
CAUS: An Elasticity Controller for a Containerized Microservice
Floriment Klinaku
University of Stuttgart

Universitätsstraße 38, Germany
floriment.klinaku@informatik.

uni-stuttgart.de

Markus Frank
University of Stuttgart

Universitätsstraße 38, Germany
markus.frank@informatik.

uni-stuttgart.de

Steffen Becker
University of Stuttgart

Universitätsstraße 38, Germany
steffen.becker@informatik.

uni-stuttgart.de

ABSTRACT
Recent trends towards microservice architectures and containers
as a deployment unit raise the need for novel adaptation processes
to enable elasticity for containerized microservices. Microservices
facing unpredictable workloads need to react fast and match the
supply as closely as possible to the demand in order to guarantee
quality objectives and to keep costs at a minimum. Current state-
of-the-art approaches, that react on conditions which reflect the
need to scale, are either slow or lack precision in supplying the
demand with the adequate capacity. Therefore, we propose a novel
heuristic adaptation process which enables elasticity for a particu-
lar containerized microservice. The proposed method consists of
two mechanisms that complement each other. One part reacts to
changes in load intensity by scaling container instances depending
on their processing capability. The other mechanism manages ad-
ditional containers as a buffer to handle unpredictable workload
changes. We evaluate the proposed adaptation process and discuss
its effectiveness and feasibility in controlling autonomously the
number of replicated containers.

KEYWORDS
cloud computing, elasticity, containers
ACM Reference Format:
Floriment Klinaku, Markus Frank, and Steffen Becker. 2018. CAUS: An Elas-
ticity Controller for a Containerized Microservice. In ICPE ’18: ACM/SPEC
International Conference on Performance Engineering Companion , April
9–13, 2018, Berlin, Germany. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3185768.3186296

1 INTRODUCTION
One of the most important characteristics of cloud computing is
elasticity. Herbst et al. [4] define elasticity as "the degree" to which
a system is able to adapt to changes in demand by provisioning
or releasing resources autonomously. The recently adopted stack
on the cloud with microservices, containers, and the orchestra-
tion of containers across multiple hosts with middlewares such as
Kubernetes1, creates a separation in concerns related to elasticity.
1https://kubernetes.io/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186296

The platform handles the scaling of nodes whenever scheduling of
containers is no longer possible due to the non-availability of re-
sources. For microservice owners, it enables a view on resources as
an infinity pool and gives the possibility to scale out and in the pro-
cessing containers depending on the demand for their functionality.
To keep costs to the minimum and quality objectives as promised
in their SLOs an adaptation process should exist which alters the
number of container instances based on the demand. There exists a
proposed and elaborated set of metrics that quantify and capture
the quality of elasticity for systems [4, 7]. So, a theoretically per-
fect elastic microservice should adapt to changes in demand with
instantaneous actions (speed) which provide only the necessary
resources, neither more nor less (precision), to fulfill the current
demand; the timeshare at which the microservice has more or less
resources than needed should be as close as possible to zero percent.

In cases where demand can be predicted for coarse-grained units
of days and hours, adaptation processes can spin up container
instances beforehand. However, this is insufficient for microser-
vices which are exposed to Internet workloads where unpredictable
bursts in load intensity can occur. It is necessary to complement
proactive methods with adaptation processes that reactively—based
on conditions that reflect the need to scale—adapt the number of
containerized microservices. Complementing predictive techniques
with current state-of-the-art approaches on autoscaling containers
reactively leads to several problems. Current adaptation processes,
designed for VMs and monoliths, do not exploit the new conditions:
the increased speed to instantiate containers and the constricted
responsibility for a microservice which increases the accuracy of
the estimated capacity. All considered approaches are either slow in
matching the demand with the adequate capacity, or they are fast
but they overprovision resources. Furthermore, it requires a con-
siderable knowledge for designing scaling rules and determining
scaling criteria.

