
User-defined Classification and Multi-level Grouping of Objects
in Memory Monitoring

Markus Weninger
Institute for System Software

Christian Doppler Laboratory MEVSS

Johannes Kepler University Linz, Austria

markus.weninger@jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz, Austria

hanspeter.moessenboeck@jku.at

ABSTRACT

Software becomes more and more complex. Performance degrada-

tions and anomalies can often only be understood by using moni-

toring approaches, e.g., for tracing the allocations and lifetimes of

objects on the heap. However, this leads to huge amounts of data

that have to be classiied, grouped and visualized in order to be

useful for developers. In this paper, we present a lexible oline

memory analysis approach that allows classifying heap objects

based on arbitrary criteria. A small set of predeined classiication

criteria such as the type and the allocation site of an object can

further be extended by additional user-deined criteria. In contrast

to state-of-the-art tools, which group objects based on a single

criterion, our approach allows the combination of multiple criteria

using multi-level grouping. The resulting classiication trees allow

a lexible in-depth analysis of the data and a natural hierarchical

visualization of the results.

KEYWORDS

Memory, Monitoring, Analysis, Tool, Grouping, Classiication

ACM Reference Format:

Markus Weninger and Hanspeter Mössenböck. 2018. User-deined Classi-

ication and Multi-level Grouping of Objects in Memory Monitoring. In

ICPE ’18: ACM/SPEC International Conference on Performance Engineering,

April 9ś13, 2018, Berlin, Germany. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3184407.3184412

1 INTRODUCTION

The increasing complexity of software systems requires tools and

techniques for monitoring the behavior of large and complex ap-

plications. Many of these tools trace an application by recording

events at run time and writing them to a trace ile for later analysis.

For example, a memory monitoring tool could record object allo-

cations and garbage collector activity (e.g., object moves) so that

the application’s heap can be later reconstructed oline for various

analyses.

Such monitoring tools produce huge amounts of data, which

have to be classiied, grouped and visualized in order to be helpful

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE ’18, April 9ś13, 2018, Berlin, Germany

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184412

for the user. For example, users might want to know how many

objects of a certain type were allocated, at which locations they

were allocated, and how long they survived. Unfortunately, many

state-of-the-art tools fail to provide a lexible information retrieval

technique. Most of them only support hard-coded classiication

criteria (often type is the only one) in conjunction with tabular

histograms, e.g., showing the number of instances per class and

the number of allocated bytes. They don’t allow users to classify

the data based on multiple criteria (e.g., type, allocation site and

age) and miss features to organize and aggregate the resulting

information hierarchically on multiple levels.

Our tool AntTracks [12, 13] is a memory monitoring tool for

Java based on the Java Hotspot™ VM [21] that records object alloca-

tions and garbage collection moves. It also ofers oline analysis of

trace iles, in which the heap can be reconstructed for any garbage

collection point in time. Bitto et al. [3] showed how to reconstruct

an application’s heap from traces produced by AntTracks. Based on

this work, Weninger et al. [25] presented irst ideas on object classi-

iers with the goal to make the classiication of memory monitoring

data more general and customizable.

In this paper, we extend our work by presenting a generally ap-

plicable object classiication and multi-level grouping concept. An

object classiier processes an object and classiies it based on a cer-

tain criterion derived from the object’s properties, e.g., classifying

heap objects based on their type. Objects with the same classii-

cation result are grouped together. As already mentioned, most

state-of-the-art memory monitoring tools have two major restric-

tions: (1) They only ofer a restricted set of classiication criteria,

such as Type or Allocation Site, and (2) their grouping mechanism is

based on just a single classiication criterion, i.e., single-level group-

ing. Our approach eliminates both restrictions. In addition to a set

of predeined object classiiers that are usable out-of-the-box, users

can deine custom object classiiers as small dynamically-loaded

code snippets. Furthermore, the grouping is not based on a single

criterion but on dynamic classiication trees, i.e., on multi-level

grouping based on multiple object classiiers. Such classiication

trees store classiication results in a hierarchical manner and allow

a more lexible top-down data analysis approach. The concepts of

object classiication, multi-level grouping and classiication trees

are not restricted to memory data and may therefore also be used

in other domains.

Our scientiic contributions are (1) a novel concept of object

classiiers, a way to classify a collection of objects based on their

properties, (2) a multi-level grouping algorithm that classiies a

collection of objects based on a user-chosen set of object classiiers

into a classiication tree, (3) various classiication tree data structures

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

115

https://doi.org/10.1145/3184407.3184412
https://doi.org/10.1145/3184407.3184412

that difer in terms of classiication throughput, memory overhead

and information loss, and (4) a quantitative evaluation based on

well-known benchmarks as well as a functional evaluation based

on typical memory analysis use cases.

2 BACKGROUND

AntTracks consists of a virtual machine based on the Java Hot-

spot™ VM and a memory analysis tool. The AntTracks VM records

memory events into trace iles, which can then be analyzed of-

line with the tool. Since our object classiier approach has been

integrated into this tool, it is essential to understand AntTracks’s

architecture and worklow.

2.1 Trace Recording

The AntTracks VM records memory events, e.g., events for object

allocations and object movements executed by the garbage collector

(GC), throughout an application’s execution and writes them into

trace iles. Furthermore, it is also capable of recording pointers

between objects [11]. After loading such a trace ile, the AntTracks

analysis tool provides overview of the memory behavior over time

and can reconstruct the heap’s state and layout for every garbage

collection point by incrementally processing the events in the trace.

2.2 Trace Reconstruction and Data Structure

Bitto et al. [3] show that a naïve approach, in which every heap

object is represented by a Java object in the analysis tool, would

result in an unacceptable memory overhead. Therefore, we devel-

oped the data structure shown in Figure 1. It separates the heap into

multiple spaces. For example, the ParallelOldGC’s heap consists

of one eden space, two survivor spaces, and one old space. Each

of these spaces encompasses various ields such as the starting

address, the size, or the kind of the space (i.e., eden, survivor or old).

Additionally, each space contains an address-to-LAB map. A LAB

(local allocation bufer) represents a sequence of objects that have

been processed together by the same thread (e.g., objects that have

been allocated by the same thread within the same thread-local

allocation bufer (TLAB)). Each entry in the LAB’s object array

represents one heap object and contains a pointer to a global cache

of object representations, called ObjectInfo. ObjectInfos are cached

structures that contain information which is shared by multiple

objects, namely the event which created the object (e.g., an allo-

cation by the interpreter), the object’s allocation site, its type and

its size. For array allocations, also the array length is stored. Using

this mechanism, many diferent objects can be represented by the

same ObjectInfo. Their addresses do not have to be explicitly stored

Heap

Space #1
Space #2
Space #3
Space ...

0x0100
0x0500
0x0600
0x0800

Space
Lab

0x0200
0x0600
0x0800

Space
address = 0x0100

ObjectInfos
Buffer

34b

Buffer::create

0x0100

Foo

60b

Meth::m

char[16]

48b

Foo::baz

address = 0x0100
pointers to =

objects =

pointed from =

spaces =

labs =

Figure 1: AntTracks’s data structure to represent a heap at a

certain point in time.

but can be computed from their LAB’s address. In addition to the

object array, each LAB contains two arrays of the same length to

store pointer information. For each entry in the object array, i.e.,

for each heap object, the respective entry in the pointers to array

contains the addresses of all objects that are referenced by this

object. Analogously, each entry in the pointed from array contains

the addresses of all objects that point to the respective object.

