
Towards an Efficient Benchmark Generation Engine
for Garbage Collection

A. Omar Portillo-Dominguez
Lero@UCD, School of Computer Science, University College Dublin, Ireland

andres.portillodominguez@ucd.ie

ABSTRACT
Garbage Collection (GC) is a key feature of many modern pro-
gramming technologies. It offers significant software engineering
benefits over explicitly memory management. Nonetheless, it is also
a major cause of performance degradation. As the rate of adoption
of GC-related technologies continues to grow, it is highly relevant
to understand its performance impact. However, this is challenging
due to the non-deterministic nature of GC. To tackle this problem,
we present an engine (HERMES) to create realistic GC benchmarks
by effectively capturing the GC/memory behaviours exhibited by
real-world Java applications. Our experiments prove how HERMES
can be useful to strengthen the evaluation of GC-related advance-
ments. This is achieved by broadening the number and diversity of
the test scenarios, as well as reducing the time invested in testing.

CCS CONCEPTS
• Software and its engineering→ Garbage collection; Object
oriented languages;

KEYWORDS
Garbage Collection; Benchmark Generation; Java; Object-Oriented
Systems

ACM Reference Format:
A. Omar Portillo-Dominguez. 2018. Towards an Efficient Benchmark Gen-
eration Engine for Garbage Collection. In ICPE ’18: ACM/SPEC Interna-
tional Conference on Performance Engineering Companion , April 9–13, 2018,
Berlin, Germany.ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3185768.3186303

1 INTRODUCTION
GC is an essential process of many of the most widely-used run-
time platforms (e.g., Java, Android) which automates most of the
memory-related tasks. This translates into significant software en-
gineering benefits (e.g., it helps to avoid the most common sources
of memory leaks [10, 15]). Despite its benefits, GC has a (poten-
tially significant) impact on the system performance by pausing the
involved programs [7]. Due to the complex interactions between
the GC and the many factors that affect its behaviour, its exact

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186303

influence on a particular application’s performance is hard to de-
fine. For example, this is why the GC overhead is often modelled
as a constant factor that needs to be calibrated along with other
parameters in the performance engineering community [4].

To help address these challenges, this paper presents a novel
automated engine (HERMES) to generate realistic GC benchmarks
which can capture the complex and time-varying GC behaviour of
Java applications. It also presents a practical evaluation of HERMES
and 210 publicly available GC benchmarks [1] (based on real-life
Java applications with diverse GC/memory behaviours).

2 RELATEDWORK
Multiple research efforts have aimed to improve GC performance.
For instance, several new concurrent and parallel algorithms with
smaller performance impacts have been proposed [9]. Other works
have developed solutions for particular scenarios. For example,
the authors of [13] proposed a load balancing strategy to address
the performance impacts of the Major GC. Regarding the works
that have modelled the GC, its overhead is typically captured as
a constant factor to be calibrated with other parameters [4, 8]. In
contrast to these works, that have aimed to improve the behaviour
of the GC process, our goal has been to develop, to the best of our
knowledge, the first engine to automatically generate GC bench-
marks that properly captures the complexities in GC and memory
behaviours that occur in Java applications.

3 PROPOSED SOLUTION
HERMES follows a process composed of three phases. They are
depicted in Fig. 1 and explained next:

Initialisation: It starts by setting all the configured input pa-
rameters. These consist of six user inputs that define the desired
characteristics of the GC benchmark as well as the program’s ex-
ecution: (1) the JVM over which the program will be run; (2) the
GC strategy that will be used; (3) the heap size that will be used;
(4) the program that will be run; (5) how long the program needs
to be executed; and (6) a sampling interval to indicate how often
GC/memory samples will be collected from the monitored JVM.
Also, the user can input the set of specific parameters that a par-
ticular program might require to be properly executed. Next, the
other two phases of the process are concurrently started.