Therefore, we propose a novel heuristic adaptation processwhich
enables elasticity for a particular containerized microservice. We
consider the context where a stateless microservice is facing queue-
based workload: each container instance is attached as a listener
to the same request queue where workload—in form of requests—
arrives for processing. Predictive approaches can be used to obtain
models for the arrival rate of requests so that provisioning and
releasing actions take place beforehand based on the capacity that
a single container promises. To complement predictive approaches,
we introduce a hybrid method that consists of two parts. One part
reacts to changes in load intensity by scaling container instances
depending on their processing capability. The other mechanism
manages additional containers as a buffer to handle unpredictable
load changes. The aim is to provide an alongside mechanism that

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

93

https://doi.org/10.1145/3185768.3186296
https://doi.org/10.1145/3185768.3186296
https://doi.org/10.1145/3185768.3186296

ICPE ’18, April 9–13, 2018, Berlin, Germany Klinaku et al.

complements proactive techniques that produce the base resource
supply for coarse-grained time units.

This paper summarizes the proposal, results, and observations
conducted in a master thesis [6]. It explores current alternatives and
highlights their problems in the State of the Art section. Then, in the
Adaptation Process section, it proposes a new adaptation process
for controlling the elasticity of microservices which are in the same
context as described—a microservice which is listening for requests
in a particular queue and processes them with a particular logic.
In Evaluation, we evaluate the method by measuring the achieved
elasticity. Finally, we conclude the work and present future steps
in the Conclusion and Future Work section.

2 STATE OF THE ART
Recently Al-Dhuraibi et al. [2] conducted extensive research on
presenting and classifying state-of-the-art approaches for exploiting
elasticity in general for cloud computing. Reactive approaches make
use of a variety of techniques (queueing theory, control theory, time
series analysis etc.) to provide resources autonomously when they
are needed and with the right amount. We present two widely used
representatives of such approaches and show their shortcomings
when applied to containers. We choose Kubernetes Horizontal Pod
Autoscaler2 and Amazon EC2 Container Service Autoscaling3 as
they represent the current state-of-the-art middlewares available
in controlling autonomously the number of replicated containers.

Kubernetes, as mentioned earlier, is a middleware that orches-
trates containers accross multiple hosts. They offer a variety of fea-
tures which enable users to run workloads as containers in a cluster
of machines. With regard to scaling containers autonomously they
offer a default elasticity controller called the Horizontal Pod Au-
toscaler (HPA). As the name suggests, the HPA enables elasticity for
a microservice compound of container instances deployed to the
cluster with the pod abstraction (we assume a one-to-one mapping
between the pod and the container). When considering Kubernetes
HPA, the owner of a microservice can select between two different
feedback signals: the desired CPU utilization among processing
containers or the length of the request queue.

The use of CPU utilization as the criterium to base scaling deci-
sions in Kubernetes HPA leads to an engineering trade-off between
precision and speed—two properties that characterize elasticity [6].
The HPA, implemented as a control loop, computes in every itera-
tion4 a ratio between the average utilization among the available
containers and the specified target CPU utilization. The obtained
factor multiplies the current number of containers which results
either in a scale-out decision, scale-in decision or in a decision
to keep the current number of containers. To avoid consecutive
decisions that are in conflict (an immediate scale-in decision that
follows a scale-out), the HPA uses a default cool-down period of
three minutes for the next scale-out decision and one other of five
minutes for the next scale-in decision.

Using HPA as a complementary method to predictive approaches
leads to several considerations. Any deviation in load intensity
causes the predicted number of containers for that time-interval to

2https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
3http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-dg.pdf
4default frequency: one in 30 seconds

saturate computing resources. Having set a high target utilization,
in cases where load intensity deviations are small, the algorithm
will react accordingly by adding containers in small units. However,
when the deviation approaches the peak, the algorithm will need
several scaling steps—with a fine-granular magnitude—to match
the supply with the demand. Setting a lower target CPU utilization
will increase the magnitude of scaling steps, thus, reaching the
target number of containers faster.

