ENERGY-SIM Workshop

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

Evaluation of Energy Consumption of Replicated Tasks in a
Volunteer Computing Environment

A. Stephen McGough
School of Computing
Newcastle, UK
stephen.mcgough@newcastle.ac.uk

ABSTRACT

High Throughput Computing allows workloads of many thousands
of tasks to be performed efficiently over many distributed resources
and frees the user from the laborious process of managing task
deployment, execution and result collection. However, in many
cases the High Throughput Computing system is comprised from
volunteer computational resources where tasks may be evicted
by the owner of the resource. This has two main disadvantages.
First, tasks may take longer to run as they may require multiple
deployments before finally obtaining enough time on a resource
to complete. Second, the wasted computation time will lead to
wasted energy. We may be able to reduce the effect of the first
disadvantage here by submitting multiple replicas of the task and
take the results from the first one to complete. This, though, could
lead to a significant increase in energy consumption. Thus we desire
to only ever submit the minimum number of replicas required to
run the task in the allocated time whilst simultaneously minimising
energy. In this work we evaluate the use of fixed replica counts
and Reinforcement Learning on the proportion of task which fail
to finish in a given time-frame and the energy consumed by the
system.

CCS CONCEPTS

« Computing methodologies — Sequential decision making; Sim-
ulation evaluation; - Hardware — Enterprise level and data centers
power issues;

KEYWORDS

Trace-Driven; Simulation; Machine Learning, Energy

ACM Reference Format:

A. Stephen McGough and Matthew Forshaw. 2018. Evaluation of Energy
Consumption of Replicated Tasks in a Volunteer Computing Environment.
In ICPE ’18: ACM/SPEC International Conference on Performance Engineering
Companion , April 9-13, 2018, Berlin, Germany. ACM, New York, NY, USA,
Article 4, 6 pages. https://doi.org/10.1145/3185768.3186313

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE 18, April 9-13, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5629-9/18/04. .. $15.00
https://doi.org/10.1145/3185768.3186313

85

Matthew Forshaw
School of Computing
Newcastle, UK
matthew.forshaw@newcastle.ac.uk

1 INTRODUCTION

Our desire to perform high volumes of computational work often
outstrips the capability of what a single computer can perform in an
acceptable time-frame. Thankfully, many computational problems
consist of repeated actions (referred to hereafter as tasks without
loss of generality) which can be performed on many computational
units (referred hereafter as resources) at the same time — parallel
computing. If the resources require regular inter-communication
this is referred to as fine grain parallelism. At the other extreme is
course grained parallelism where tasks do not communicate at all -
High Throughput Computing (HTC). Each task is a single run of a
piece of software. A central service acts as master which hands out
task to resources and collects the output on compleation.

High Throughput Computing is well suited to making use of
heterogeneous resources as each task runs at its own pace. However,
this can lead to complications. A resource may crash, or be lost,
meaning that the task will never complete or the task may be
allocated to a particularly slow resource causing significant delays.
This problem is compounded further when the resources used are
not owned by the task owner but are offered on a voluntary (best
effort) basis by others — volunteer computing. The two most popular
volunteer HTC environments are HTCondor [10], often used within
an organisation where the resources (computers) are purchased for
some other purpose, and BOINC [1], where the desire is to make
use of resources (computers) provided by members of the general
public. In both of these cases when a resource is required for its
primary use the HTC system will have to relinquish the resource.
This may require the termination, suspension or movement of the
running task. In all cases leading to a delay in the completion time
of the task and potentially extra energy consumption.

In many cases the users of a HTC system will be happy with the
delay to their tasks - HTC systems focus on ensuring that tasks will
eventually complete. However, these delays can be significant - in
2010 for the HTCondor system at Newcastle University 52.4% of the
task executions encountered a delay greater then their own runtime.
Efforts can be made to reduce the chance of a task being allocated to
a resource which will be required for primary use [4, 12], however,
it is not possible to determine this with certainty.

An alternative approach to identifying the resource most likely
to be available for the duration of a task is to perform task repli-
cation. In this case a task will be replicated a number of times and
each replica is submitted to the HTC system and treated like other
tasks. However, on the completion of the first replica all other repli-
cas are terminated. Increasing the probability of a task completing
quickly, where naively it may be assumed that as the replication
count increases so too does the probability of quick completion.
The downside is twofold. In the first case the system can become

https://doi.org/10.1145/3185768.3186313
https://doi.org/10.1145/3185768.3186313

ENERGY-SIM Workshop

overloaded through the extra replicas, leading to fewer tasks finish-
ing within their desired deadline. In the second case, the additional
replicas, although terminated at the first replica completion, will
consume resources and hence energy of the system.