Executor: It starts by setting up the experimental environment
that the chosen program needs to be executed successfully (e.g., any
required dependencies). Next, the execution of the configured pro-
gram starts. This step involves dynamically constructing the com-
mand required to run the program (as eachmodelled programmight
have a different syntax and set of options available), enabling the
applicable JVM sampling strategy, and handling the program’s ex-
ecution. Once the program has started, the Executor reports the

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

9

https://doi.org/10.1145/3185768.3186303
https://doi.org/10.1145/3185768.3186303
https://doi.org/10.1145/3185768.3186303

Figure 1: HERMES’ Core Process

success of this operation to the Collector, so that it can continue
its initialisation. Then, the process waits the time configured as
planned duration. Once this has elapsed, the Executor stops the
program (indirectly stopping the Collector too). Finally, the clean
environment step is carried out and all the dependencies previously
set are rolled back.

Collector: It starts by initialising the data models that will be
used to capture the memory/GC behaviours of the chosen JVM
type. It involves two types of models: (i) One suitable for a memory
region (e.g., with metrics like maximum, committed, used, and free
memory). (ii) Another suitable for a GC type, which captures infor-
mation such as the memory usage before and after its occurrence.
Next, the data gathering that is required to collect the information
is initialised. Later, the following steps are iteratively performed
until the program execution finishes: First, an updated snapshot of
the current memory/GC usage in the monitored JVM is obtained.

It involves getting samples of diverse sources such as all the in-
volved memory regions and the GC types. Once there are new
samples from all the data gatherers, they are parsed to save their
attributes, as well as processed to calculate a set of derived metrics
that complement the observed GC behaviour by properly quantify-
ing the changes in each of the monitored elements. For example,
for the MaGC, it involves the calculation of the number of MiGCs
that triggered this event. This metric was selected because several
works [11, 12] have shown that the MiGC statistics are useful to
characterise the GC behaviours experienced by applications. For
this same reason, the set of metrics derived from the MiGC informa-
tion is more extensive (e.g., allocations per memory region). Once
all metrics have been calculated, the engine’s models are updated.
Next, the logic awaits the configured sampling interval before start-
ing the next round of the iterative steps of the phase. This loop
continues until the program finishes its controlled execution and
the new GC benchmark has been generated.

4 EXPERIMENTAL EVALUATION
Setup: Our experiments pursued: (1) to prove the capability of
HERMES to generate GC benchmarks of diverse characteristics; (2)
to investigate the effectiveness of the generated benchmarks for
improving GC-related evaluations. To achieve this, we conducted
two series of experiments. First, a set of GC benchmarks was created
using our developed prototype. Then, the benchmarks were used
in the evaluation of a GC-related advancement. The prototype was
developed in Java. We initially focused on supporting the Oracle
HotSpot JVM (as it is one of the leading commercial JVMs [2]) and
the generational heaps (as it is the most common type of heap [14]).
Regarding Java programs, we selected the DaCapo benchmark [6] as
it is one of the Java benchmarks most widely-used in the literature,
offering 14 real-life programs with non-trivial memory loads.

BechmarkDiversity:To evaluateHERMES,we generated 210GC
benchmarks. This was achieved by running all the possible com-
binations derived from the execution of the 14 DaCapo programs
with the 3 most widely used GC strategies [14] (i.e., Serial -sGC- ,
Parallel -pGC- , and Concurrent -cGC-), and 5 heap sizes (100, 200,
400, 800, and 1600MB). Different heap sizes and GC strategies were
chosen as they are major factors affecting the GC behaviour [5]. The
program executions were set to 60 mins; the JVM heap initialised
to its maximum size with the calls to programmatically request a
MaGC disabled. Also, a 100ms sampling interval was used (as it is
appropriate for DaCapo [11]).