Kubernetes HPA works also with custom metrics such as the
length of the request queue which suits better the given scenario.
Users— microservice owners—can define a target queue length and
the autoscaler will add/remove instances to keep the length equal
to the target. The algorithm computes periodically the ratio of the
measured length and the user defined target. The obtained ratio
is multiplied with the current number of containers to obtain the
new number of containers. In cases where queued events have a
time-deadline, the targeted length of the queue should be set close
to zero. As it is known from queuing theory [3], as soon as the
rate at which the queue increases is greater than the processing
rate, events will start to accumulate in the queue. Considering this,
even if the difference between the rate the queue increases and
the processing rate requires only a single additional container, the
algorithm—because of the ratio it computes—may double, triple or
multiply severalfold the number of containers.

Another alternative to solve the presented problem is the use of
threshold-based rules from Amazon ECS (EC2 Container Service).
Amazon offers an autoscaling capability called Service Auto Scaling.
It enables users to define scale-out and scale-in policies which are
executed when chosen metrics exceed user specified thresholds. In
both types of policies users have to provide the number of contain-
ers to add or to remove. There are two different ways in which the
number of containers can be provided: as a fixed absolute value or
as a percentage. Both of them entail several considerations. Using
a fixed value close to one has the benefit of matching the supply
precisly with the demand although with a lower speed. Setting a
higher fixed value increases the speed at which resources are pro-
vided, however, it affects precisions in cases where less are needed.
With a fixed percentage approach, users specify how much of the
current capacity should be added or removed in a scaling step. This
adds complexity because the policy can produce two corrective
actions with a large difference in the number of containers added
even though the magnitude of devation requires the same amount
of additional containers. Both ways of providing fixed capacity
affect the speed and the precision of the system’s elastic property.
To improve these properties, Amazon offers a feature called step
scaling for Auto Scaling EC2 instances. It allows users to specify
multiple scaling steps based on different thresholds. They can spec-
ify the following semantic: "if CPU utilization alarm triggers and
utilization value is 60% add two tasks or if the value is 80% add four
tasks". There is a lack of documentation as to whether step scaling
is also offered for containers.

Current reactive approaches have the following issues when
dealing with unpredictable changes in workload intensity: inability
to handle unpredictable changes in workload intensity, the need
to sacrifice speed for precision or vice-versa and they require a
considerable knowledge for configuration. Given these issues, this
paper proposes a hybrid method that reacts to changes in workload

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

94

CAUS: An Elasticity Controller for a Containerized Microservice ICPE ’18, April 9–13, 2018, Berlin, Germany

intensity together with an extra-capacity mechanism that captures
a range in the acceleration of workload intensity. Our aim is to
provide an alongside mechanism that complements proactive tech-
niques that produce the base resource supply for coarse-grained
time units.

3 ADAPTATION PROCESS
We tackle the problem of enabling elasticity for a containerized
microservice with an elasticity controller that has a novel adap-
tation process. We see the proposed method as a complementary
mechanism to predictive approaches. Predictive approaches are
able to predict the demand for coarse-grained timescales i.e. days
and hours, by building models for reoccurring patterns. For any
non-predictable deviation in workload intensity, the elasticity of the
microservice is controlled with the proposed adaptation process.

To begin with, in Figure 1, we depict an overview of our elas-
ticity controller and its adaptation process in phases of a MAPE-K
control loop [8]. The adaptation process alters the number of con-
tainers of a specific microservice in a specific context. Thus, besides
for operating, it needs knowledge that describes the context and
the microservice; specifically it needs information concerning the
capacity that a single container can provide. When the controller
starts, it monitors periodically the workload intensity which re-
flects the need to scale out or in the processing containers. Based
on the current value, the controller executes the analysis phase
where it either increases, decreases or decides to keep the current
number of replicated containers. In the planning phase the con-
troller enforces scalability bounds: avoiding a scale-out above a
specified maximum and a scale-in below a given minimum. Fur-
ther, to avoid switching between two condradictory scale decisions,
the controller uses an arbitrary silence period of three minutes
between the last scale decision and a following scale-in decision.
In the Execution phase, the controller executes platform-specific
APIs to increase or decrease the number of running containers. The
novelty of the elasticity controller relies on three parts which will
be described next. First, we will describe the specific knowledge
that characterizes the microservice for which elasticity is enabled.
Then we will show how the workload intenstiy—on which scal-
ing decisions are based—is constructed. Finally, we will elaborate
two techniques which are used together in the analysis phase to
obtain a propoal value for the number of containers that should
exist at that particular point in time.

