, and control
over, every physical and kernel operation [43].

In the competing workload experiments, LXC, Docker and XEN
achieved 85% of the performance observed in the absence of co-
location, but KVM performed better, achieving 91%. It is noteworthy
that all of the available physical CPU cores were shared between
the guests on all the platforms.
CPU pinning: To demonstrate the impact of CPU pinning on
CPU interference, we performed an experiment in which each
VM/container was assigned to specific physical CPU cores while

using the same amount of CPU resources as in the previous case.
For this purpose, we used CGroup methods to assign CPU affinity
for LXC and Docker, and the vCPU affinity technique for KVM
and XEN. Figure 11 shows the performance achieved with and
without pinning. For both H- and OS-based systems, the unpinned
configuration outperformed the pinned configuration when the
VM/container was running in isolation, showing that the default
scheduler does work well in the absence of resource competi-
tion [48]. However as competition increased (i.e. when the base-
line application was co-located with a competing or adversarial
VM/container), the pinned configuration outperforms that without
pinning (by up to 19%).
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Figure 11: Impact of pinning on throughput of a CPU-bound instance when
co-located with competing and adversarial instances.

Scheduling technique:CPU schedulers can support work-conserving
(WC) and/or non work-conserving (NWC) scheduling modes [31],
with the former usually being the default choice. In WC mode,
CPU resources are allocated in proportion to the number of shares
(weights) that VMs have been assigned. For example, given two
VMs with equal weights, each VM would be allowed to use at least
50% of CPU and could potentially consume the entire CPU if the
other VM is idle. Conversely, NWC mode defines a hard bound or
ceiling enforcement on CPU resources, i.e. each instance owns a
specific fraction of the CPU. In the above example, each VM would
be allocated up to, but no more than, 50% of the CPU resources
even if the other VM was completely idle.

Figure 12 shows the performance of the compute-bound Sys-
bench benchmark when co-located with the background lookbusy
instance under WC and NWC modes. XEN uses the weight and
cap functionality of the credit scheduler to specify WC and NWC
behaviors, respectively. LXC, Docker, and KVM use the standard
Linux control group scheduling interfaces, CGroup-quota (WC) and
CGroup-sharing (NWC) in the Completely Fair Scheduler (CFS).
The same CPU resources were allocated in both the WC and NWC
cases — 50% of total CPU cycles. There are three notable aspects
of Figure 12. First, the WC technique exploits all available CPU
cycles to achieve better performance at lower background loads. As
the background load increases, its performance decreases (with an
average reduction of 44% when increasing from 1% to 100% load),
reducing each application’s performance isolation. On the other
hand, NWC only permits each instance to use resources up to a
predefined threshold, resulting in consistent performance. Second,
the performance of WC is higher than that of NWC, even at higher
loads, on all platforms. This is because it exploits any underutilized
CPU resource in the system. This is particularly important for ap-
plications that have strict performance requirements or when high
system utilization is desired. Third, the XEN WC method achieves
higher throughput than the others (except at full load). This presum-
ably occurs because the XEN credit scheduler tends to over-allocate
CPU share to guest VMs [31, 51].

Cloud Computing ICPE’18, April 9̶–13, 2018, Berlin, Germany

152



Summary: H-based systems provide stronger isolation than OS-
based systems that use shared host OS kernels, which can poten-
tially lead to denial of service. CPU allocations can be optimized by
using CPU pinning and scheduling to manage resource contention.
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Figure 12: Performance impact of using WC and NWC scheduling modes at
varying level of background CPU loads.

4.4.2 Memory Isolation. The second row of Figure 10 shows
the normalized read performance of the baseline application, Blog-
bench (high memory- and low disk-intensive application). LXC
achieves only 42% of the standalone performance when faced with
the adversarial workload, while the other platforms achieve at least
80% of the standalone performance. Though not shown in the table,
Docker achieved lower write scores (70% of the standalone value, on
average) with a competitive workload. All of the platforms achieved
write scores of at least 93% with an adversarial workload except
Docker, which achieved only 83%.

