
Cloud-Scale Java Profiling at Alibaba
Fangxi Yin, Denghui Dong, Chuansheng Lu, Tongbao Zhang, Sanhong Li, Jianmei Guo and

Kingsum Chow
Alibaba Group, Hangzhou, China

{fangxi.yfx,denghui.ddh,chuansheng.lcs,tongbao.ztb,sanhong.lsh,jianmei.gjm,kingsum.kc}@alibaba-inc.com

ABSTRACT

On the 2017 Double 11 Global Shopping Festival, Alibaba’s cloud
platform achieved total sales of more than 25 billion dollars and sup-
ported peak volumes of 325,000 transactions and 256,000 payments
per second. Most of the cloud-based e-commerce transactions were
processed by hundreds of thousands of Java applications with above
a billion lines of code. It is challenging to achieve comprehensive
and efficient performance profiling for large-scale, cloud-based
Java applications in production. We developed ZProfiler, a fine-
grained, low-overhead Java performance profiler. ZProfiler allows
developers to load a profiling agent on the fly without restarting
Java virtual machines, and its profiling information also facilit-
ates code warmup. ZProfiler is developed based on Alibaba JDK
(AJDK), a customized version of OpenJDK, and it has been rolled
out to Alibaba’s cloud platform to support large-scale performance
tuning for online critical business.

CCS CONCEPTS

• Software and its engineering → Cloud computing; Soft-
ware performance;

KEYWORDS

Java performance, cloud, profiling, overhead, code warmup
ACM Reference Format:

Fangxi Yin, Denghui Dong, Chuansheng Lu, Tongbao Zhang, Sanhong Li,
Jianmei Guo and Kingsum Chow. 2018. Cloud-Scale Java Profiling at Alibaba.
In ICPE ’18: ACM/SPEC International Conference on Performance Engineering
Companion , April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3185768.3186295

1 INTRODUCTION

Performance profiling helps developers to diagnose performance
issues and identify optimization opportunities. At Alibaba, the re-
quirements for Java performance optimization come mainly from
three aspects: First, how to execute Java code efficiently (e.g., using
less time to execute a certain method)? Second, how to tune the
behavior of garbage collector (GC) to minimize the time of Stop-The-
World (STW)? Third, how to ensure the peak performance of Java
applications for the bursty traffic over a short time period.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186295

It is challenging to achieve comprehensive and efficient perform-
ance profiling for Java applications in production. Firstly, many
existing profiling methods and tools [3], such as VisualVM [4],
Dynatrace[2], and Java Interactive Profiler [6], rely on bytecode
instrumentation to trace the execution time of each method. They
usually suffer from non-negligible overheads caused by the meas-
urement of additional code. Also, changing the size of the code
changes the optimizing decisions made by the JIT. Secondly, it is
usually hard for developers to diagnose the issues relevant to GC
only through the straightforward analysis of GC logs [5]. For ex-
ample, when a Java application is experiencing a long GC pause, it
is not reliable to depend on GC logs to diagnose issues. Thirdly, a
peak of 325,000 transactions per second is a huge challenge for the
runtime performance of any Java program. The bursty traffic re-
quires that the application must remain a peak performance at that
time. To meet this requirement, a well-established code warmup is
often expected [1].

Further, there are more particular challenges for Java profiling
at cloud-scale environment. First, the profiling activites takes place
frequently because of the massive quantity of JVM instances. So the
profiling tools’ troublshooting efficiency is critical and an intuitive
profiling tool is always favored over. Second, the overhead require-
ment of profiling is stricter. At cloud-scale environment, even one
percent overhead would increase cost significantly. To compensate
the overhead, a common way is to purchase more machines.

To address the above challenges, we developed a fine-grained,
low-overhead Java performance profiler, called ZProfiler, based
on Alibaba JDK (AJDK). AJDK supports all the Java applications
developed at Alibaba and affiliated companies (e.g., Alipay, CaiNiao).
Java developers can easily load the profiling agent on the fly without
restarting the JVM.

In summary, we make the following contributions. Firstly, differ-
ent from typical Java profilers working at the levels of bytecode or
JVM Tool Interface (JVMTI), ZProfiler traces the execution time
and memory usage at the level of each compiled method. Secondly,
ZProfiler provides fine-grained information of GC behavior with
much lower overheads, which used to minimize the STW cost.
Thirdly, ZProfiler has the built-in code cache analysis ability to
help users to warmup code by ahead-of-time compilation, which
makes application ready for bursty traffic handling. Finally, ZPro-
filer has been rolled out to Alibaba’s cloud platform to support
large-scale performance tuning for online critical business.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

99

https://doi.org/10.1145/3185768.3186295
https://doi.org/10.1145/3185768.3186295

ICPE ’18, April 9–13, 2018, Berlin, Germany Yin et al.