Knowledge: capacity. The specific context is the well-known
pattern of decoupling microservices from its clients with a messag-
ing queue. Clients push requests to a specific queue on which the
microservice in scope is attached as a listener. To describe the mi-
croservice, the controller needs the capacity for a single instance
of a microservice. The value for the capacity, denoted with µ, de-
termines the maximum workload intensity that a single container
can handle. In the current version of the controller we assume that
work is homogenous, therefore the estimated capacity µ is for a
single class of requests. The method can be extended for several
queues with different request classes where for each a capacity
estimation is needed.

Monitoring
(1) monitor

load intensity - λ

Analysis
(2) react +
(3) manage

spare resources

Execution
Invoke platform-
specific API to
scale containers

Planning
enforce scalability
bounds, avoid
oscillations

Knowledge
capacity - µ

subject, peripheral

Figure 1: The MAPE-K loop of the elasticity controller

0 50 100 150 200
0

10

20

30

40

50

time

ar
riv

al
ra
te

-e
ve
nt
s/
se
c

rate[1m]
instant increase

(a)

0 50 100 150 200
0

10

20

30

40

50

60

70

80

time

ar
riv

al
ra
te

-e
ve
nt
s/
se
c

rate[1m]
instant increase

(b)

Figure 2: Two characteristics caused by averaging the in-
craese rate over the last minute: (a) the delay and (b) the in-
ability to capture the magnitude of short wavelength spikes

Monitoring: load5 intensity. For the load intensity, onwhich
scaling decisions are based, we chose the rate at which the queue
has increased over the last minute. We denote this value with λ. The
average rate over the last minute is computed based on a time-series
that contains samples of the total number of published events at a
certain point in time. In our prototype implementation, we obtain
the chosen signal from Prometheus by using the rate function6
over a one-minute interval. We argue that this signal reflects the
necessity to scale. Having provisioned resources with a predictive
technique for units of hours, we aim to rely on a reactive mecha-
nism which bases its scaling decisions based on a signal that reflects
the load in fine-grained time units. By computing the rate over the
last minute, the signal represents the right magnitude of trends
that change in minute timescales. In cases where load spikes occur
and they level off to a new value, as it is shown in Figure 2a the
intensity reflects the right magnitude with around one minute delay.
However, when spikes of a short wavelength occur the signal used
for load intensity filters them out. As it is shown in Figure 2b, the
curve marked with triangles depicts the computed instant increase,
as a difference between two consecutive queue length samples. As
seen, the curve marked with squares which represents the average
rate over the last minute filters out the short wavelength spike that
occurred.
5since work is constant
6https://prometheus.io/docs/prometheus/latest/querying/functions/

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

95

ICPE ’18, April 9–13, 2018, Berlin, Germany Klinaku et al.

Analysis: react.When the elasticity controller obtains λ and has
the knowledge on the capacity - µ, it calculates the appropriate
number of containers to handle the current load intensity. Thus,
as an output, it produces the ratio ⌈ λµ ⌉. The rationale is to keep
the supply (n ∗ µ), where n is the number of replicated containers,
equal through time with the demand which is reflected by the load
intensity λ. Despite the rationality, there exist several impediments
which affect the practicallity of a react-only mechanism. One obsta-
cle is related to two inevetiable delays: one to reflect the change in
magnitude inherited by the used load intensity, and another delay
exists in starting containers which even though it has improved, it
takes still a considerable amount of time in which period quality
objectives can be violated. Another challenge exists in dealing with
spikes that have a short wavelength and are not reflected in the
used load intensity. We tackle these obstacles by providing and
managing aditional containers as spare capacity.