3 APPROACH

This section presents the domain-independent concepts of classii-

cation (i.e., representing an object by a classiication result made up

of one or more classiication values) and multi-level grouping (i.e.,

arranging classiication results in a tree structure). Examples on

how these concepts can be applied in a speciic domain / tool will

be given in the context of Java and the classiication of Java heap

objects within the AntTracks memory analysis tool. If a speciic

heap state is shown, it has been reconstructed from a trace of a

DaCapo xalan benchmark run.

3.1 Source Collection and Source Objects

Classiication and grouping always operate on a source collection

which consists of source objects of a certain type. AntTracks’s source

collection when classifying a heap state are the Java heap objects

that have been live at the given point in time.

The source collection does not have to be represented by a single

class but may be made up of multiple classes that interact with each

other, see Figure 2. One of these classes must act as the source col-

lection to the public. This class is required to provide functionality

to iterate the contained source objects. In AntTracks, as explained

in Section 2, a heap state is modeled by multiple classes (i.e., the

heap itself, which further consists of multiple spaces, which further

consist of multiple LABs), yet the Heap class acts as the source

collection to the public.

Similarly, the properties of a source object do not have to be

stored in a single object. In AntTracks, for example, they are stored

in diferent locations: Most of them are stored in the ObjectInfo,

but a heap object’s pointers are stored in the LAB, and its address

is calculated on demand.

Iterable
source collection

Conceptual Model Data Model

Source collection

Part 1 Part 2

Cache DB
Some

class

Properties (via
 property functions)

Iteration

e.g., Space

e.g., Heap

e.g., LABSource
object

Property 1
Property 2
Property 3

Figure 2: Basic classiication concepts: Source collection,

source objects and source object properties.

We distinguish the term object from the term source object be-

cause object is often used in the context of programming languages

to describe a certain instance of a class. A source object, on the

other hand, represents properties that may be stored in various

places.

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

116

3.2 Source Object Properties and Source
Collection Iteration

A source object is described by itsm properties based on its position

P within its source collection, as shown in Deinition 3.1.

Deinition 3.1. A source object at position P within its source

collection is described by itsm distributed properties:

soP is described by (prop1, prop2, . . . , propm)P

P ’s format depends on the source collection. For example, in

a list, source objects are identiied by their index i , i.e., P = i . In

AntTracks’s heap data structure, a source object’s position, i.e.,

the position of a heap object within the reconstructed heap, is

described by (1) the space in which the object is, (2) the lab inside

the object’s space, and (3) the object’s position within the lab, i.e.,

P = (spaceIndex , labIndex , objectIndex).

Source collection iteration describes the task of visiting every

position in the source collection and obtaining the properties of the

respective source object. In AntTracks, iterating the heap means to

visit every element in the ObjectInfo array of every LAB in every

space, and collecting all properties of the currently visited heap

object, e.g., calculating its address based on its containing LAB.

3.3 Object Classiiers

As soon as a source object’s properties have been obtained, object

classiiers can be used to classify it. Object classiiers are entities

that classify a source object based on a certain criterion derived

from the source object’s properties. Each object classiier provides

a classify function, which takes one parameter per source object

property and returns the classiication result. Additionally, every

object classiier contains the following meta-data:

Name. A unique name used to identify the classiier.

Return Type. The classify method’s return type.

Description (Optional). Useful to keep the classiier’s names

short while still ofering additional information about the

classiier’s purpose.

Example (Optional). A possible classiication result returned

by the classiier, e.g., java.lang.Integer returned by

AntTracks’s Type classiier. This can be shown as a clas-

siication sample to the user in the UI.

Cardinality. Each classiier can be of one of the follow-

ing three cardinalities: One-to-one, one-to-many or one-to-

hierarchy. Depending on the cardinality, the classiier’s clas-

siication result may be made up of a diferent number of

classiication values, see Figure 3.

In AntTracks, object classiiers are used to classify Java heap objects

based on their properties such as the object’s type, its allocation

site and so on. Each classiier, e.g., the Type classiier, implements a

common Java interface (most importantly the classify method),

see Section 4.2.

3.3.1 One-to-one Classifier. A one-to-one classiier classiies a

source object by a unique classiication value as classiication result

(see top part in Figure 3). The returned classiication value is an

instance of the classiier’s return type, i.e., a one-to-one String

classiier returns a single String as value.

O
n

e
-t

o
-m

a
n

y

* CV … Classification value

AntTracks Example:
Type

Concept

Source Object

One-to-one Classifier

Classification Value

Type Classifier

“my.package.X"

X x = new X();

AntTracks Example:
Feature

Concept

Source Object

One-to-many Classifier

CV #nCV #1 ...

Feature Classifier

“Feat. 4"“Feat. 1"

X x = new X();

AntTracks Example:
Allocation Site

Concept

Source Object

One-to-hierarchy Class.

Root Classification Value

Child Classification Value

Grandchild CV

Allocation Site Class.

“foo"

“bar"

void foo() {
 X x = new X();
}
void bar() {foo();}

Alloc.

Site

Caller

O
n

e
-t

o
-o

n
e

O
n

e
-t

o
-h

ie
ra

rc
h

y

addr = 0x10
type = X

...

Properties

Properties

Properties

addr = 0x60
type = X
...

addr = 0x90
type = X
...

Figure 3: Object classiiers classify a source object based on

its properties. The three types of classiiers vary in their clas-

siication value cardinality.

An example for a one-to-one classiier is AntTracks’s predeined

Type classiier, which classiies a Java heap object based on its type’s

name. Figure 4 shows a part of AntTracks’s analysis view where

each heap object has been classiied using the Type classiier.Overall

Figure 4: Classifying heap objects by type in AntTracks.

shows the number and byte count of the whole heap, and each child

row represent a group of heap objects that have been classiied by

the same value, i.e., that are of the same type. Each heap object is

part of exactly one group, i.e., one-to-one classiication.

Filters. Filters are a special kind of one-to-one classiiers, which

are of type Boolean. Filters are used in the classiication process

to deine whether a source object should be further processed by

subsequent operations.

3.3.2 One-to-many Classifier. A one-to-many classiier classiies

a source object by multiple classiication values, as can be seen in

the middle part of Figure 3. The result is a set of instances of the

classiier’s type: If the classiier’s type is String, a set of strings

will be returned.

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

117

An example for such a classiier is the predeined Feature classi-

ier in AntTracks. Assume that (possibly overlapping) code ranges

represent speciic features [10]. The allocation site of an object may

then belong to one or more of these features. The Feature classiier

performs a feature mapping for every Java heap object and returns

the set of features to which its allocation site belongs. Figure 5,

Figure 5: Classifying heap objects by feature in AntTracks.

similar to Figure 4, shows again a part of AntTracks’s analysis view.

This time, each heap object has been classiied using the Feature

classiier. Since the Feature classiier is a one-to-many classiier, each

heap object can be part of multiple groups (if the classiier returned

multiple values, i.e., features, for that heap object).

3.3.3 One-to-hierarchy Classifier. A one-to-hierarchy classiier

classiies a source object by hierarchical classiication values, as

shown in the bottom part of Figure 3. Such a classiier returns

objects of the classiier’s return type in an ordered list. The object

at index 0 is the root object, and for all i > 0 the object at index

i − 1 is the parent of the object at index i .