4.4.3 Disk Isolation. The results of disk isolation tests (shown
in the third row of Figure 10) show that LXC and Docker achieved
77% and 72% of the standalone performance when co-located with
the competitive workload, but only 45% and 41%, respectively, when
co-located with the adversarial Bonnie++ workload (Bonnie++ was
set to continuously read and write to the hard disk). XEN achieved
consistent performance for these two workload types, with an
average of 83% of the standalone value. KVM performed slightly
worse when co-located with the adversarial workload, achieving
71% of the stand-alone performance.

4.4.4 Network Isolation. To measure adversarial interference,
we used the hping3 tool to create and send a large number of TCP
SYN packets to a target system. We configured the co-located guest
to serve as the victim of the attack, and the attack emulator was run
on another machine in the same local area network. The last row
of Figure 10 shows the impact of co-location on the network-bound
application’s throughput. KVM performed better than the other
platforms for all workload types, while XEN performed particularly
badly with the adversarial workload, exhibiting 54% degradation
compared to standalone. LXC and Docker could not complete the
benchmark when co-located with the adversarial workloads, but
achieved 76% and 74% of their standalone performance when co-
located with competitive workloads. Similar results were obtained
for latency, and are hence not shown.

Summary: While isolation is better managed by H-based sys-
tems, no platform achieves perfect performance isolation. Except
for CPU which can properly be isolated by tuning the CPU alloca-
tion, other resources such as cache, memory bandwidth, and disk

I/O are difficult to isolate. Our findings may be of interest for de-
signers of interference-aware resource allocation systems that aim
to predict expected performance by grouping applications based
on workload characteristics.
4.5 Over-commitment
In cloud data centers, it is often observed that all requested capacity
is not fully utilized; utilization can be as low as 20% [33]. This creates
an opportunity to employ resource over-commitment—allocating
more virtualized resources than are available in the physical in-
frastructure [47]. In this work, we use instances running at 50%
utilization to represent a fairly utilized datacenter.

We analyze and quantify the level of overcommitment for each
virtualized system in relation to its impact on performance, CPU
usage, and power consumption using the compute-intensive sys-
bench benchmark. The virtualization platforms accommodate CPU-
overcommitment by multiplexing the virtual CPUs onto the actual
physical cores. The results obtained are shown in Figure 13. For all
environments, the throughput (Figure 13a) increases sub-linearly
for higher OC ratios (vCPU to pCPU ratios). LXC and Docker show
higher throughput rates at higher OC ratios than KVM and XEN.
However, as shown in Figure 13b, unlike throughput, the latency for
KVM and XEN starts to increase quickly with the OC ratio, rising
by as much as 8.6% and 7.5%, respectively, at an OC ratio of 1. With
an OC of 1.5, the latency for LXC and Docker reaches a maximum,
whereas for the H-based platforms latency increases even further.
Consequently, if latency (a crucial metric for many workloads) is
particularly important, it is advisable not to use over-commit ratios
above 1.5, even if there is more room for increased throughput.
This illustrates the need to monitor the right performance metrics
to determine the level of over-commitment that can be achieved
with minimal impact on performance. Increasing the OC level also
increases CPU and power usage as shown in Figures 13c and 13d.

Memory over-commitment is more challenging than CPU over-
commitment as it requires careful analysis of the memory needs of
all instances. It is generally outside the scope of the virtualization
management framework and is therefore left for future work.
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(c) CPU utilization.
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Figure 13: Impact of CPU over-commit on performance and resource usage.

4.6 Start-up latency and density
Start-up latency and density—the number of instances that can be
supported per physical machine are two important characteristics
of highly flexible resource management systems. A low start-up
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latency and the ability to support many instances per PM makes it
possible to achieve better placement, dynamic scaling, consolida-
tion, and/or recovery in case of failures.