Analysis: manage spare resources. The adaptation process
manages the number of additional containers based on two pa-
rameters. One is the initial number of spare containers (si) that
should always exist parallel to the number of containers calculated
by the reactive mechanism. The other parameter is a threshold
value which is given as a percentage and determines when the
spare capacity scales out and when it scales in. When the controller
starts, it provides the specified initial amount of containers as spare
capacity alongside the base capacity. When the recent value of load
intensity is obtained, the controller calculates the percentage with
which the spare containers are contributing to the new arrival rate.
If the percentage is above the specified threshold, the controller
provides one additional container as a buffer. If the percentage is
lower than the threshold, the controller decreases the number of
spare containers towards the initial value by reducing the amount
by one.

The threshold (thr) percentage value determines when the pool
of additional containers increases. Conceptually, the chosen value
for the threshold classifies load intensity increases into two possible
behaviors: the one in which the load intensity rappidly approaches
the peak load and requires provisioning of resources beforehand
in order to meet quality objectives, and, the other in which the
load intensity increases steadily for which the initial number of
additional containers suffices. For the first possible behavior the
controller increases the pool of additional containers by one. At
the moment when computing a decision the controller is not able
to predict if load intensity will continue to increase or drop, thus
it decides to add the minimum unit possible to anticipate future
needs. Since the reactive technique will also create containers to
handle the observed load, the controller sacrifices the quality of
elasticity in favor of providing resources beforehand and meeting
quality objectives. When load intensity increases gradually and
does not exceed the specified threshold, the initial number of
spare containers (si) serves the purpose of assisting the current
capacity while the number of containers settles from one value to
the other .

To summarize, Equation 1 shows the function for calculating
(n′, s ′) with n′ being the number of containers produced by the re-
active part and s ′ the amount of spare containers in every iteration
of the controller. As seen, the amount is a function of the observed

Increase-
Decrease

Spike

Scenarios

Synthetic
load

(JMeter)

Front-ent
Microservice
(SpringBoot)

Messaging
Queue

(RabbitMQ)

(I) Workload

My
Microservice
(SpringBoot)

(III) Elastic Microservice

Elasticity
Controller

Elasticity
Rules

(II) CAUS

listensadapts

subject, peripheral

Figure 3: Experimental Setup

load intensity λ, the given processing capacity µ, the current num-
ber of containers n and the current number of spare containers
s . In cases where the current number of spare containers - s , are
contributing with their capacity more than the specified percentage
threshold - thr , then s ′ = (s + 1). If their contribution is lower
than the specified threshold, the number of spare containers is
scaled down by one towards the specified initial amount of spare
containers - si .

f (λ, µ,n, s) =


(
⌈ λµ ⌉, (s + 1)

)
, if λ ≥ µ ∗ (n + thr ∗ s)(

⌈ λµ ⌉,min(si , s − 1)
)
, if λ < µ ∗ (n + thr ∗ s)

(1)

4 EVALUATION
To evaluate the proposed adaptation process, we constructed the
experimental setup shown in Figure 3. The experimental setup
consists of three parts: (I) components that are used to create the
demand for the targeted microservice, (II) the implemented proto-
type of the adaptation process - CAUS (Custom AUtoScaler)7, and
(III) the microservice which listens for events in a particular queue
and its number of replicated containers is altered with the presented
adaptation process The goal of evaluation is to measure the elastic-
ity that the microservice achieves when its number of containers is
altered with the presented method. Furthermore, we observe if the
elasticity controller allows the microservice to achieve its quality
objectives. Since the proposed adaptation process provisions extra
containers to anticipate future needs, we compare the results of
each test against a corresponding baseline which represents an ideal
policy of over-provisioning with minimal containers to withstand
changes in the constructed arrival patterns.