An example for a one-to-hierarchy classiier is the predeined Al-

location Site classiier in AntTracks, which classiies an object based

on its allocation site and the allocation’s call sites. The root object

(at index 0) is the code location where the object was allocated, the

object at index 1 is the code location from where the allocating

method was called, and so on (i.e., the code location at index i is

the callee and the code location at index i + 1 the caller). Figure 6

s

Figure 6: Classifying heap objects by allocation site in

AntTracks.

also shows a part of AntTracks’s analysis view similar to Figure 5,

yet each heap object has been classiied using the Allocation Site

classiier instead. First-level children of the Overall group, i.e., row

2 and row 6, are allocation sites where objects have been allocated.

Child relations represent the call chain, e.g., the call sites on row 3

and row 5 called the allocation site on row 2, and the call site on

row 4 has been the single caller to the call site on row 3.

3.4 Multi-level Grouping

Single-level grouping splits a set of objects into multiple groups.

Each group represents a distinct classiication result (i.e., the clas-

siier’s return value) and contains all objects that are classiied by

this result. Typical single-level grouping only supports one-to-one

classiiers, i.e., each object is mapped to exactly one classiication

value. In addition to introducing other classiier types beside one-

to-one classiiers, we present multi-level grouping to enhance the

lexibility and level of analysis detail.

3.4.1 Classification. Similar to single-level grouping, multi-

level grouping is an operation that groups a set of source objects.

Yet, instead of applying a single classiier, a list of classiiers is ap-

plied one after the other to every source object, and the sorted list

of their classiication results (where each classiication result may

be made up of multiple classiication values) make up the source

object’s classiication.

Obj. Classiication and results in parentheses

O(1) [Age(1) → Feat(F1, F2) → AS(add, A)]

O(2) [Age(1) → Feat(F1, F2) → AS(add, B, D)]

O(3) [Age(3) → Feat(F1) → AS(main, C, A)]

O(4) [Age(3) → Feat(F1) → AS(clone, D)]

O(5) [Age(3) → Feat(F1) → AS(main, C, A)]

O(6) [Age(1) → Feat(F1, F2) → AS(add, A)]

Table 1: Example classiication of 6 Java heap objects based

on three classiiers: Age (one-to-one), feature (one-to-many)

and allocation site (one-to-hierarchy).

Table 1 shows an example classiication for six objects O (1) to

O (6). The three classiiers that get applied are (1) the Age classiier,

a one-to-one classiier categorizing heap objects based on their

number of survived GCs, (2) the Feature classiier (see Section 3.3.2)

and (3) the Allocation Site classiier (see Section 3.3.3). Each classii-

cation contains three classiication results, one per classiier, sorted

in the order in which the classiiers were applied.

3.4.2 Classification Tree. Raw information as presented in Ta-

ble 1 is not very helpful for the user. Classiication trees bring such

classiication results into a hierarchical format that allows (1) lex-

ible processing of data, such as merging, subgrouping, counting

and so on as well as (2) straightforward visualization, e.g., as a tree

table view, for user-driven analysis.

Figure 7 shows the creation of a classiication tree for the objects

in Table 1. Rectangles (yellow) represent tree nodes containing

their keys as text, and arrows point to their child nodes. Smoothed

rectangles (blue) represent the data that a node is holding, i.e., the

source objects assigned to the node.

The following example explains how O (1) gets added to the

classiication tree. The algorithm starts with the root node as the

current node. During the classiication process, when looking for a

child node with a certain key that does not exist yet, a new child

gets created for that key.

The Age classiier returns 1 as the classiication result for O (1).

For each current node (i.e., the root node), the child matching this

classiication becomes the new current node, i.e. the status of cur-

rent node moves from the parent to the child. Then, the Feature

classiier is applied, which returns F1 and F2 as its classiication val-

ues for the source object O (1). Both features get added as children

of 1 and become the new current nodes. Finally, the Allocation Site

classiier gets applied on the source object and returns the alloca-

tion site add and its caller A. add nodes are appended as children

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

118

root 1
F2

F1 add

add

A

A

Level 0 Level 1: Level 2: Level 3: Level 4:
Age Feature Allocation Site Call Site

O(1)

O(1)

B

B

D

D

O(2)

O(2)

root 1

F2

F1 add

add

A

A

O(1)

O(1)

Level 5:
Call Site

3 F1 main C A O(3)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1)

O(1)

3 F1
main C A O(3)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1)

O(1)

clone:16 D O(4)

3 F1
main C A O(3,5)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1)

O(1)

clone:16 D O(4)

3 F1
main C A O(3,5)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1,6)

O(1,6)

clone:16 D O(4)

1

2

3

6

5

4

Age … One-to-one classifier
Feature … One-to-many classifier
Allocation Site (incl. Call Sites) … One-to-hierarchy classifier

Classification

 Age(1),
 Feat(F1, F2),
 AS(add, A)

 Age(1),
 Feat(F1, F2),
 AS(add, B, D)

 Age(3),
 Feat(F1),
 AS(main, C, A)

 Age(3),
 Feat(F1),
 AS(clone, D)

 Age(3),
 Feat(F1),
 AS(main, C, A)

 Age(1),
 Feat(F1, F2),
 AS(add, A)

 O(1)

 O(2)

 O(3)

 O(4)

 O(5)

 O(6)

Figure 7: Step-by-step multi-level grouping of six heap ob-

jects into a classiication tree based on age, feature and allo-

cation site.

to all current nodes (i.e., to F1 and F2) and A nodes are appended to

the two add nodes.

Since no more classiiers have to be applied, the object is then

added as a data entry at the current nodes, i.e., at both A nodes.

This is the state that is shown in the top part of Figure 7. To reach

the state at the bottom of Figure 7 the above steps are repeated for

every source object O (2) to O (6).

Figure 8 shows an example on how classiication trees get visu-

alized in AntTracks. It displays a part of AntTracks’s heap state

analysis view where all heap objects have irst been classiied by

Age, then by Feature, followed by Allocation Site.

3.5 Data Representation in Nodes

Source objects have to be associated with certain nodes of the

classiication tree. Various approaches are possible, some of which

sacriice information in favor of reduced memory overhead (see

Figure 9).

Figure 8: AntTracks’s visualization of classiication trees.

3.5.1 Lossless Approaches. Information lossless approaches al-

low to retrieve all properties of all source objects stored in the

classiication tree. This is needed if the classiication tree should

later be used for further complex processing.

Naïve List Approach. A naïve approach is to represent the node’s

data as a list of objects. A source object’s properties (which are

distributively stored) would have to be combined into a new object

on demand (e.g., new MyObject(p1, p2, p3)).

We chose to store source object properties in a scattered way

exactly because we want to prevent the creation of class instances,

which would lead to increased memory footprint (e.g., due to object

headers). Further, the more live objects reside in the heap, the

less memory is available for new allocations. This results in more

frequent GC invocations, which may slow down the application.

Property List Approach. Instead of storing a list of objects, this

approach only stores a list of one of the source object’s properties.

This is possible if the object’s remaining properties can be derived

from this property, which is the case for nearly all use cases. In

AntTracks, for example, heap objects can be identiied by their

address. The downside of this approach is the additional indirection

when obtaining the other properties on demand.

3.5.2 Lossy Approaches. The lossless approaches retain object

identity, i.e., we know exactly which source objects have been

added to which tree nodes. This level of detail may be traded for

less memory-consuming tree node data structures.

Mapping Approach. This approach relies on a map, where the

key’s type is application-dependent and the value is represented

by a counter.