To assess the diversity among the generated GC benchmarks, we
used the Principal Components Analysis (PCA), which is a statistical
technique used to assess the dissimilarity among benchmarks [3].
The chosen constituent metrics were the average and standard devi-
ations of the frequencies of all the attributes in the GC benchmarks
(a strategy similar to the one used in other works [3, 6]). We ran the
PCA on the GC benchmarks (grouped by GC strategy and heap size)
to assess their diversity. Typically, most of the variance is explained
by the first few principal components. In our case, it was PC1 and
PC2, so our analysis centred on them. Our hypothesis was that our
selection of heap sizes, GC strategies, and programs should lead to
a varied range of GC/memory behaviours. This was confirmed by
the results of this analysis, as a fair diversity was achieved for all

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

10

GC strategies and heap sizes. This behaviour is illustrated in Fig. 2,
which shows how the GC benchmarks differ in a two-dimensional
space (PC1 vs. PC2) for the cGC-100MB combination. Similar results
were obtained for the other GC strategies and heap sizes.

-25000

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 25000

-30K 0 30K 60K 90K 120K

P
C

2

PC1
 (a)cGC-100MB

Figure 2: PC1 vs PC2 of GC Benchmarks

GC-related Advancement: To assess if the GC benchmarks
generated by HERMES could improve the testing of GC-related
advancements, we applied them in the evaluation of a forecast al-
gorithm (denominated MaGa) which predicts MaGC events [12].
We conducted two types of test runs: The first type (referred as
real-time) used the original algorithm’s implementation which in-
terfaces with a real JVM. The second type (referred as offline) used
a modified version of the algorithm’s implementation which re-
trieves its data from a CSV text file (i.e., our GC benchmarks). The
MaGa algorithm is particularly sensitive to the forecast windows
size (FWS), a configuration parameter which delimits the historical
data used by the algorithm to forecast MaGC. Hence, we tested
the algorithm’s accuracy with various FWS values. For its original
implementation (i.e., real-time), we tested 3 representative values
of FWS ∈ [10, 1500, 3000]. For the modified implementation (i.e., of-
fline), we tested a larger range, varying the FWS ∈ [10..3000] in
increments of 10. Moreover, the same set of Java programs, heap
sizes, GC strategies, and sampling interval used in the GC bench-
mark generation were also used here. Finally, to measure MaGa’s
accuracy, we utilised the forecast error (FE) [12].

Once all test runs were executed, the FEs of the MaGC predic-
tions were calculated and the differences between the two types of
runs were compared (i.e., the FWS values of 100, 1500, and 3000).
Although the results varied among the GC strategies, this analy-
sis showed that the offline test runs were able to achieve similar
FEs (compared to their real-time counterparts). These results are
depicted in Fig. 3, which shows the average difference in FE per GC
strategy.

To further exemplify how HERMES can be useful to extend the
validation of GC advancements, we present, in Figs. 4.a and 4.b, a
comparison of the FWS trends that were obtained with the results
of the real-time MaGa (i.e., the limited range of 3 FWS) against the
results of the offline MaGa (i.e., the extended range of 31 FWS) for
the different heap sizes tested on Eclipse-sGC (one of the programs
within DaCapo). As the forecast accuracy of MaGa is sensitive to
the chosen FWS, it is important to know which is the “best FWS”
for a particular case. In this context, the best FWS is defined as
the FWS that achieves the highest accuracy (i.e., a FE of zero, or
the closest to zero). If we try to use the information of Fig. 4.a to

 0.1

 1

 10

 100

cGC pGC sGC

F
o
re

ca
st

 E
rr

o
r

 D
if

fe
re

n
ce

 (
%

)

GC Strategy

Figure 3: FEDifference betweenTesting Strategies (real-time
vs. offline)

-300
-200
-100

0
100
200
300
400
500

 0 500 1000 1500 2000 2500 3000

F
o

re
ca

st
 E

rr
o

r
(%

)

FWS (number of samples)