We chose to show two out of three test scenarios that were pre-
sented in [6]. A test scenario represents a unique demand pattern
and simulates a deviation from the predicted load intensity. For
each test, we generate synthetic load with Apache JMeter (version
3.1). We use the Throughput Shaping Timer plugin to construct the

7https://github.com/klinakuf/caus

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

96

CAUS: An Elasticity Controller for a Containerized Microservice ICPE ’18, April 9–13, 2018, Berlin, Germany

0 5 10 15
minutes

0

5

10

20

30

40

time

lo
ad

in
te
ns
ity

Avg. arrival rate
req/sec

(a) Synthetic load

0 5 10 15
minutes

0

1

2

3

4

5

6

time
Re

so
ur
ce
s[
Co

nt
ai
ne
rs
]

demand
supply

(b) Demand vs. Supply

Figure 4: Increase-Decrease scenario

0 5 10 15 20
minutes

0

5

10

20

30

40

time

lo
ad

in
te
ns
ity

Avg. arrival rate
req/sec

(a) Synthetic load

0 5 10 15 20
minutes

0

1

2

3

4

5

6

time

lo
ad

in
te
ns
ity

demand
suply

(b) Demand vs. Supply

Figure 5: Spike scenario

load patterns which differentiate the test cases. In every test case,
JMeter—based on the rate that is expressed in the load pattern—
invokes HTTP requests towards a helper front-end microservice
(FEM). We provision enough FEMs for the designed demand. Af-
ter a FEM receives a request, it creates an event and pushes it to
the messaging queue. Specifically, events are pushed to the Sim-
pleRun queue where they wait to be fetched and processed by the
microservice.

On the other side, the targeted microservice is attached as a lis-
tener to the SimpleRun queue. To enable elasticity for the microser-
vice, the elasticity controller requires knowledge of the processing
capacity. We stress test the microservice—pertaining the number
of containers at one—to obtain the capacity for a single replica.
After several heuristics tests, we obtain the capacity, which follows
a poisson distribution, with a mean of eight events per second.
Further, we conduct a scalability analysis to guarantee the linear
relationship between the number of containers and their altogether
capacity. The capacity of eight events per second is given as an
input in the elasticity rules.

To assess the achieved elasticity, we follow the proposed method
in [4] and [9]. We evaluate elasticity in precision and timeshare. The
precision shows the difference between the number of containers
needed (the demand) and the number of containers provided (the
supply). The timeshare illustrates the percentage of time the mi-
croservice spent in an over-provisioned or under-provisioned state.
During a test run, we obtain the curve for the demand in containers
by observing the queue growth rate in ten-seconds intervals; de-
pending on the growth rate and the capacity, we obtain the number
of containers needed at that interval in time. To obtain the sup-
ply curve, we observe the number of consumers for the SimpleRun

queue in RabbitMQ. Based on these two, we obtain elasticity quality
measures such as precision and timeshare.

Tests. Both tests start from a base load intensity of 5 events per
seconds. The load intensity deviates from the base load by a factor
of 6 in the first test, and by a factor of 8 in the other. The motivation
for choosing the following patterns is twofold. On one hand, they
represent possible patterns from a business point of view and on the
other because they have different acceleration they create different
test cases to validate the adaptation process. In both tests we pro-
vide elsaticity rules which have the same configuration: an initial
amount of one additional container together with a 50% threshold
to increase the pool of additional containers and a capacity of 8
evt
sec . Initially, in both tests there are two containers running: one
of them is assumed to be provisioned for the predicted demand and
the other is the specified additional buffer in the elasticity rules.
Both tests last around 20 minutes in which the simulated deviation
occurs.

The first scenario is named increase-decrease and is depicted in
Figure 4. The pattern—the red curve in Figure 4a—has a linear in-
crease followed by a linear decrease. From a business perspective, it
represents a periodic run of certain processes, such as querying the
salary statement at the end of the month. Intensity increases gradu-
ally towards the peak, where it remains for several minutes before
starting to drop gradually. In the second scenario—named spike—the
pattern experiences a high-intensity spike of a short wavelength.
This pattern challenges the proposed elasticity controller which
cannot capture the magnitude of short wavelength spikes. As it
is shown in Figure 5a, the pattern simulates a sudden increase in
intensity reaching the peak after certain flash-crowd events. The
second figure in both scenarios shows the relation between de-
mand and supply; the curve marked with suqares represents the
number of containers needed whereas the thick non-marked curve
represents the number of containers provided.

