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ABSTRACT
CPU and memory profiling of services are commonly-used methods
to identify potential performance and cost optimizations. However,
the tooling solutions for profiling are often nonstandard, not central-
ized, inconvenient for users, and costly, leading to limited adoption.

Additionally, with projects and companies employingAgilemethod-
ologies such as the microservices model, the service diversity, num-
ber, and frequency of changes can drastically increase, further lim-
iting adoption due to scalability concerns and needs for varied
profiler technologies.

To address these challenges, we present the ODP (“On-Demand
Profiling”) framework. This is a scalable, language- and platform-
independent framework designed to enable on-demand CPU and
memory profiling of microservices, and centralized storage, sharing,
and analysis of the resulting data.

CCS CONCEPTS
• Software and its engineering → Software performance;
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1 INTRODUCTION
Service profiling is a form of dynamic program analysis which
is commonly used to aid in service optimization. Two primary
analyses are CPU and memory profiling.

CPU profiling is a technique to analyze the execution time of
methods of a service; this can find service "hotspots" which can be
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optimized. This technique has a long history; for example, the prof
command has been implemented in Unix since the early 1970s [18].

Memory profiling can refer to analysis of whole memory (often
called "core" or "heap") or to memory allocation events. These tech-
niques are often used to find memory leaks, but also can be used
to optimize memory usage. Optimization of memory can also have
effects on application latency; this can be due to reduced garbage
collection in managed languages, but can also be due to reduced
allocation and deallocation events, copying of data, and improved
paging and caching.

Although CPU and memory profiling are old techniques, there
are few standards for their use, especially across platforms or lan-
guages. As a result, unless a profiler tool is supported internally,
users may need to configure the tool, acquire licenses, and request
installation on remote hosts before profiling. In addition, viewing
the profiled results often requires manual data transfer or setting
up a tunnel from the production environment to the development
environment. Furthermore, sharing and comparing profiling data
is difficult or effectively impossible, especially when profiling runs
are captured by different users with different profiler settings, or
even different profiling tools.

Additionally, companies and projects have begun to adopt Agile
software architectures such as microservices, where software appli-
cations are designed as suites of independently deployable services
[7]). (LinkedIn uses a microservice and continuous deployment
model itself [1]. Thus for the remainder of the paper, we will use
the terms "service" and "microservice" interchangeably.)

Although microservice architectures are very useful, they can
drastically increase the total count of services, their diversity, and
the frequency of their changes and deployments. More services and
more frequent deployments of those services lead to more frequent
profiling; this generates more data, thus leading to challenges in
scalability. Higher diversity in services can also necessitate more
varied profiler technologies. These further limit profiler adoption
due to scalability concerns and needs for varied profiler technolo-
gies.

The scalability concerns formicroservice profiling are not limited
to hardware and software; there are user scalability concerns as
well. Each microservice requires independent optimization, and
versioning of dependencies becomes a significant issue. For example,
if a newer version of a library is optimized, not all of the services
depending upon that library will immediately choose to consume
this new version; service owners will often be unaware of the
optimizations, orwon't prioritize the upgrades unless they're known
to improve the service behavior.
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Figure 1: High-level architecture of the ODP framework

Clearly there are challenges in significant adoption of profiling
in the Agile methodology. But there are huge benefits as well. Rapid
changes allow for rapid optimizations; improvements to libraries,
for example, can quickly be consumed by all dependers, resulting
in profound optimizations from simple analyses.

We have developed theODP (“On-Demand Profiling”) framework
to address these challenges.

The ODP framework is itself a collection of microservices. It
consists of: RESTful APIs for starting and stopping profilers and
for accessing reported data; profiler plugins for different profiling
modes, languages, and platforms; scalable messaging and data stor-
age; scalable data processing (including Common Issue Detection);
and a GUI for users to visualize and share results.

2 ARCHITECTURE
We now present the high-level architecture of our solution (the
ODP framework). As shown in Figure 1, the key components are
the Profiler request, the Profiler API server, a Profiler service with
profiler plugins, a messaging backbone, and a data pipeline and
datastore.

A user or a scheduled job (from an arbitrary host machine) re-
quests a specific service ("target service", also called "STP" for the
Service To Profile) be profiled on a specified host machine ("target
host").

The request to profile is passed to a REST-based API service.
The API service deploys the Profiler service on the target host if
necessary, and then signals the Profiler service on the target host
to profile the STP.