 (a) Real-time MaGa - FWS trend

100MB
200MB

400MB
800MB

1600MB

-300
-200
-100

0
100
200
300
400
500
600

 0 500 1000 1500 2000 2500 3000

F
o

re
ca

st
 E

rr
o

r
(%

)

FWS (number of samples)

 (b) Offline MaGa - FWS trend

100MB
200MB

400MB
800MB

1600MB

Figure 4: Examples of Extended Evaluation and Analysis of
GC Advancement: MaGa Algorithm

analyse this, there are no FWS values that fit well the definition of
best FWS for all the heap sizes (e.g., the 200MB scenario). Also, it
is hard to see any clear trend with respect to the FWS values with
such limited number of test results (e.g., to determine whether an
increment in the FWS improves or deteriorates the accuracy of the
algorithm). In contrast, Fig. 4.b would allow performing a more
detailed analysis, as the FWS trends for each of the heap sizes can
be clearly identified. For instance, if we review the behaviour of the
100MB heap, it can be observed how the accuracy is considerably
poor (i.e., FE > ± 100%) when FWS ≤ 1000 or FWS ≥ 2000). A
similar analysis can be done for the other heaps, where it is always
possible to find an FWS where the FE is significantly close to 0%.

Based on the above, it is clear that this deepness of analysis could
not have been performed with the small set of FWS values used in
the real-time test runs. Thus, the use of an offline test strategy has
proven useful to strengthen the testing of GC developments and
derive more general conclusions about their performance. This is
important as a major reason for only using a reduced set of experi-
mental configurations is that, typically, GC-related advancements

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

11

 0

 5

 10

 15

 20

 25

 30

real-time offline

T
im

e
(d

ay
s)

Testing Strategies

 (a) Time Savings (3 FWS range)

Generation
Execution

 0

 50

 100

 150

 200

 250

 300

real-time offline

T
im

e
(d

ay
s)

Testing Strategies

 (b) Time Savings (extended FWS range)

Generation
Execution

Figure 5: Time Savings of HERMES

can only be evaluated in real-time (due to the lack of GC bench-
marks). So, under those conditions, it might be unfeasible to do a
large number of experiments due to the considerable amount of
time required to execute them.

Time-Savings: To understand the time savings that HERMES
achieved, we compared the time invested in running each of the
two test strategies. Fig. 5.a presents the time invested in running
MaGa in real-time and offline mode with a small range of FWS. In
the case of real-time MaGa, the only time component is the actual
execution time of the test runs. In contrast, the offline MaGa’s time
is composed of two types of time: The generation of the GC bench-
mark and the simulated execution of the test runs. The benchmark
generation task was considered in this analysis to make a more
conservative comparison of the test runs. Alternatively, one could
consider that the GC benchmarks have already been created (e.g.,
the 210 GC benchmarks generated for this paper have been made
publicly available). By comparing the times in Fig. 5.a, it can be
noted how significant time savings can be obtained by using the
offline testing strategy: It required 17.63 fewer days (i.e., a 67% im-
provement) with respect to the real-time testing, while obtaining
the same quality of results. It is worth mentioning that the biggest
part of the total offline time was the generation of the GC bench-
marks (i.e., 99%); while the GC execution time was marginal (only
0.5 hours), so it is not observable in the figure.

Regarding the generation of a GC benchmark, since this occurs
in real-time, it has the same time cost that a real-time test. However,
it only needs to be performed once per combination of program,
GC strategy, and heap size. In contrast, a real-time test needs to be
repeated per FWS, which drastically increases the required time
(as depicted in Fig. 5.a). The total time of testing real-time MaGa
is directly related to the number of test runs (e.g., the range of