When adding a source object to a node, information of interest

about the object gets extracted as the object key. This object key is

C
o

u
n

te
r

Source object
create

instance

Tree node | | | | | | |

stores

Property 3

Property 2

Property 1

Object

N
a
ïv

e
 L

is
t

P
ro

p
e
rt

y
 L

is
t

Source object
pick ident.
property

Tree node | | | | | | |

stores

Property

M
a
p

p
in

g

Source object
extract

key

Tree node

Key #2

Key Counter

Key #1 150

Key #2 500

Key #3 70

increase count

Source object

extract
value

Tree node

20

150

500

add

inc

2nd counter

Count

Figure 9: Two lossless list approaches and two lossy ap-

proaches based on counters to store node data.

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

119

then looked up in the node’s data map and the respective counter

gets incremented (or created if it does not yet exist).

It is crucial to take two aspects into account when choosing

the object key: (1) What data should be reconstructed from the

classiication tree and (2) that many source objects should share

the same object key to keep the number of entries in the map

small. For example, AntTracks uses the object size (in bytes) as

the object key. While this allows to only aggregate the number of

objects and number of bytes represented by a certain node, it ofers

high memory saving potential which is discussed in more detail in

Section 5. For example, if 1000 objects of only three diferent sizes

get added to the same node, this approach just needs three key-value

pairs compared to 1000 list entries as in the list approaches.

Counter Approach. This approach is designed to have the lowest

memory footprint, while giving up lexibility and accepting the

highest loss of information. Every time a source object gets classi-

ied at a certain node, counters stored in the node get incremented

based on a ixed scheme. In AntTracks, for example, we could store

two counters, one for the number of objects and one for the number

of bytes classiied at the given node.

This approach even loses information about speciic properties.

For example, it would not be possible to determine how many heap

objects of a certain size have been classiied, which is possible using

the mapping approach.

3.6 Aggregation and Duplicate Detection

Using a one-to-many classiier may cause a source object to be

added to multiple nodes. To avoid wrong results when aggregating

this data, we have to detect duplicate entries in the tree and ignore

them.

3.6.1 List Approaches. Since the entries in every data list are

distinct, the lists can be treated as sets. The set of objects in a tree

with head n can be computed recursively as the union of the objects

in n and in the subtrees (Equation 1). Duplicates will be removed

and the resulting set can be used for counting.

objects (n) = n.data ∪ (

child⋃

n .children

objects (child)) (1)

3.6.2 Mapping Approach. By extracting a source object’s object

key, we lose the object identity which would be needed for duplicate

detection. Therefore, we additionally have to keep track of multiple

classiications. This can be done by installing a second map, i.e., the

duplicate map, in each node.

If a source object is added to more than one subtree of a node

n, a counter for the object’s key is incremented in the duplication

map of node n, which is later used for sifting out duplicates when

the total number of objects in a tree is computed.

3.6.3 Counter Approach. Similar to the mapping approach, ev-

ery node could store a duplicate counter per data counter. In all sit-

uations where a duplicate counter in the mapping approach would

be incremented, the duplicate counter in the counter approach is

incremented.

3.7 Advanced Classiiers

For advanced use, a special kind of classiiers are transformers. So

far, a classiier always took a source object’s properties as its input

and returned one or more classiication values as classiication

result. A transformer takes a source object and (1) transforms it

Source object

Classifier

Grouping

Transformer

Transformed
object

...
Transformed

object

...

Classifier

Classifier

...

Classifier

Step 1: Transformation

Step 2: Classification

Step 3: Grouping

Step 1: Transformation

Properties

Properties Properties

Figure 10: Transformers transform a source object into a set

of other source objects, classify each of these objects and

group them.

into a set of other source objects, (2) classiies each of these objects

based on a selected set of object classiiers, and (3) multi-groups

them based on their classiication results (see Figure 10).

A use case for transformers in the domain of memory monitoring

is pointer analysis. First, a heap object gets transformed into the

set of all objects that are referenced by it. Second, this set of objects

gets classiied based on a list of other classiiers selected by the

user. Finally, the classiication results get multi-grouped into the

resulting classiication tree. For example, this can be used to analyze

type-points-to-type graphs, as done by Jump and McKinley [8, 9].

4 IMPLEMENTATION

The previous section explained the domain-independent core con-

cepts of classiication and multi-level grouping based on object

classiiers alongside some examples in the context of AntTracks.

This section discusses some implementation details on how these

concepts have been incorporated into AntTracks and its memory

analysis.

Property Additional info

address

space Space index, name, address, length, ...

type Name, package, ields, ...

size The object’s size in bytes

isArray true / false

arrayLength -1 for non-arrays

allocationSite Call stack, ...

pointedFrom Addresses of all referencing objects

pointsTo Addresses of all pointees

eventType Allocation event (alloc. subsystem, ...)

Table 2: Source object properties for heap objects.

4.1 Source Objects: Java Heap Objects

AntTracks’s source objects are Java heap objects that were alive

in the monitored application at a given point in time, i.e., the heap

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

120

objects that make up a certain heap state. Table 2 shows which

properties make up a Java heap object in AntTracks, i.e., the source

object properties. Every object classiier classiies a Java heap object

based on a criterion derived from these properties.

4.2 Object Classiiers

In AntTracks, classiiers implement a common base interface. This

interface deines the classify method, with its parameter signa-

ture matching the Java heap object properties.

To provide a convenient analysis environment for most use cases,

AntTracks comprises multiple predeined object classiiers. These

classiiers, listed in Table 3, can be used and combined freely on

every heap state. An example implementation of the Type classiier

can be seen in Listing 1.

Listing 1: Implementation of the Type classiier in

AntTracks.

public class T y p eC l a s s i f i e r implements C l a s s i f i e r < S t r i ng > {
// ... Fields modifiable by user , e.g., showPackage ...

@Override public S t r i n g c l a s s i f y (
long addre s s , Space space , Type type , long s i z e ,
boolean i sAr ray , int ar rayLength , A l l o c a t i o n S i t e a l l o c S i t e ,
long [] pointedFrom , long [] po in tsTo , Event eventType) {
return type . getName (showPackage) ;

}
}

When a heap state is opened in AntTracks, a default classiication

(Type classiier followed by theAllocation Site classiier) gets applied.

This gives a fast overview that shows which types have the most

living objects, and where these objects have been allocated.

4.3 Heap Iteration

We implemented three diferent iteration approaches for

AntTracks’s heap data structure to evaluate their inluence on the

classiication speed.

4.3.1 Java Streams. This approach has been implemented as a

baseline for performance comparison. It uses the default technique

for Java streams on custom data structures by implementing a

Spliterator, the concurrent counterpart of an Iterator.

Java Stream Memory Overhead. The main problem with Java

streams and spliterators is that they are generic classes working

on Java objects of type T. Therefore, to support Java streams in

AntTracks, we have to transform AntTracks’s source objects (i.e.,

heap objects that are stored as scattered properties) into instances

of an auxiliary HeapObject class. These short-living objects (which

only exist while the stream is processed) may put unnecessary

burden on the garbage collector, especially for large heap states.

4.3.2 Fake Spliterator. This approach relies on a custom iter-

ation class that provides a tryAdvance and a trySplit method,

similar to the Spliterator implemented for the Java stream ap-

proach. However, this fake spliterator does not inherit from Java’s

Spliterator interface, but only mimics its behavior. More specii-

cally, the fake spliterator’s tryAdvance does not match the oicial

interface but has been changed in a way that allows the fake split-

erator to process a heap object’s properties separately, which has

the advantage of avoiding the need for auxiliary objects.

4.3.3 Integrated Iteration Functions. A basic implementation of

this approach already existed in the previous versions of AntTracks.