The Profiler sends its data through a scalable pipeline. After
post-processing, the data can be viewed via a GUI, or consumed
directly via another REST-based endpoint.

2.1 Profiling requests
Profiling requests can come from both users and approved services
(e.g., automated performance testing). In addition to on demand

requests, profile requests can be scheduled for regular events, such
as traffic shifts. Profiling requests are simple HTTPS calls in REST
style.

Requests can be made to start or stop STPs on specified hosts.
Additionally, requests can be made to simply deploy or undeploy
the Profiler service, without actually executing plugins. All requests
and their current state are stored within the Profiler database for
monitoring and analysis.

The framework requires authentications to protect services from
untrusted or duplicated profile requests. Once a request is veri-
fied, the framework will take care of additional authentications in
production clusters to ease developers’ job.

For flexibility, the framework supports authenticated requests
from all hosts in the network, and allows requests to any hosts that
are approved to run the Profiler service.

2.2 REST-based API
Our REST-based API service acts as an interface for the profiling
requests. The profiling requests come from CLIs (Command Line
Interfaces) or GUIs, or are scheduled jobs stored within the Profiler
database.

For a "deploy" request, the API service queries the target host (or
the Profiler database) to determine if a Profiler service is already
running, and if not, deploys the Profiler service.

For a "start" request, the API service executes a "deploy" request,
and then sends a command to the target host’s Profiler service via
an Apache Kafka message (see Section 2.5) in order to start a profile
of the STP.

For a "stop" request, the API service sends a similar Kafka mes-
sage to the target host’s Profiler service to stop a profile of the STP
(if it is running).

For an "undeploy" request, the API service queries the target
host (or the Profiler database) to determine if a Profiler service is
already running. If it is, the API service can either undeploy the
service immediately (thus terminating any ongoing profiles on that
host), or wait until all profiler requests have finished on the target
host.

2.3 Profiler Service
The Profiler is a microservice that’s either deployed on-demand or
is continuously running on target hosts where STPs are requested.
Each language-specific CPU profiler and each language-specific
memory profiler is implemented as a plugin of the Profiler.

The Profiler polls for Kafka messages from the Profiler API ser-
vice. Then it verifies that those messages are authenticated, and
activates itself when a message to profile a service on the given
host (the STP) arrives. The Profiler verifies the existence of the
requested STP on the host, and determines its characteristics (e.g.,
process ID, language, version, and flags).

Based on these characteristics, the Profiler executes the appropri-
ate profiler plugin. If multiple profiling requests arrive contempo-
rareneously to the same host, multiple plugins (ormultiple instances
of the same plugin if necessary) can be invoked.
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2.4 Profiler Plugins
Each Profiler plugin can profile one ormore combinations of profiler
mode (e.g., CPU, memory allocation tracking, heap dump), platform
(e.g. Linux, MacOS, or Windows), and language (e.g., JVM, .NET,
C++, or Python).

There are varied technologies and techniques that can be used
to profile such as [12] and [14]. The ODP framework is agnostic to
these choices.

The data generated from a profiling plugin often has high re-
dundancy, as the stack traces or classes (for memory allocation
profiling) are expected to recur frequently. To avoid the potential
for network congestion, this data is periodically aggregated, which
dramatically reduces the data redundancy. As aggregation will take
CPU and memory resources, the aggregation frequency must be
carefully balanced to ensure that the Profiler’s CPU and memory
footprint remain small.

This aggregate data is then sent to Kafka for later consumption
by the data pipeline; see Sections 2.5 and 2.6. Some profiler plugins
cannot periodically aggregate (for example, heap dumps) and can
only send all of their data at profile completion. This is supported
functionality, but additional care must be taken within such plugins
to not overload memory or network considerations for the Profiler
service.

A lightweight sampling-based JVM CPU/memory profiler is cur-
rently used at LinkedIn, which supports late attach functional-
ity and avoids restarting service in production environment be-
fore/after profiling requests.

2.5 Messaging Backbone
We use Apache Kafka both to send command messages to the
Profiler instances and to publish profiling data generated by the
profiler plugins.

Kafka is a distributed streaming platform that, among other
functionality, can "read and write stream data like a messaging
system" [3] and "store streams of data safely in a distributed, repli-
cated, fault-tolerant cluster" [3]. Kafka also supports authentication
and SSL encryption/decryption, which resolves potential security
concerns such as message spoofing.