Task replication has been used extensively for volunteer com-
puting systems such as BOING, albeit more for validating resources
aren’t providing invalid results. Here we seek to identify if more
centralised HTC systems, with multiple concurrent task submitters,
can make efficient use of task replication. In order to achieve this
we have extended the HTC-Sim [4] simulation system with the
ability to handle task replication. We have developed two forms
of task replication: i) Fixed replication count, and, ii) Replication
counts determined through Reinforcement Learning [14]. We use
HTC-Sim to determine the practicality of using task replication
both in terms of energy consumed and impact on the number of
task which fail to complete within a QoS bound (time-frame).

The rest of this paper is set out as follows. In Section 2 we provide
a background and motivation to the problem of task replication.
We discuss related work in Section 3. Our Reinforcement Learning
based Replication approach is discussed in detail in Section 4. We
provide details of our experimental setup in Section 5 before pro-
viding simulation results in Section 6. We conclude the paper and
present future directions in Section 7.

2 BACKGROUND AND MOTIVATION

We present an overview of HTC-Sim [4], along with the adaptations
for task replication, before providing motivation for why task repli-
cation could be of benefit by analysis of a HTC system deployed at
Newcastle University.

2.1 HTC-Sim

We have developed a general purpose HTC simulation system ca-
pable of modelling the behaviour of a HTC system based around a
collection of both dedicated and volunteer resources. This system
takes, as input, trace data from an existing system — representing
both primary and HTC users. Interested readers in the full capability
of this system are referred to previous papers, most notably [4].
Figure 1 illustrates the high-level view of HTC-Sim. Two types
of user can interact with the system — High-Throughput users who
provide descriptions of the tasks they want executing and Inter-
active users who can use the resources for their primary purpose.

Task
== Descri
ption

High-Throughput

High-Throughput
Management

Users

as|
and M
Interactive
Users

luster Policy

Figure 1: Overview of the HTC-Sim model

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

=5

Hour of day

Replication count
Figure 2: Heatmap: replication count per hour
Resources are organised into a number of ‘clusters’ (defined as a set
of resources which share similar attributes such as hardware type or
management policy). Thus we can handle both homogeneity within
a cluster and heterogeneity between clusters. Clusters are available
to interactive users, or not, depending on the cluster policy with
policy changes allowed at any time. Resources, which may be put
to sleep when idle, may be woken up by the HTC system, based on
policy, using Wake On Lan [11]. The HTC management is under
the control of a time-varying policy, controlling such things as how
long after a primary user has logged out can the resource be used.
Our extension is built into the HTC management system and
is highlighted in blue (Figure 1). Each task, for replication, is first
replicated N times and tagged with the id of the original task before
being submitted as a ‘regular’ task. These replica tasks can cease
execution due to three cases:

Successful task completion: On first replica completion all
other replicas are no longer needed and are wasting re-
sources (energy). They can be terminated. The task which
completed will assume the identity of the original task —
allowing the user to access output.

Task eviction due to primary use case: Providing it is allo-
wed by policy the task will be re-allocated to a new resource
(if available). As the overall task has not completed no actions
against other replicas is required.

Task termination by the task submitter: This will cause a
cascade of terminations across all replicas. This can also be
triggered by the HTC administrator.

We do not consider here such cases as task suspension (execution
starvation) or task checkpointing and migration [13] as these do
not affect the execution of the other replicas.

2.2 HTC Condor At Newcastle

The HTCondor [15] setup at Newcastle University in 2010 com-
prised of ~1500 desktop computers distributed over 37 clusters
spread around the university. Clusters had widely varying policies
— from clusters only available during teaching hours to clusters
which were open 24/7 for any use.

Figure 2 illustrates the probability of a task completing given
that it was submitted during a given hour of the day and that the
system replicated each task a given number of times. For ease the
highest probabilities for each hour are highlighted with a white
dot — note that for some hours there are multiple hours with the
highest probability. The modal ‘best’ replica count is two — one

ENERGY-SIM Workshop

9000 -

8000 -

7000~ 4

6000 -

5000 -

4000 ~

3000 -

Number of user logins per day (Thousands)

2000 4

1000 -

I I I I I I I I
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
Date

Figure 3: Number of interactive logins per day
could therefore set this as the replica count and proceed no further.
However, between 8am and 10am the best option is ten replicas,
and there is no account of energy usage. The special case is 3am
where all computers are regularly rebooted.