It provided sequential iteration functions on each data structure

level, i.e., on the Heap, the Space, and the LAB. In our approach, we

added support for parallel iteration, which signiicantly increased

performance.

4.4 User-deined Classiiers

Classiication in AntTracks is not restricted to predeined classiiers,

but allows users to deine new classiiers, i.e., user-deined classiiers,

in two diferent ways: (1) By using Java’s Service Provider Interface

(SPI) concept, where new classiiers can be added to AntTracks

as pre-compiled JAR iles, and (2) by using in-memory on-the-ly

compilation to support classiier development at run time.

4.4.1 Service Provider Interfaces (SPI). A service provider inter-

face is a set of public interfaces and abstract classes that a third-party

developer can implement. In AntTracks, the SPI encompasses ab-

stract classes for classiiers, transformers, and ilters. All of them

deine an abstract classify method which can be implemented

by third-party developers in a sub-class. If a JAR containing such

an implementation is detected on AntTracks’s class path (using

convenient SPI methods), it will be added to the list of available

classiiers or ilters.

4.4.2 On-the-fly Compilation. It is also possible to deine new

object classiiers, transformers and ilters at run time. For example,

whenever users have to select one of the available classiiers, they

are ofered to deine a new one. The user then has to provide the

classify method, the classiier’s name, description, example and

cardinality. This information gets merged into an object classiier

template ile which will then be compiled with a modiied Java

compiler that enables compilation without generating a Java class

ile on disk, i.e., the classiier gets compiled in-memory and on-the-

ly.

This compilation relies on the JavaCompiler instance returned

by ToolProvider.getSystemJavaCompiler(). This instance al-

lows modifying the compilation process in various ways. The most

important step is to provide a modiied JavaFileManager. Instead

of providing a stream to a ile on disk, AntTracks’s version returns

a ByteArrayOutputStream that keeps a class’s byte code stored

in memory. Additionally, the ile manager’s class loader has been

modiied to not only look up classes stored on disk, but also to look

up classes that are stored in memory.

5 EVALUATION

To evaluate the applicability of AntTracks’s object classiiers and

multi-level grouping we show how one can use the tool to detect

memory leaks and how to reproduce memory classiication done

in related work.

Even though lossless classiication tree implementations may

be needed in certain situations, a lossy approach provides enough

information for most use cases, including AntTracks’s heap state

analysis. Therefore, another goal of this evaluation is to analyze

how much classiication throughput can be gained as well as how

much memory can be saved by accepting the information loss due

to using a lossy classiication tree implementation. All of these

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

121

Name Description

Address Classiies objects based on their address.

Type Classiies objects based on their type’s name.

Allocating Subsystem Either VM, Interpreter, C1-compiled code or C2-compiled code.

Array Length Classiies array objects based on their length. Non-array objects are classiied as -1.

Object Kind Either Instance (class instances), Small Array (< 255 elements), or Big Array (≥ 255 elements).

Space Classiies objects based on the heap space in which they are contained.

Space Mode Classiies objects based on the mode, i.e., a GC-dependent space info, of their containing heap space.

Space Type Classiies objects based on the type (e.g., Eden) of the space in which they are contained.

Feature Classiies objects based on a loaded feature-to-code mapping ile.

Allocation Site Classiies objects based on their allocation site (allocating method + var. number of call sites).

Pointed From This transformer is used to classify the objects that reference a given object.

Points To This transformer is used to classify the objects that a given object references.

Table 3: Predeined classiiers in AntTracks.

analyses have been conducted based on well-known benchmarks

using three diferent classiier combinations: (1) Type classiier

(2) Allocation Site classiier (3) Type classiier, followed by the

Allocation Site classiier.

Setup. All measurements were run on an Intel® Core™ i7-4790K

CPU @ 4.00GHz x 4 (8 Threads) on 64-bit with 32 GB RAM and

a Samsung SSD 850, running Ubuntu 17.10 with the Kernel Linux

4.13.0-16-generic. All unnecessary services were disabled in order

not to distort the experiments.

5.1 Performance Evaluation

The goal of this evaluation is to gain insight into how much the

classiication throughput increases when giving up object identity

and if Java streams are suitable to iterate distributed source ob-

jects. Thus, we compare both implemented tree node types (i.e., the

property list approach (lossless) and the mapping approach (lossy))

using three diferent parallel heap iteration techniques (i.e., Java

stream, fake spliterator and integrated iteration).

(a) Lossy mapping approach (b) Lossless property list approach

Figure 11: Performance comparison between the mapping

approach and the property list approach.

We used the DaCapo [4] and the DaCapo Scala [6] benchmark

suites, in which, according to Lengauer at el. [14], h2 and factorie

are the benchmarks with the largest live set. We chose to only

analyze these two benchmarks since the other benchmarks from the

mentioned suites do not provide heap states in the same dimension.

Both trace iles (h2: 2.9 GB trace ile covering 26 garbage collections

with 15,800,000 objects on average per heap state; factorie: 19.5

GB trace ile covering 205 GCs with 8,600,000 objects on average

per heap state) have been parsed and a classiication tree has been

generated at every garbage collection end using every parameter

combination (i.e., iteration type, classiier, tree type).

Figure 11a shows the average throughput of this classiication

tree generation when using the lossy mapping approach, while

Figure 11b shows the throughput using the property list approach.

We can see that the mapping approach is orders of magnitude faster

than the property list approach due to the work that is needed

to add the object’s address to the sorted data list when using the

property list approach. This strengthens our assumption to use the

mapping approach when object-identity loss is acceptable.

Furthermore, it shows that heap iteration using Java streams is

in general slower than the other two approaches. Especially for

larger heap states, the streaming approach falls behind the other

approaches. As hypothesized, this may be due to the temporary

objects that have to be generated during the iteration. Independent

of the domain this indicates that Java streams are not suitable for

iterating distributively stored source objects. The fake spliterator

approach is able to scale and parallelize the best, which explains its

advantage when using the property list approach.

5.2 Memory Footprint

Beside providing the better classiication performance, it is inter-

esting to see how much memory can be saved when using the

object-identity-losing mapping approach instead of the property

list approach.

We analyzed a traced run of every DaCapo and DaCapo Scala

benchmark and reconstructed the heap state after every garbage

collection, if the heap state contained at least 200,000 objects. The

Type classiier showed that the number of types of live objects

at a certain point in time is approximately the same across all

benchmarks (around 500 objects), independent of the number of live

objects. Some of the benchmarks have few live objects with a high

number of diferent allocation site nodes (i.e., few objects allocated

at diferent sites) while some benchmarks with a large number of

live objects only generate a small number of allocation site nodes

(i.e., a lot of objects allocated at the same sites). Nevertheless, the

tree never reached a critical size in terms of node count for any of

the tested applications (tree size always below 20,000 nodes).

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

122

●●●●
●
● ●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●
●
●●
●
●●
●
●●
●
●●
●
●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●●●●●●●

●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●

●

●

●

●
●
●●
●
●

●●●●●●●●●●
●●●
●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●

●●
●

●●

●

●●

●

●●

●

● ●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●●●
●
●●
●
●●
●
●●
●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

● ●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●●●●
●
● ●

●
● ●

●

● ●

●

● ●

●

● ●

●

●
●

●

● ●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●● ●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●

●
●●
●
●●
●
●●
●
●●
●
●●
●
● ●

●
●●

●
●●
●
●●
●
●●
●
●●

●

●

●●

●

●
●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●

●

●

●
●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●

●

●

●●●●●●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●0

10,000

20,000

30,000

40,000

50,000

0 10 20

Objects [in millions]

A
v

g
.

c
o

u
n

te
r

v
a

lu
e

 i
n

 m
a

p
 e

n
tr

y

● ● ●Allocation Site classifier Type classifier Type classifier and Allocation Site classifier

Figure 12: Average object count per datamap entry using the

mapping approach.