2.6 Data Store
The profiling data sent to our Kafka topic is processed and written
to a data store via Apache Samza [4]. Samza is a scalable, lossless,
streaming processing framework that uses Kafka for messaging; if
multiple Profiler services send data simultaneously to the Kafka
topic, Samza catches up with the produced messages and pushes
them to our remote data store.

We have chosen MySQL [19] for our data store. This is a very
popular and well-supported database technology. It works well
for our needs (simple tables, low/medium traffic, large storage). A
simple sharding technique allows scaling for the storage of profiler
data.

To ensure a manageable database size, we have scheduled jobs
to deduplicate redundant data and delete old data.

Figure 2: A Flame Graph: cell width indicates percentage of
method within the graph; higher cells are child methods of
lower cells. Note the clicked context menu linking to a code
search tool.

Figure 3: Comparison Flamegraph: Red coloration at leaf
nodes indicates an increase compared to the baseline, while
blue indicates a decrease.

2.7 Visualization
The CPU and memory profiling results are visualized through an
internal web application. Visualizing via a native application would
also be an option, as would be a plugin to an IDE (Integrated De-
velopment Environment), but we have found the current approach
to be simple and to allow easy sharing of URLs.

These profiling results and visualizations have been quite popu-
lar at LinkedIn; similar ones have also experienced success at other
companies [13]. As a result, there are a great deal of open-source re-
sources to help implement elements of this web-based visualization
([13]).

The visualization is done with Flame Graphs [13], see Figure 2.
The flame graph is rendered as an interactive SVG (Scalable Vec-
tor Graphic) allowing easy zooming into and out of stack traces.
Additionally there are options to filter and highlight based on regu-
lar expressions, and functionality to compare profiling results (see
Figure 3). Some teams have used the comparison functionality to
generate regular performance assurance reports to guard against
regressions, see Section 4.

There is also a context menu associated with each cell. This menu
contains contextual information for both the cell’s method and the
full stack trace. From this menu we have both: a link to a code-
search tool, which allows us to view the source code associated
with a given stack trace (internally we use [5], but there are certainly

3

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

141



Figure 4: Hot Leaf Calls: A list of the most common "leaf"
methods in a profile, linked to their occurrence within the
profiled service.

others such as [11]); and a link to crowdsource known issues, see
Section 3.

Additionally, we have a table-based "hot leaf call" (see Figure 4),
which is oftenmore convenient than the graphically-intensive flame
graph.

3 COMMON ISSUE DETECTION
Many of the issues found during analyses of profiling results have
been found to pop up repeatedly for different microservices. This
can result in a great deal of repeated analyses and differing opti-
mizations as common performance patterns (and their solutions)
are rediscovered. This becomes even more noticeable for larger
and decentralized groups for whom information sharing is more
difficult.

We have developed a crowdsourcing technique and technology
that helps alleviate this [15]. By centralizing the repeated issues and
automatically detecting them, we can save valuable development
resources. This technique is applied to both future profile results
and to previous results, which are re-analyzed to link to newly-
discovered patterns.

Additionally, these detected patterns can be sent directly to af-
fected teams; this may be of use when, say, a profiler result is
generated on a scheduled basis and a newly-detected issue is not
noticed by a user. If an issue is found to occur in a library that is
consumed by several teams, this auto-alerting can help prioritize a
resolution to the underlying library problem.

Issue detection can be applied to aggregate stack percentages
(as in Figure 5), with a customizable threshold percentage to avoid
flagging low-impact issues. It can also be applied to detect when
certain library versions or runtime options are used by the profiled
service.

4 RESULTS
The ODP framework has gained significant traction at LinkedIn. In
sixteen months, it has grown to incorporate analyses of roughly 150
of the services used in production. This represents well over 50%
of the critical, expensive, or heavily-used services (e.g., those with

Figure 5: Common Issue Detection: A list of issues autode-
tected by ODP, linked to their desriptions and their occur-
rence within the profiled service.

a high number of instances, custom or particularly expensive hard-
ware, or those services directly corresponding to user latency). This
adoption rate compares quite favorably to that of other LinkedIn
performance tools such as Redliner [20].

Dozens of improvements have been applied based upon analy-
ses from ODP profile results. Most of these have been applied to
common internal libraries, thus affecting many services. Some have
even been applied to external open-source libraries, helping the
larger software community.

The effects of these improvements are not always easy to predict;
for example, some improvements based on CPU profiling may have
dramatic effects on average latency, some on P99 latency, some
on service throughput, and some on CPU usage. Improvements
based on memory profiling may reduce overall memory usage or
reduce time spent in garbage collection; these will have effects on
latency, throughput, and CPU usage as well, but again those effects
are often hard to predict.