Figure 2 is a static snapshot of Newcastle University, and almost
certainly incorrect for any other point in time or other site. The
process could be repeated at regular intervals (on other sites). How-
ever, this would not dynamically update as tasks are run. Nor take
into account seasonal effects such as weekly / termly interactive
user patterns — Figure 3.

3 RELATED WORK

Task replication for volunteer computing has been studied exten-
sively for BOINC [1] style systems in which there is effectively only
one HTC user - e.g. SETI@Home [2]. However, the primary focus
for using replication has been task output validation as opposed to
QoS or energy consumption.

Heien et al. [5] proposed the use of replica batches to handle
unreliable workers (resources) in volunteer computing systems.
They simulate their approach for a BOINC-style volunteer system,
and don’t take energy into consideration.

Kondo et al. [7] produce a simulation of a HTC volunteer com-
puting system in order to compare it to running workload in the
cloud. However, they only allow a fixed replica count of three and
don’t consider QoS or energy.In other work Kondo et al. [6] simu-
late the running of task on a desktop grid. However, their model
has just one single HTC user and they only consider makespan.

BOINC itself uses replication, though only for validating results
from new resources — only trusting new resources once they have
provided a number of ‘valid’ results [8].

Litke et al. [9] use task replication in mobile grid environments
to overcome the problems of fault tolerance. Though they take
neither energy nor QoS into account.

4 TASK REPLICATION

In this section we initially present the metrics which will be used
to evaluate our approach before presenting details of the Reinforce-
ment Learning approach used approach.

4.1 Metrics

Before we define metrics to evaluate our approach we must first
define the criteria for a task completion within Quality of Service
(QoS) bounds. As the intention here is to increase the chances of
tasks finishing quickly we define bounds on the turnaround time
of a task, where turnaround is defined as the time between task
submission and results being staged back to the submitter. We
define two QoS bounds:

87

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

Within Hour: A task has achieved its QoS bound if t < |e] +
1, where t is the turnaround time (in hours) and e is the
execution on a dedicated resource (in hours). As many tasks
have an execution time significantly less than an hour this
can be a good QoS bound.

Percentage overhead: A task is considered to be successful
if its turnaround time is no more than p% greater than its
execution time on a dedicated resource.

In order to evaluate the effectiveness of our approach we define the
following metrics:

e Number of tasks which fail to meet the QoS bound.
¢ Energy consumption from replicas. As the sum of good

and bad energy:
_ tiE; if Gy #1
bad = Z Z { 0 otherwise ’ (1)
reRiel,

where R is the set of all replicas, I,- is the set of all invocations
of replica r, t; is the execution time for invocation i, E; is the
energy consumption rate of the resource used for invocation
i and Gy,; evaluates to one for the good replica, else zero.
Likewise: good = tgEg, where, tg is the execution time of
the successful replica (i.e. Gg,» = 1), and Ey is the energy
consumption rate for the good replica.

4.2

We wish to determine for a given task ¢, submitted at time s;, the
number of replicas which should be submitted into the HTC system.
We include here one as a valid number of replicas (indicating no
replication). In order to tailor our approach to an individual HTC
system we use Reinforcement Learning [14] (RL), to train an agent
to estimate the replica count which is expected to give the greatest
reward (chance that the task will complete within the QoS bounds).
RL has the advantage that it is an unsupervised machine learn-
ing approach which can learn the ‘best’ action to perform given
a particular state of the system. This can be achieved without the
need for training data — with the training coming from rewards
(positive feedback) given for choosing the right action and punish-
ments (negative feedback) for choosing the wrong action. Thus RL
can, not only, adapt itself to any given environment but also, as it
continually trains, adapting to environment changes. RL has been
previously used to solve control problems (elevator scheduling),
resource allocation within a data centre [3], and reduction of energy
consumption in volunteer computer systems [12].

In order to use RL to optimise the number of replicas to run we
use the approach of an n-armed bandit [14]. Under this assumption
each action - the number of replicas to run - is independent of all
other actions performed.