Containers inherently have lower start-up latencies due to their
lightweight nature while VMs are considered to take longer to start.
To highlight the difference in start-up performance and show how
technological advancement is changing the start-up cost, particu-
larly for VMs, we performed experiments on the four virtualization
platforms. For H-based systems, booting times were tested both
using an Ubuntu 14.0 OS image image with a basic configurations
and CoreOS—a container Linux image designed for minimal opera-
tional overhead. For both H- and OS-based systems, provisioning
time is taken without considering benchmark start-up time. Fig-
ure 14 summarizes the start-up times and energy usage values for
each platform. Docker offered the fastest provisioning time (0.5s),
followed by LXC (4s) (shown in Figure 14a). While Docker needs
only bring up the container process, LXC must start system-level
processes like systemd, dhclient and sshd, XEN and KVM have
booting times of 48s and 55s, respectively when using the Ubuntu
image, with the corresponding high energy usage (shown in Figure
14b). In general, the H-based systems must boot a separate full OS
with its own device drivers, daemons, and so on. But with CoreOS
the booting times for KVM and XEN are reduced to 10s and 11.4s,
respectively. This is an interesting direction for H-based systems
which commonly are considered to start-up slowly.
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Figure 14: Start-up time and energy usage.

Summary: OS-based platforms have lower start-up latencies (achiev-
ing average improvements of 91% and 15% over the "default" image
of H-based systems in boot-time and power usage, respectively).
Optimized measurements, such as the use of CoreOS, have sig-
nificantly reduced VM start-up time (avg. 10.7s), making H-based
systems better suited for rapid deployment.

Once in steady-state, our density test measured the impact of
increasing numbers of instances on a shared physical machine. The
test involved launching guest instances one by one and monitoring
their resource usage. Memory costs constitute the biggest difference
in overhead between containers and VMs [27] when it comes to
consolidation density, hence we focus on this resource. We evalu-
ated memory usage by summing the Resident set size (RSS) [23]
values of each process of the instance held in RAM. The rest of the
occupied memory exists in the swap space or file system. RSS val-
ues were easily extracted from CGroup pseudo-files. KVM was the
only H-based system included in this test because it uses CGroup
for resource allocation. KVM was evaluated with and without the
Kernel Same Page Merging (KSM) feature. KSM works by remov-
ing duplicate copies and merging identical memory pages from
multiple guests into a single memory region.

We created VMs with 1 vCPU and 1 GB memory. Figure 15
shows the average results of running 1-20 simultaneous instances.
The results show that KVM without KSM (KVM-WKSM) used in
average 213 MB memory per VM, 1.9x more than KVM with KSM

(KVM-KSM). The LXC system container used 6 MB of RAM, while
the memory usage of Docker container was mainly 1 MB, 6x and
109x lower than the corresponding values for LXC and KVM-KSM,
respectively. RSS values reflect the total of the shared libraries used
by the process, even though a shared library is only loaded into
memory once. Hence, the actual memory footprint difference can
be even larger between H-based and OS-based systems.
Summary: Containers provide a smaller memory footprint (avg.
31x smaller) than KVM, even when the later is used with KSM.
KSM enables a more efficient use of available memory for certain
workload types (up to 2x improvement) and can potentially be used
to achieve a high level of memory overcommitment.
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Figure 15: Memory footprints for KVM, LXC and Docker.

4.7 Power efficiency considerations
As the evaluated virtualization techniques differ in resource usage,
we performed additional experiments to illustrate the impact of
resource usage (CPU, memory, network, and disk) on power con-
sumption to further guide data center operators.
Resource and power usage relationship: The processor is con-
sidered as one of the largest power consumers inmodern servers [36].