The first scaling decision in the increase-decrease scenario, oc-
curs around minute 5, after load intensity (Figure 4a) increases
above 8 events per second. At that moment in time, the reactive
part of the adaptation process produces one more container. After-
wards, the controller scales the number of containers to four and
five when load intensity exceeds 16 and 24 events per second re-
spectively. The rate never accelerates beyond the 50% threshold that
is set to manage the additional containers; thus, the spare capacity
never scales; it remains at one. In contrast, in the second scenario,
the spike that occurs exceeds the 50% threshold value. The curve
marked with squares in Figure 5a denotes the per-second growth
rate averaged over the last minute. As seen, because the spike has a
short wavelength, the signal used by the controller does not capture
the right magnitude. When the rate increases by a factor of 8 from
5 to 40, the average arrival rate reflects only an increase by a factor
of 6. However, because of high acceleration, the intensity exceeds
the buffer threshold of 50%, this way the controller increases the
buffer by one and together with the inferred intensity scales to six
containers which is the adequate amount of resources. The extra
containers stay up for the next three minutes—the cooldown period.

Summary. Results for the two tests are summarized in Table 1.
The two scenarios are compared against two constructed baselines
which assume policies which hypothetically know the accelera-
tion that load intensity experiences and over-provision with the

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

97

ICPE ’18, April 9–13, 2018, Berlin, Germany Klinaku et al.

scenario increase baseline1 spike baseline2
precisionO 0.12314 0.10165 0.1201 0.29952
precisionU 0.00248 0 0.00579 0
timeshareO 87.6% 99% 73.072% 99%
timeshareU 2.479% 0% 2.894% 0%
elasticitynw 0.94307 1.76079

Table 1: Summary of the two test cases compared to two re-
active strategies with fixed amount of extra containers

necessary additional containers to handle it. For baseline1, the cal-
culations are obtained by assuming that there is always one extra
container. Similarly, for baseline2, because the load intensity experi-
ences a spike, the measures are obtained by assuming a policy that
overprovisions with three additional containers throughout the test.
In the first test, as it is expected, the adaptation process overprovi-
sions during 87% of the time. The precision of overprovisioning is
affected by the cooldown period where no scale-in decision occurs.
This worsens the precision compared to an ideal baseline policy of
having only one additional container as spare capacity throughout
the time. In the spike scenario, the proposed method overprovisions
containers throughout 73% of the time with a precision which is
similar to the previous test. However, the precision of the second
test is better than the precision of a policy, which provisions three
additional containers to cope with spikes that may occur in load
intensity.

The load intensity signal—the thick non-marked curve in Figure
4a and 5a—successfully captures tendencies on the rate the queue
is increasing for minute timescales. Based on these trends, the
elasticity controller provisions and releases containers. On the other
hand, if the rate at which the queue increases experiences oscillatory
behavior in shorter timescales, requests in the queue will start to
build up. The current expiration deadline for the events—which
measures if quality objectives are met–is 30 seconds. The portion
of messages that expire with the given deadline is zero in the first
test and less than 3% in the second. Given a quality objective which
specifies a shorter duration for messages to expire, in presence of
oscillatory behavior in shorter timescales than minutes the portion
of messages that fail to meet quality objectives will increase.

5 CONCLUSION AND FUTUREWORK
After highlighting the problems of current reactive techniques with
regard to elasticity, we proposed a novel adaptation process that
consists of two techniques which in combination with predictive
approaches improve elasticity. The adaptation process alters the
number of containers based on the rate the queue has increased
over the last minute. We complemented the reactive mechanism
with a pool of additional containers which is altered independently
depending on the acceleration the load intensity experiences. We
give microservice owners the possibility to set a custom threshold,
which enables them to determine under which acceleration the
load approaches the peak so that the controller anticipates future
needs and provisions containers before the actual load reflects it.
We showed that the method with the same configuration under
increased variability in the arrival patterns—that simulate possible

deviations—overprovisions most of the time with a similar and
satisfiable precision of less than two unneeded containers.