Each task t € {1,2,...} which is to be replicated will observe
the system in a given state s € S. Our state space here represents
those characteristics of the system over which decisions should be
made - e.g. the time of day at which the task is submitted. As these
need to be discrete values we round the time of submission to the
nearest hour, thus giving 24 states for time. In order to maintain
our n-armed bandit model we assume here that a task which has to
relinquish a resource becomes a new task within the system when
it is re-allocated. The set of actions (a € A) is the number of replicas

Reinforcement Learning

ENERGY-SIM Workshop

which should be submitted to the system. We can then determine
the action a to perform as:

a= f(Q(s, A),)
where Q(s, A) is the set of all reward values for the actions A avail-
able when the system is in state s and f() is a selection policy. The
true reward values Q(s, A) are unknown, however, we can estimate
Q’(s, A) from the prior decisions which have been made and the
associated rewards. Thus this becomes an estimator for Q(s, A):

Q:(s,4) = {q;(s,@)} VaeA,
and:
q;(s,a) = Ri(s,a’) Vi<ta =a,
where R; € [—k, k] is the reward function for task ¢. A value, for
Ry(s, a), of —k indicating that this was the worst possible choice of
action whilst +k indicates the best. The value of k can be chosen
arbitrarily, however, it is normally chosen to be a small number to
prevent buffer overflows.
We can define the reward function as follows for task ¢:
R¢(s,a) = { ii T

t completed within QoS bound
t failed QoS bound

where the first term in the reward function is used to indicate that
the chosen action was good or not and the second term (if present)
helps to steer the replication task towards the minimum value.
The QoS bound is as defined above. We define two approaches for
determining o;:

Wasted Energy: We set the value of o; € [0,k] to be pro-
portional to the wasted work performed by replicas. We
compute o using the energy consumption of the ‘bad’ repli-
cas as energy is an easy to compute proxy for the wasted
work:

W,
o = d min(1, —t_),
adt:

where a is the number of replicas, d; is the execution time
of task t, W; is the energy wasted running task ¢ (Equation
1), § € [0, k] is the impact we want wasted energy to have
on oy and E is the average energy consumption rate for
the selected resource when performing computational work
— for simplicity we assume that this is the average energy
consumption rate when the resource is running at 100%
utilisation.

Contender: We evaluate here the number, ¢ of other replicas
which could have completed within the QoS bound and pe-
nalise for each: 6; = §c/a, where a is the number of replicas.

We can now define the selection policy f() which is used to evaluate
the action to perform given the prior history reward set Q’(s, A).
We define two approaches here, those of a greedy selection (often
referred to as exploitative) and an explorative selection policy:

maxq(Q’(s,A)) with probability 1 - €
(exploitative)
with probability e

(explorative)

f(Q'(s,4)) =

bl

random(A)

maxg() selects action a with the greatest expected reward, whilst
random(A) selects an action uniformly from A.

By selecting the greedy policy we are exploiting prior knowl-
edge to use the action with the greatest expected reward, whilst an

88

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

exploitive policy allows us to search for potentially better actions.
Both exploitative and explorative policies are required. This is par-
ticularly important due to the dynamic and changing nature of our
system. Being too greedy can lead to poor choice of replica counts
as the agent will keep using sub-optimal actions, whilst being too
explorative can lead to the use of sub-optimal actions which are
known to be bad. Careful selection of € is therefore required.

4.3 Comparison Cases

In this work we will compare three different mechanisms for task
enactment:

Single task execution Here each task is submitted only once
to the HTC system - the default case. This provides a baseline
for how long the task will take to execute within the HTC
system. Effectively a replication count of 1.

Fixed replica execution: In this case the number of replicas
which are submitted to the HTC system is fixed. Although
this can lead to reduced execution time it has two main disad-
vantages. Firstly, tasks will be needlessly replicated at times
of the day when this is not required. Secondly, the extra repli-
cas running within the system can end up overloading the
system. This will lead to tasks which would have completed
no longer being able to due to contention for the limited
resources.

Reinforcement Learning for replica selection: Here we
dynamically select at submission time the number of repli-
cas to run. This increases the chance of the task finishing
within the defined contingency, whilst minimising the effort
to achieve this and reducing the chance of overloading the
HTC system in the process.

5 EXPERIMENTAL SETUP

In order to evaluate the benefits of task replication for a multi-HTC
user based system we have extended the HTC-Sim simulation sys-
tem [4]. We use here our trace logs for the use of the HTCondor [10]
system and interactive users at Newcastle University during 2010.
These trace logs represent some 1,229,820 interactive user logins
— these were the primary users of the resources which made up
the cluster of ~1,500 computers. During the year a total of 561,851
HTC tasks were submitted by 19 different HTC users. Full analysis
of these trace logs can be found in [4].