The results at LinkedIn have been undeniable, however. A syn-
chronization fix led to a roughly 40% increase in throughput of a
critical service. A series of smaller improvements led to a roughly
25% increase in throughput of another critical service. Both of these
improvements have enabled reductions in hardware needed to sup-
port those services, resulting in substantial cost savings for the
company.

Scheduled profile results helped detect and mitigate a library re-
gression, which if it had made it to production, would have reduced
a critical service’s throughput by 40% and would have likely caused
cascading failures.

Other improvements have resulted in significant latency reduc-
tions in critical services: over 10% average latency reduction for
one, and over 20% P99 latency reduction for another.

A key point: many of these improvements were made to internal
libraries (and some to open-source external libraries). As such, there
are synergistic effects to other services as well.

5 OVERHEAD
As with other profilers, ODP adds some overhead to services. The
overhead varies depending on the service, but we found that the cur-
rent profiler plugin in ODP generally adds 11% to 13% throughput
overhead based on SPECjvm2008 benchmarks [9], and less than 5%
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Figure 6: Case study: problematic stack traces.

latency overhead on LinkedIn servers. ODP also adds network over-
head when it sends results to Kafka. To reduce this, ODP cuts and
compresses results to small snapshots and sends them periodically
at a configurable rate.

6 CASE STUDY
An example of how LinkedIn has used ODP is with the backend
service of the People You May Know (PYMK) feature of LinkedIn. In
order to diagnose why this service was experiencing high latency in
production, its service owners used ODP to capture a CPU profile.
Through their profile, they found that the routine shown in Figure 6
occupies more than 18% of CPU time for their service.

This routine involves using the UUID.randomUUID call to gener-
ate tracking entity IDs in a highly concurrent fashion. UUID.random-
UUID internally uses NativePRNG to generate random numbers
which uses randomness from /dev/urandom and has a global lock
within the implNextBytes method (as shown in Figure 6).

To address this problem, we proposed that the service own-
ers write their own UUID generation call based on another non-
blocking security algorithm which we found provides comparable
randomness and security with improved performance benefit. After
this change, about 12% of 90% latency has been reduced based on
production data.

7 RELATEDWORK
Profiling and debugging services that are running in production
environments is a critical requirement for projects and companies
that need to resolve performance regressions.

7.1 Profiling tools
There are standalone profilers that support remote profiling [10] [8],
but production clusters usually require additional authentication
checks and make it difficult or impossible to use those standalone
profilers directly.

7.2 Frameworks

1Frameworks
Features ODP GWP Vector
On demand/Always on On demand Always on On demand
CPU information Yes Yes No
Memory information Yes No No
Machine level metrics No Yes Yes
Pluggable profilers Yes No No
Flexible sampling rate Yes No No

Frameworks similar to ODP have been created for system and
application metrics (such as Netflix’s Vector [2]) as well as for daily
or scheduled profiles of a sample of hosts (such as Google’s Google-
Wide Profiling [16]). The ODP framework differs from these as it
focuses on diagnosing performance problems through on-demand
requests rather than monitoring the state of systems – although it
is occasionally used for that purpose. The most similar framework
that could be found is Alibaba’s ZProfiler and ZDebugger [6], which
provides profiling and detected issue sharing features.

8 FUTUREWORK AND CONCLUSION
For certain languages and platforms, employing particularly light-
weight profilers such as Linux Perf [12] would enable an "always-
on" approach, which would help support continuous performance
assurance. An always-on approach would significantly increase
data processing and storage, but the scalability of the ODP frame-
work allows this. Unlike similar efforts [16], we plan to allow both
on-demand and always-on requests. This is a straightforward gen-
eralization: one can think of "always-on" as simply a long-running
on-demand request.

Profiling of embedded devices (for example, mobile devices) rep-
resents a challenge. There exist profiling tools for devices, emula-
tors, and simulators, but we are not currently aware of any that
could be adapted as a Profiler plugin.

The technologies for virtualized or containerized services are in
flux in the industry [17]. Some of these technologies would require
additional permissions or additional steps to ensure the STP is
visible to the Profiler service and its plugins; as such, we must stay
in sync with those efforts.

In this submissionwe have presented the ODP framework, our so-
lution for on-demand CPU and memory profiling of microservices.
This is a scalable, language- and platform- independent framework
that has been widely adopted within LinkedIn.
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