Figure 12 shows that with a rising number of classiied objects,

the average number of objects represented by a single data map

entry in the mapping approach increases. For example, classifying

about 10, 000, 000 objects based on the Type classifier resulted

in data map entries each representing about 18, 000 objects on

average (see regression line in Figure 12). Assume that the property

list approach is implemented using arrays and needs 8 bytes per

classiied object (i.e., the heap object’s 64-bit address excluding

memory needed by auxiliary data structures). Let’s further assume

that each map entry in the mapping approach points to a key

(containing an int) and a value (containing a long), thus taking up

3∗16 (3∗VM header)+2∗8 (2∗pointer)+4 (int)+8 (long) = 76 bytes.

If one such data map entry represents 18, 000 objects, the property

list approach (8∗ 18, 000 bytes) consumes about 1900 times as much

memory as the mapping approach (76 bytes).

Based on these results and those presented in Section 5.1, we de-

cided to use classiication tree generation based on fake spliterator

heap iteration and the mapping approach in AntTracks.

The next section shows that the lossy mapping approach still

provides enough information to detect memory leaks and allows

general memory analysis.

5.3 Functional Evaluation

AntTracks’s goal is to provide a general memory monitoring and

analysis tool that primarily focuses on developers and their needs,

for example performing memory leak detection. In addition, user-

deined classiiers, their lexible combination, and multi-level group-

ing allows developers and also researchers to use AntTracks for

more general and experimental memory analyses.

5.3.1 Memory Leak Detection. Memory leak detection is the

main task developers perform when using AntTracks. To evalu-

ate AntTracks’s ability to allow memory leak detection, as well

as inding the root cause, we used it on an example artiicial ap-

plication that uses a stack1 for storing its data. It irst pushes 1

million objects onto the stack, then pops these 1 million objects,

followed by another 100,000 pushes and another 100,000 pop op-

erations. Opening the application’s trace displays the overview

shown in Figure 13. We can clearly see that we miss a drop of the

number of live objects after the 1 million objects got popped from

1https://www.codeproject.com/Articles/30593/Efective-Java; Item 6: Eliminate obso-
lete object references; last accessed October 17, 2017

Figure 13: Object count overview of the buggy stack imple-

mentation.

the stack, as we would expect in a non-faulty implementation. To

further investigate this problem, we utilized AntTracks’s heap dif-

ing functionality, which also supports object classiiers and allows

to analyze heap changes over time. Figure 14 shows the application

Figure 14: Heap dif of the buggy stack implementation.

of the Type classiier followed by the Allocation Site classiier on

the time frame selected in Figure 13 (black dots). On the type node

(2nd row, at.jku.data.TestObject), we can see that only 100.000

objects of this type were deallocated (red bar), while exactly the

same amount of objects were allocated (green bar). 900, 000 objects

stayed alive during the whole time frame (blue bar). Looking at the

indented allocation site nodes (3rd and 4th row), we see how many

TestObjects that were originally allocated at these sites were born,

have survived, or have died.

Figure 15: Pointer analysis of the buggy stack implementa-

tion.

Additionally, we would like to knowwhich objects keep those ob-

jects alive. Figure 15 shows a rather advanced application of object

classiiers: It irst classiies a given object by its type, then trans-

forms that object into its set of referencing objects, classiies them

by type and then transforms them again into their sets of referenc-

ing objects, inally classifying those objects by type. It shows that

the TestObject instances are referenced from the type Object[],

which is again referenced by the type BuggyStack. With this infor-

mation, it is easy to ind the bug in the source code. BuggyStack is

a faulty stack implementation that keeps references to previously

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

123

stored objects even after pop operations until a subsequent push

operation overwrites them.

Figure 16: Object count overview of the ixed application.

Figure 17: Heap dif of the ixed application.

Figure 16 and Figure 17 show the object counts and the heap dif

results after the stack implementation was ixed.

5.3.2 Memory Analysis. Developers as well as researchers may

want to classify heap objects based on a criterion not yet covered

by one of the predeined classiiers, which is possible by writing

a user-deined classiier. To showcase the implementation of user-

deined classiiers, we searched for related work on heap object

classiication. For example, Mitchell and Sevitsky [17] classiied

heap objects in terms of collection health and instance health. Both

classiication criteria have been successfully implemented as user-

deined classiiers and can be used and freely combined with other

classiiers in AntTracks.

Collection Health. Collection health classiies every heap object

as one of four types, depending on its use inside collections. (1) head,

the head of a collection, e.g., HashMap, (2) array, array backbones,

e.g., HashMap$Entry[], (3) entry, recursive list-style elements, e.g.,

HashMap$Entry, and (4) contained, anything else.

The classiication for collection health is a typical use-case for a

user-deined one-to-one object classiier. Every object gets classiied

by exactly one value, i.e., either head, array, entry or contained.

According to Mitchell and Sevitsky, every object that is an array of

a reference type gets classiied as array. This is straightforward to

check in the classiier implementation2 since we know the object’s

type. If an object is not classiied as array, it falls in the entry

category if it is of a type T and references an object of the same

type T. This check can be accomplished by following and analyzing

the pointers in the object’s pointer array. If the object has not been

categorized as array or entry, the object’s pointers are checked

again. If one of them references an object that is a primitive array

or is classiied as array or entry, the object gets classiied as head.

Otherwise, the object gets classiied as contained.

2http://ssw.jku.at/General/Staf/Weninger/AntTracks/ICPE18/
CollectionHealthClassiier.java

Instance Health. Instance health splits every heap object’s bytes

into four diferent parts: (1) primitive, which encompasses prim-

itive array elements and primitive ields (2) header, the memory

consumed by the virtual machine (3) pointer, memory occupied by

references between objects (4) null, memory reserved for pointers

but set to null.

The classiication for instance health has been reproduced as

a user-deined transformer in AntTracks3. The source object gets

transformed into four virtual objects, one per instance health part,

and every part gets assigned its appropriate size (i.e., byte count).

The amount of bytes of the primitive part can be calculated by

iterating the type’s ields and iltering them for primitive types.

The information about the header size (which depends on the VM

architecture, as well as whether compressed oops are used) is stored

in the symbols information generated alongside the trace ile. Since

an object’s pointer array contains one entry per pointer, either with

the referenced object’s address or −1 if the pointer is null, the bytes

made up by pointers and null can also be easily calculated.

The judgment schemes presented by Mitchell and Sevitsky, i.e.,

the ways how to interpret combinations of both classiiers, can now

also be analyzed in AntTracks by using both classiiers at the same

time. Furthermore, they can be used in combination with any other

classiier that AntTracks provides.

Mitchell and Sevitsky used łthe built-in facilities of Java virtual

machines (JVM) to trigger writing a snapshot to diskž [17]. Before

being able to write an analysis tool for such heap snapshots, one

must obtain knowledge about the binary ile format, how to parse

it, and how to combine the parsed data into a convenient data

structure. Depending on the use-case, results also have to be pre-

sented graphically to the user to allow user-friendly manual analy-

sis, which also may take up a signiicant amount of development

time. Compared to that, the implementation of the two classiiers

presented above took about two hours each, including writing unit

tests (by checking the correct classiication of known Java classes

such as HashMap). The classify methods of both classiiers cover

less than 150 lines of code (LOC). Therefore, we claim that writing

user-deined classiiers takes less work, with regard to person hours

as well as LOC. Additionally, AntTracks provides convenient visu-

alization out-of-the-box and the possibility to combine the newly

developed classiier with any other available classiier.