To evaluate this and the dynamic power contribution by CPU,
memory, network activity, and disks, we ran workloads that stress
each resource (Lookbusy, Memtester, Netperf and FIO respectively)
at varying intensities and monitored their power consumption.
Figure 16 shows the utilization of each resource normalized against
the peak usage and the respective power usage over time. The
workloads were generated so as to first utilize the CPU followed by
the memory, the network, and finally the disk. The corresponding
power usage values are shown at the top of the figure, where it
is shown that CPU utilization has larger impact on power usage
than memory, network, and disk. Although the contributions of
individual resources to system power usage is generally dependent
on the workload and hardware architecture, the CPU accounted for
the lion’s share - 31% of the server’s total power usage. Resource
allocation systems should consider differences in resource power
usage to reduce power usage and datacenter energy efficiency.

Impact of CPU frequency scaling on memory bandwidth:
Dynamic voltage and frequency scaling (DVFS) is a commonly-
used power-management technique that reduces the processor’s
clock frequency to reduce the energy usage for a computation,
particularly for memory-bound workloads [45]. The motivation is
often that a system’s main memory bandwidth is unaffected by the
reduced clock frequency but power usage is reduced appreciably.

To validate this common assumption, we performed experiments
using STREAM with different CPU frequencies on each run. Fig-
ure 17 shows the correlation between CPU frequency and main
memory bandwidth with power usage. Figure 17a, shows the mem-
ory bandwidth normalized against the peak CPU frequency. As
the CPU frequency was scaled down, the memory bandwidth also
fell, showing the dependency of the latter on the former: reducing
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Figure 16: Impact of CPU, memory, network, and disk resources in power
usage of a server.

the CPU frequency from the highest value to the lowest reduced
the memory bandwidth by 23%. The power usage at different CPU
frequencies is shown in Figure 17b. Similar behaviour has been
observed on different micro-architectures [42].
Summary: Our analysis reveals the dependency of memory per-
formance on CPU frequency. These results are likely to be useful in
performance and power modeling, and for application developers
aiming to optimize their applications.
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Figure 17: Performance of a memory-bound application and power usage for
varying CPU frequency.

4.8 Summary of Results
Our results for single instance tests show that all of the studied
platforms impose negligible CPU usage overhead. OS-based plat-
forms are more efficient in terms of memory performance, followed
by KVM and then XEN. LXC outperformed the other platforms in
terms of disk I/O, while Docker suffered from a relatively high per-
formance penalty when used with the default AUFS file storage but
was more efficient with Docker volumes. KVM exhibited the worst
performance for sequential disk I/O, even when using the faster
para-virtualized driver, virtIO. Also for network I/O, KVM provided
the worst performance, whereas LXC and Docker (using the host’s
networking capabilities) operated at native speeds. Docker’s de-
fault Bridge-based network introduces more overhead but provides
better isolation. Our multi-instance experiments confirmed the ob-
servations from the single instance tests and focused on the extent
of overhead due to co-location. With respect to resource and power
usage overhead, KVM exhibited the highest usage with respect to
both disk and network I/O, followed by XEN. This was attributed
to increased CPU utilization (and hence power usage) by the VMs ,
DOM0, and/or the hypervisor.

While VMs offer better isolation and protection against noisy
neighbors, containers can be adversely affected to the extent that
malicious instances could cause the whole OS to fail. CPU can by
fully isolated e.g., through the use of CPU pinning. The rest show
poor performance isolation due to imperfect resource partitioning.