FWS in our case). Thus, evaluating the extended range of FWS
would have required an excessive amount of time. Hence, these
combinations were exclusively tested with offline MaGa. This is
illustrated in Fig. 5.b, which shows the extrapolated time needed to
test the extended range of 31 FWS values with the real-time MaGa.
It can be observed how that test strategy is impractical, as it would
require more than 250 days of continuous test executions. Thus,
the time savings of using HERMES are even bigger under these
conditions (i.e., a 97% reduction in this case). This scenario also
illustrates how the gains are higher when the GC benchmarks are
reused. This is because if the GC-related advancements (e.g., MaGa)
are tested in real-time, that strategy involves a linear growth. In
contrast, by using the generated GC benchmarks, the testing time
is practically independent of the range of tested FWS (as the only
relevant time is the generation of the GC benchmarks). After that,
any additional test runs have a marginal time cost.

5 CONCLUSIONS AND FUTUREWORK
This paper presented HERMES, an engine to generate realistic GC
benchmarks that properly captures the GC behaviours exhibited by
Java applications. Results have shown how HERMES can broaden
the diversity of testing scenarios. Also, our tests illustrated the time
savings that HERMES can bring to the evaluation of GC-related
technologies. As future work, we plan to continue strengthening
HERMES’ capabilities (e.g., by diversifying the tested application
behaviours, and the modelled memory/GC attributes).

6 ACKNOWLEDGMENTS
This work was supported, in part, by Science Foundation Ireland
grant 13/RC/2094.

REFERENCES
[1] Benchmarks. https://github.com/ucd-pel/GCBenchmark. Last accessed: 2018-02-

10.
[2] Java SE HotSpot at a Glance. http://www.oracle.com/technetwork/java/javase/

tech/index-jsp-136373.html. Last accessed: 2018-02-10.
[3] V. Ayala-Rivera, A. O. Portillo-Dominguez, L. Murphy, and C. Thorpe. COCOA:

A synthetic data generator for testing anonymization techniques. PSD, 2016.
[4] S. Becker, H. Koziolek, and R. Reussner. The palladio component model for model-

driven performance prediction. Journal of Systems and Software, 82(1):3–22, 2009.
[5] S. M. Blackburn, P. Cheng, and K. S. Mckinley. Myths and Realities: The Perfor-

mance Impact of Garbage Collection. SIGMETRICS PER, Jan. 2004.
[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, et al. The DaCapo benchmarks:
Java benchmarking development and analysis. InACM Sigplan Notices, volume 41,
pages 169–190, 2006.

[7] P. Lengauer and H. Mössenböck. The taming of the shrew: Increasing perfor-
mance by automatic parameter tuning for Java GC. In ICPE, 2014.

[8] P. Libic, L. Bulej, V. Horky, and P. Tuma. On the limits of modeling generational
garbage collector performance. In ICPE, pages 15–26, 2014.

[9] F. Pizlo, E. Petrank, and B. Steensgaard. A study of concurrent real-time garbage
collectors. ACM SIGPLAN Notices, 43(6), 2008.

[10] A. O. Portillo Dominguez. Performance optimisation of clustered java systems.
2016.

[11] A. O. Portillo-Dominguez, P. Perry, D. Magoni, M. Wang, and J. Murphy. TRINI:
an adaptive load balancing strategy based on garbage collection for clustered
java systems. Softw. Pract. Exp., 2016.

[12] A. O. Portillo-Dominguez, M. Wang, D. Magoni, P. Perry, and J. Murphy. Load
balancing of java applications by forecasting garbage collections. In ISPDC, 2014.

[13] A. O. Portillo-Dominguez, M. Wang, J. Murphy, and D. Magoni. Adaptive GC-
aware load balancing strategy for high-assurance java distributed systems. In
HASE, 2015.

[14] Sun Microsystems. Memory Management in the Java HotSpot Virtual Machine.
April, 2006.

[15] P. R. Wilson. Uniprocessor GC Techniques. In IWMM, 1992.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

12

https://github.com/ucd-pel/GCBenchmark
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	4 Experimental Evaluation
	5 Conclusions and Future Work
	6 Acknowledgments
	References