6 RELATEDWORK

Current state-of-the-art tools share one common problem. Nearly

all of them represent heap states (or the change of the heap over

time) only as type histograms. No free selection of classiication

exists, not even to mention multi-level grouping. Even basic infor-

mation such as an object’s allocation site is not available in many

cases, since most tools rely on heap dumps that do not provide

that level of detail. Still, some tools provide additional functionality

such as pointer information on object level (plainly reconstructed

from a heap dump).

The most basic approach supported by the Java Hotspot

VM are the -XX:+PrintClassHistogramBeforeFullGC and

-XX:+PrintClassHistogramAfterFullGC lags. They cause a class

3http://ssw.jku.at/General/Staf/Weninger/AntTracks/ICPE18/
InstanceHealthClassiier.java

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

124

http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/CollectionHealthClassifier.java
http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/CollectionHealthClassifier.java
http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/InstanceHealthClassifier.java
http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/InstanceHealthClassifier.java

histogram to be printed to the console on every full GC. JCon-

sole [18] can connect to a running Java application and retrieves

data from its Java Management Beans. Due to the restricted func-

tionality of the memory bean, it can only show the current heap

memory consumption separated into eden space, survivor space,

and old space. jhat [19] can be used to analyze a Java heap dump ile

which has previously been generated using the jmap tool. It starts a

webserver that hosts the heap dump results and can be accessed via

a webbrowser. Beside a type histogram, also the rootset (i.e., objects

that are referenced by a GC root) can be shown. Visual VM [23] is a

general performance monitoring tool for Java applications that pro-

vides memory analysis based on heap dumps. In addition to a type

histogram, it allows users to analyze individual objects of a certain

type, including functionality to follow an object’s pointers and go

to the referencing object. It is also able to calculate the retained set

of objects. The retained set of an objectX is the set of objects which

would be removed when X is garbage collected. In addition to that,

the Eclipse Memory Analyzer (MAT) [7] also allows users to analyze

the application’s dominator tree [15]. The Netbeans proiler [20] is

just a slimmed down version of Visual VM and is integrated into

the Netbeans IDE.

Other approaches such as the one presented by Aftandilian et

al. [1] or De Pauw and Wim [22] focus on visualizing a heap state’s

object graph. To reduce the complexity of such graphs, certain

reduction operations such merging, cutting, and so on, are applied.

Such approaches may work well for pointer analysis, e.g., which

types references which types, yet most of them lack the lexibility

to take other properties into account, e.g., heap spaces or allocation

sites.

A query technique that is integrated into some of the mentioned

tools is the Object Query Language (OQL) [2, 5]. It has been de-

veloped by the Object Data Management Group and is an SQL-

like query language used to query objects from object-oriented

databases. The downside of OQL is its complexity, which results

in the problem that no vendor implements the whole standard.

For example, the Eclipse Memory Analyzer (MAT) as well as Visu-

alVM only allow queries in the form of SELECT <select clause>

FROM <from clause> WHERE <where clause>.Where clauses can

be represented in our approach using ilters, while select clauses

can be represented using an object classiier. Multi-level grouping,

as supported in our approach, is neither possible in MAT nor in

VisualVM.

7 FUTUREWORK

The concept of object classiiers and multi-level grouping as well as

their implementation in AntTracks opened a number of interesting

ideas. This section will shortly introduce these ideas and point out

possible ways how to approach them.

Extended Pointer Support in AntTracks. Currently, Ant-Tracks

provides only basic support for pointer analysis. For every object, it

records the referencing and the referenced objects and makes them

available for oline analysis. However, state-of-the-art tools [1,

16] often use advanced data structures such as dominator trees

for analyzing whole pointer graphs. We plan to use similar data

structures also inAntTracks to compute, for example, all objects that

are reachable from a certain object (i.e., the transitive closure [24])

as well as the amount of memory that is kept alive by a speciic

object (i.e., the retained size).

Heap Diing. Weninger et. al. [25] suggest heap diing, i.e., an-

alyzing how the heap changes over a certain time span, which is

currently already supported to a certain level in AntTracks. The

grouping and classiication techniques that were described for heap

states in this paper can partially also be applied to heap diing.

Extending classiiers with information about a source object’s de-

velopment over time, e.g., how a heap object’s pointers changed

over time, could further increase the potential application of heap

diing in combination with object classiiers.

Combined Tree Types. We showed that the memory consumption

of a lossless classiication tree is orders of magnitude higher than

that of a lossy one. In a classiication tree, often only a small subtree

is of interest to the user. Since both classiication tree types use

node data structures inheriting from the same interface, they could

be combined to only give lossless information for parts of the tree

that are of higher interest to the user.

AntTracks DSL. To abstract from classiiers and their underlying

programming language, the heap could also be analyzed by using a

domain-speciic query language. Such a language could, for exam-

ple, be used to ask for the amount of objects of type T that were

allocated at site S and survived at least n garbage collections. Based

on our classiiers, we plan to develop such a language to provide

even better support for expressing application-speciic queries in a

user-friendly way.

8 THREATS TO VALIDITY AND LIMITATIONS

Visualization of data in memory analysis tools is often strongly

coupled with the kind of data that is collected and analyzed by those

tools. Even though AntTracks collects more information about ob-

jects than most of the presented tools (e.g., only few tools collect

allocation site information), the general classiication principles

using multi-level grouping and classiication trees based on object

classiiers and as well as AntTracks visualization features are not

dependent on that amount of information. Only the number and

the complexity of the classiiers that developers can implement

is limited by the available information. The fewer source object

properties are available, i.e., the less information the tool collects

about heap objects, the less lexibility the developer has when it

comes to writing classiiers. Assuming that AntTracks only col-

lected type and heap space information for each object, we would

still be able to provide the Type classiier, the Object Kind classiier,

the Space classiier and so on as predeined classiiers, but due to the

missing information, no Allocation Site classiier could be provided.

Yet, all the available classiiers could still be freely combined, for

example, by irst classifying all objects by space and then by type,

or irst by object kind and then by space, or in any other possible

combination. This outclasses the lexibility of the data aggregation

and visualization techniques available in other tools presented in

Section 6.

Similar to the limitation mentioned above, current pointer-based

classiiers are restricted to adjacent objects via the from-pointer and

to-pointer information. As explained in Section 7, new classiiers

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

125

may become possible as soon as AntTracks provides full object

graph traversal and root pointer information.

To verify that the extra lexibility simpliies memory analy-

sis, speciically that it facilitates detecting and resolving memory-

related problems such as memory leaks, a user study is planned

as future work. Technical metrics such as task completion time

or number of found memory leaks and subjective metrics such as

user satisfaction can be collected during the study, based on faulty

benchmark implementations or industry applications.

A limitation of our current study is that we have not yet inves-

tigated, which combinations of classiiers are best for detecting

speciic memory-related problems. This is another topic to be tack-

led by the mentioned user study.

9 CONCLUSION

In this paper, we presented the domain-independent concepts of

(user-deined) object classiiers and multi-level grouping, which are

novel and general concepts for classifying large amounts of objects,

processing them, and arranging their classiication results as a tree

for later analysis. Object classiiers are entities that classify objects

based on a certain criterion derived from the objects’ properties.