For future work, we envision the following directions:
Feedback control. We choose to base scaling decisions on the

rate the queue increased over the last minute. If the rate at which
the queue increases experiences oscillatory behavior in shorter
timescales, events in the queue will still start to build up. To tackle
this part, as it is proposed in [5], a combination of the proposed
adaptation process with a second feedback controller is necessary.

Cost-effective combined elasticity. A recent survey on the
adoption of containers [1] shows that providers run a mean of
eight containers per host machine. Currently cloud providers bill
per hour on VM instances. Hence it is not a reasonable choice ter-
minating a newly-provisioned virtual machine for which providers
are charged for the full hour. How does this relation stand for con-
tainers and what are the costs of keeping idling containers? Further,
it is important to assess how the time to resize the cluster will affect
the autoscaling of containers with the presented method.

The rigidity of µ and capacity inference algorithms. The es-
timated capacity - µ marks out a rigid environment. The rigidity is
both internal and external. For example, if the size of the thread-
pool that serves enqueued events is altered then the processing
capability of the microservice is affected and a new re-estimation is
required. Further, if the microservice orchestrates other microser-
vices to process an event, any change of the other services requires
a re-estimation of capacity and thus, an update of the elasticity rules.
The survey [1] shows that the average lifetime of containerized
applications has reduced to 2,5 days compared to 23 days with ap-
plications in VM. It is of interest to evaluate current approaches on
capacity inference and their relation to the newly created conditions:
the increased release frequency and the reduction in responsibilities
for microservices.

Variability of parameters. In presence of more knowledge
regarding the arrival pattern and workload characteristics we can
establish a better understanding of spikes and their acceleration so
that parameters for configuring scaling rules can be tunned: the
initial amount of additional containers and the percentage at which
to increase spare capacity.

REFERENCES
[1] 8 surprising facts about real Docker adoption. [n. d.]. Docker Adoption. ([n. d.]).

https://www.datadoghq.com/docker-adoption/
[2] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. 2017.

Elasticity in Cloud Computing: State of the Art and Research Challenges. IEEE
Transactions on Services Computing (2017).

[3] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. 1998.
Queueing Networks and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications. Wiley-Interscience, New York, NY, USA.

[4] Nikolas Roman Herbst, Samuel Kounev, and Ralf H Reussner. 2013. Elasticity in
Cloud Computing: What It Is, and What It Is Not.. In ICAC. 23–27.

[5] Philipp K Janert. 2013. Feedback control for computer systems. " O’Reilly Media,
Inc.".

[6] Floriment Klinaku. 2017. Elastic Microservices. Master’s thesis. Technical University
of Darmstadt.

[7] Sebastian Lehrig, Hendrik Eikerling, and Steffen Becker. 2015. Scalability, Elasticity,
and Efficiency in Cloud Computing: A Systematic Literature Review of Definitions
and Metrics. In Proceedings of the 11th International ACM SIGSOFT Conference on
Quality of Software Architectures (QoSA ’15). ACM, New York, NY, USA, 83–92.
https://doi.org/10.1145/2737182.2737185

[8] Hausi A Müller, Holger M Kienle, and Ulrike Stege. 2009. Autonomic computing
now you see it, now you don’t. In Software Engineering. Springer, 32–54.

[9] AWeber. 2014. Resource Elasticity Benchmarking in Cloud Environments.Master’s
Thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2014).

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

98

https://www.datadoghq.com/docker-adoption/
https://doi.org/10.1145/2737182.2737185

	Abstract
	1 Introduction
	2 State of the art
	3 Adaptation process
	4 Evaluation
	5 Conclusion and Future Work
	References