Figure 1: Method Tracing of ZProfiler in C2 compiler

2 APPROACH AND IMPLEMENTATION

2.1 Method Tracing

Instead of instrumenting at the level of Java bytecode, ZProfiler
modifies the Hotspot VM, including interpreter and C1/C2 com-
piler, to trace entry/exit of each method. Figure 1 illustrates how
ZProfiler enables method tracing in C2 compiler.

When C2 JIT compiler compiles the application’s method, ZPro-
filer adds a few machine code for every method, that is, adding
capture instructions when compiler encounters method entry or
exit. For every method enter or exit, the captured runtime functions
record the onsite information, including the current CPU/wall-clock
time, method information, and the allocated memory of each thread.
When the compiled method is executed, the onsite information
would be recorded in the profiling files. When profiling is switched
off, ZProfiler uploads the profiling files, parses the profiling data,
and visualizes them in a Web UI.

ZProfiler’s method tracing does not impact JIT inline decisions
because its instrumentation is implemented at VM level instead of
bytecode level. Moreover, we added only a few extra instructions for
non-inline methods, so that the profiling overheads are reduced as
far as possible. Most of APM tools [2] often instrument applications
at the byte code level. The byte code instrumentation often impacts
JIT inline decision thereby affects the performance. A common case
is, the getter/setter functions which are widely used can not be
inlined and the performance loss is non-negligible.

2.2 GC Tuning

ZProfiler modifies the implementation of GC in the Hotspot VM
and records the information of time consumption at each of GC root
processing phases. Developers can use the recorded information to
determine which phase gives rise to a longer GC pause. For example,
if one acquires the information that the StringTable root processing
takes a long time during a GC pause, then the developer can check
String.intern use in the implementation and get clues to fix this
problem. Moreover, ZProfiler provides mxbeans for monitoring
the fine-grained information.

2.3 Code Warmup

ZProfiler extended jcmd utility of OpenJDK to support code cache
dump, which helps them to understand if the Java application has
been fully warmed up and ready for processing bursty traffic. The

code cache dump provides the summary information of code cache
usage, the memory usage of compiled method by class loader, and
the distribution of compiled methods at each level (from level 0 to
level 4) of code cache. AJDK provides public APIs to trigger com-
pilation explicitly at ahead-of-time. For example, if one finds many
methods get compiled at Level 2 in code cache, the developer can
choose to compile some of them in advance according to business
logic.

3 CONCLUSION

This paper presents our Java performance profiler ZProfiler that
supports hundreds of thousands of Java applications deployed in
Alibaba’s cloud platform. Compared to existing Java profilers, ZPro-
filer instruments each method with a few machine code and traces
the resource usage of each compiled method with low overheads.
Simultaneously, ZProfiler provides a fine-grained view on GC
behavior and code cache, which facilitates comprehensive perform-
ance diagnosis and efficient fixing of performance bugs. Further-
more, ZProfiler allows Java developers to easily load the profiling
agent on the fly without restarting the JVM or code de-optimization,
which is critical to guarantee the reliability and serviceability of
online Java applications in production.

REFERENCES

[1] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and
Laurence Tratt. 2017. Virtual machine warmup blows hot and cold. Proceedings
of the ACM on Programming Languages 1 (OOPSLA) (2017), 52:1–52:27.

[2] Dynatrace. 2018. Deliver unrivaled digital experiences. (2018). https://www.
dynatrace.com/

[3] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2010.
Evaluating the accuracy of Java profilers. In Proceedings of PLDI. 187–197.

[4] Oracle. 2014. Java VisualVM. (2014). https://docs.oracle.com/javase/8/docs/
technotes/guides/visualvm/profiler.html

[5] Sun and IBM. 2002. Tool Report: GCViewer. (2002). http://www.
javaperformancetuning.com/tools/gcviewer

[6] Andrew Wilcox. 2006. JIP - The Java Interactive Profiler. (2006). http://jiprof.
sourceforge.net/

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

100

https://www.dynatrace.com/
https://www.dynatrace.com/
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/profiler.html
http://www.javaperformancetuning.com/tools/gcviewer
http://www.javaperformancetuning.com/tools/gcviewer
http://jiprof.sourceforge.net/
http://jiprof.sourceforge.net/

	Abstract
	1 Introduction
	2 Approach and Implementation
	2.1 Method Tracing
	2.2 GC Tuning
	2.3 Code Warmup

	3 Conclusion
	References