In CPU over-commit scenarios, H-based platforms perform very
similarly to OS-based platforms; in both cases, the effectiveness of
over-subscription depends heavily on the performance metrics of
interest, the number of instances, and the types of applications that
are being run. Our start-up time and density tests show that OS-
based systems are more efficient and also that VMs are becoming
more efficient as technology advances.
5 RELATEDWORK
Many works have evaluated and compared the different aspects of
H-based and/or OS-based virtualization platforms. Chen et al. [30]
studied the resource utilization overhead introduced by virtual-
ization layers by conducting experiments to characterize the re-
lationship between the resource utilizations of virtual machines
(VMs) and the virtualization layer in the Xen virtualization envi-
ronment. Tafa et al. [46] compared the performance of hypervisors
in terms of CPU consumption, memory utilization, total migration
time, and downtime. Xavier et al. [49] conducted experiments to
compare the performance of container-based systems alone. Con-
tainers have also been analyzed in high performance computing
environments [26, 41, 50]. Felter et al. [35] conducted an experi-
ment in which KVM was compared to Docker by stressing CPU,
memory, networking and storage resources. The authors assumed
that the two platforms provide similar performance to other plat-
forms of the same type. Soltesz et al. [44] compared performance
and relative scalability of the Linux-VServer environment to the
XEN environment. Morabito et al. [40] compared the performance
of hypervisor based virtualization and containers. Xavier et al. [50]
compared the performance isolation of Xen to OS-based systems
including Linux VServer, OpenVZ and Linux Containers (LXC).
Sharma et al. [43] evaluated the effects of performance interference
and overcommitment on the LXC and the KVM platforms.

All these works provide partial insight but lack comparative
analysis encompassing performance, resource usage, and power
consumption overheads, as well as isolation, over-commitment,
start-up and density for multiple H-based and OS-based virtualiza-
tion platforms using a diverse set of workloads. Hence, this paper
provides an updated, thorough, and formal evaluation of different
virtualization techniques to bridges gaps in previous evaluations
and guide resource allocation decision.
6 CONCLUSION
H-based (hypervisor) and OS-based (container) virtualization are
both used extensively in cloud data centers. Virtualization solu-
tions need to be regularly reevaluated to better understand the
trade-off provided by technological advances. This paper presents
a thorough investigation of four virtualization platforms that are
widely used. The analysis focuses on the most important cloud
resource management dimensions, namely performance, isolation,
over-commitment, efficiency of power and resource usage, provi-
sioning times, and density to understand the current state of the
technology. Our study is relevant to infrastructure providers seek-
ing to improve resource, power usage, and/or facilitate deployment,
to developers seeking to select the best solution for their needs, and
to scholars to illustrate how these technologies evolved over time.

Our results show that no single system provide optimal results
with respect to every criterion considered in this work, but that
there are trade-offs. The higher density of OS-based virtualization
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makes it possible to minimize the total number of servers needed
to run a given set of applications, making the system more energy
efficient. However, this comes at the cost of reduced isolation and
greater cross-platform challenges. Consequently, OS-based virtu-
alization is appropriate in cases where multiple copies of specific
applications are to be run. This is particularly convenient for cloud
providers that run their own services and/or for applications that
lack strict performance requirements (e.g. batch workloads). If the
aim is to run multiple applications on servers (i.e. to operate a
multi-tenancy environment) and/or to have a wide variety of OS,
H-based virtualization is preferred. This is especially important
when security is a major priority because VMs provide more robust
isolation from untrusted co-located VMs.

Some of the shortcomings of each platform can be addressed
using existing techniques. It is important to understand the capa-
bilities and techniques available for a given platform as well as the
characteristics of workloads to optimize systems. For example, it
may be possible to alleviate the security issues associated with con-
tainers by extending existing security policies (e.g., anti-colocation
constraints) rather than completely redesigning them and also to
reduce the overhead of VMs by optimizing start-up performance
and memory footprint. Overhead could be reduced by employing
techniques such as CPU pinning and scheduling techniques, by
sharing memory pages (KSM), by selecting appropriate image for-
mats, by modifying storage allocations and/or network drivers.
Another way to address shortfalls is to combine the best charac-
teristics of multiple platforms into a single architecture. Hybrid
systems formed in this way offer promising solutions that combine
the isolation and compatibility benefits of H-based systems with
the easy provisioning and deployment speed of OS-based systems.

In the near future, we hope to expand this work by including an
analysis of hybrid solutions that nest containers in VMs. We also
aim to extend the comparison to include unikernels, which offer
greater security and efficiency than traditional operating systems.
We are also hoping that ourwork inspires developers to further push
the envelop of what is technically achievable and further reduce
the gap between the two types of virtualization technologies.
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