Multi-level grouping is the process of applying multiple object

classiiers to a collection of objects and grouping these objects based

on the classiication results. In contrast to single-level grouping,

which results in a key-value map, multi-level grouping results in

a classiication tree. Such a tree can be visualized in various ways

and allows a top-down, ine-grained manual data analysis by the

user.

Various lossless and lossy classiication tree data structures were

presented and analyzed with respect to their performance, their

memory consumption, and their ability to retain object identity. We

showed that the lossy tree structures allow a tremendous reduction

of memory overhead when accepting certain information loss in

the classiication tree.

We integrated the concept of object classiiers and multi-level

grouping into the memory monitoring tool AntTracks, a tool that

primarily focuses on helping developers to detect and understand

memory anomalies, thus replacing its previous rigid classiication

scheme. Developers beneit from AntTracks’s new ability to clas-

sify heap states based on any combination of classiiers, which

distinguishes our approach from existing state-of-the-art tools. Fur-

thermore, our tool supports user-deined object classiiers, i.e, it

allows the user to write small, dynamically loaded source code

snippets to classify heap objects based on arbitrary criteria. This

may also be of interest to researchers who want to perform more

general and experimental memory analyses. Our memory analysis

approach opens new ways how AntTracks can be used and how

memory can be analyzed, and its applicability has been shown in a

quantitative and a functional evaluation.

ACKNOWLEDGMENTS

This work was supported by the Christian Doppler Forschungsge-

sellschaft, and by Dynatrace Austria GmbH.

REFERENCES
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su,

and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visualization for Program

Understanding and Debugging. In Proc. of the 5th Int’l. Symposium on Software
Visualization (SOFTVIS ’10). 53ś62.

[2] A. M. Alashqur, S. Y. W. Su, and H. Lam. 1989. OQL: A Query Language for
Manipulating Object-oriented Databases. In Proc. of the 15th Int’l. Conference on
Very Large Data Bases (VLDB ’89). 433ś442.

[3] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Eicient
Rebuilding of Large Java Heaps from Event Traces. In Proc. of the Principles and
Practices of Programming on The Java Platform (PPPJ ’15). 76ś89.

[4] S. M. Blackburn, R. Garner, C. Hofman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proc. of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA
’06). 169ś190.

[5] R.G.G. Cattell, Douglas K. Barry, Mark Berler, Jef Eastman, David Jordan, Craig
Russell, Olaf Schadow, Torsten Stanienda, and Fernando Velez. 2000. The Object
Data Standard: ODMG 3.0.

[6] Technische Universität Darmstadt. 2012. DaCapoScala (last accessed October 10,
2017). http://www.benchmarks.scalabench.org/modules/scala-benchmark-suite/.
(2012).

[7] Andrew Johnson and Krum Tsvetkov. 2017. MAT - Eclipse Memory Analyzer
(last accessed October 10, 2017). http://www.eclipse.org/mat/. (2017).

[8] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory Leak
Detection for Garbage-collected Languages. In Proc. of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’07). 31ś38.

[9] Maria Jump and Kathryn S. McKinley. 2009. Dynamic Shape Analysis via Degree
Metrics. In Proc. of the 2009 Int’l. Symposium on Memory Management (ISMM ’09).
119ś128.

[10] Philipp Lengauer, Verena Bitto, Florian Angerer, Paul Grünbacher, and Hanspeter
Mössenböck. 2013. Where Has All My Memory Gone?: Determining Memory
Characteristics of Product Variants Using Virtual-machine-level Monitoring. In
Proc. of the Eighth Int’l. Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS ’14). Article 13, 13:1ś13:8 pages.

[11] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter
Mössenböck. 2016. Eicient Memory Traces with Full Pointer Information. In
Proc. of the 13th Int’l. Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’16).

[12] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and
Eicient Object Tracing for Java Applications. In Proc. of the 6th ACM/SPEC Int’l.
Conference on Performance Engineering (ICPE ’15). 51ś62.

[13] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016. Eicient and
Viable Handling of Large Object Traces. In Proc. of the 7th ACM/SPEC on Int’l.
Conference on Performance Engineering (ICPE ’16). 249ś260.

[14] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger.
2017. A Comprehensive Java Benchmark Study on Memory and Garbage Collec-
tion Behavior of DaCapo, DaCapo Scala, and SPECjvm2008. In Proc. of the 8th
ACM/SPEC on Int’l. Conference on Performance Engineering (ICPE ’17). 3ś14.

[15] Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (Jan. 1979),
121ś141.

[16] Evan K. Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diagnosing
Memory Leaks Using Graph Mining on Heap Dumps. In Proc. of the 16th ACM
SIGKDD Int’l. Conference on Knowledge Discovery and Data Mining (KDD ’10).

[17] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits of
Health. In Proc. of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA ’07). 245ś260.

[18] Oracle. 2017. JConsole (last accessed October 10, 2017). https://docs.oracle.com/
javase/9/troubleshoot/diagnostic-tools.htm#JSTGD174. (2017).

[19] Oracle. 2017. jhat (last accessed October 10, 2017). https://docs.oracle.com/javase/
8/docs/technotes/tools/unix/jhat.html. (2017).

[20] Oracle. 2017. Netbeans proiler (last accessed October 10, 2017). https://proiler.
netbeans.org/. (2017).

[21] Oracle. 2017. OpenJDK HotSpot group (last accessed October 22, 2017). (2017).
[22] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns for

Solving Memory Leaks in Java. In Proceedings of the 13th European Conf. on
Object-Oriented Programming (ECOOP ’99). 116ś134.

[23] Jiri Sedlacek and Tomas Hurka. 2017. Visual VM - All-in-One Java Troubleshoot-
ing Tool (last accessed October 10, 2017). https://visualvm.github.io/. (2017).

[24] R. Tarjan. 1971. Depth-irst search and linear graph algorithms. In 12th Annual
Symposium on Switching and Automata Theory (swat 1971). 114ś121. https:
//doi.org/10.1109/SWAT.1971.10

[25] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-
centered Oline Analysis of Memory Monitoring Data. In Proc. of the 8th
ACM/SPEC on Int’l. Conference on Performance Engineering (ICPE ’17). 357ś360.

Monitoring and Profiling ICPE’18, April 9̶–13, 2018, Berlin, Germany

126

http://www.benchmarks.scalabench.org/modules/scala-benchmark-suite/
http://www.eclipse.org/mat/
https://docs.oracle.com/javase/9/troubleshoot/diagnostic-tools.htm#JSTGD174
https://docs.oracle.com/javase/9/troubleshoot/diagnostic-tools.htm#JSTGD174
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html
https://profiler.netbeans.org/
https://profiler.netbeans.org/
https://visualvm.github.io/
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1109/SWAT.1971.10

	Abstract
	1 Introduction
	2 Background
	2.1 Trace Recording
	2.2 Trace Reconstruction and Data Structure

	3 Approach
	3.1 Source Collection and Source Objects
	3.2 Source Object Properties and Source Collection Iteration
	3.3 Object Classifiers
	3.4 Multi-level Grouping
	3.5 Data Representation in Nodes
	3.6 Aggregation and Duplicate Detection
	3.7 Advanced Classifiers

	4 Implementation
	4.1 Source Objects: Java Heap Objects
	4.2 Object Classifiers
	4.3 Heap Iteration
	4.4 User-defined Classifiers

	5 Evaluation
	5.1 Performance Evaluation
	5.2 Memory Footprint
	5.3 Functional Evaluation

	6 Related Work
	7 Future Work
	8 Threats to Validity and Limitations
	9 Conclusion
	Acknowledgments
	References