As well as having the fixed replica counts (1, 2, 3, 4) we also
evaluate six different RL state spaces: DAY - one state for each hour
of the day, DAY_LENGTH - a 2D state space of hour of the day and
job length (in hours), DAY_LOAD - a 2D state space of hour of the
day and HTC system load (in 10 buckets each of 10%), LOAD - the
load of the HTC system (in 10 buckets each of 10%), SINGLE - just
one state, WEEK - 168 states with one for each hour of the week.

As our intention here is to identify the impact of task replication,
which did not exist in the original trace log, we randomly select a
proportion of the original tasks to be replicated tasks. This value
has been varied in the results. Likewise we choose the value of k
(reward / punishment value) to be one. The value of § is varied in
order to determine its impact on learning.

We have limited the maximum number of replicas to ten for
Reinforcement Learning as experiments have shown that values

ENERGY-SIM Workshop

120000

90000

60000
- L h
0
1 2 3 4

Replication Count
Figure 4: Impact of replica count and QoS bound on failed
QoS tasks

greater than this give no advantage and often cause the cluster to
become overloaded.

All simulations were performed using parameter sweeps over
the parameter space and were run across the HTCondor system at
Newcastle University. Ten repetitions were used to minimise the
effect of random variations.

QoS Bound
. Within Hour
W 50%

B 100%

W 150%

9 200%

Number of tasks exceeding QoS bound

6 RESULTS

We present here the results of our simulations of the HTC-Sim
system using replicated tasks. In Figure 4 we show the impact on
the number of tasks which fail the QoS bound for different fixed
replication counts. The lowest failed QoS value is observed for a
replication of one (in this case only the original task is run with no
replicas). This would suggest that for this system the ‘best’ approach
is not to perform replications. Likewise, for the least QoS bound
failures happens for the highest percentage value — a consequence
of the fact that any task which satisfies a QoS bound of n% will also
satisfy a QoS bound of m% where n < m. We do not reproduce the
corresponding Energy graph here as no interesting results can be
derived over i) QoS bounds have no impact on energy consumption
(as the energy consumed is not affected by QoS bounding), and, b)
The energy consumption increases linearly with the increase in
replicas.

Figures 5 and 6 illustrate the impact of o policy and RL state
space on failed QoS tasks and energy respectively. The first thing
worth noting here is that the Contender ¢ function outperforms
the Wasted function. This seems to be worst for energy consump-
tion - which might be considered to be where this function would
work best. Out of the state spaces for the Contender cases the
SINGLE state space (only one state) gives, on average, the ‘best’
performance for both failed QoS tasks and energy. However, it
does have the greatest variability. Looking at the RL action space
maxq(Q’(s, A)) = 1 for these cases. This concurs with the result of
Figure 4 where not performing replication is the best choice.

In Figures 7 and 8 we investigate the impact on failed QoS tasks
and energy consumption of varying the proportion of tasks which
are considered for replication. In all cases using no replication
(replication count of 1) gives the ‘best’ performance. For RL the
LOAD state space (bucketing by percentage of the cluster which is
in use) gives the ‘best’ performance — though this is still inferior
to fixed replication cases. One may assume that the SINGLE state
space would give better performance here — especially considering
that it recommends not performing replicas. However, this benefit is
lost due to the explorative nature of RL where it randomly chooses

89

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

CONTENDER WASTED

3e+05

2e+05

1e+05

—{I
T~
—

e [Jeree e e e =
{+

Number of tasks exceeding QoS bound

DAY
LOAD
WEEK
DAY
LOAD
SINGLE
WEEK

DAY_LOAD
DAY_LOAD

DAY_LENGTH

DAY_LENGTH

State Space

Figure 5: Impact of state space and o policy on failed QoS
tasks
CONTENDER WASTED
600 T]
500 i !] . . .
: : H
400 3 :

AU]_...
ﬂi N
_D],
{1
~|]]V" -

N
=3
=3

Total Energy Consumption (MWh)

x E 2 2 4 & : £ 2 2 3 &5
a o S e} [} w 3 15} s} [} 9] w
F 3, a z 2 z 3, a z =
[z 2]
. .
< <
o o
State Space

Figure 6: Impact of state space and o policy on Energy con-
sumption

1e+05

QoS Bound
~*- One
-~ Two
~+- Three
~*- Four
-+ DAY
-+ LOAD
-+ SINGLE
~+ WEEK
+ DAY_LENGTH
~+- DAY_LOAD

1e+04

Number of tasks exceeding QoS bound

0.25 0.50 0.75
Proportion of tasks considered for replication

Figure 7: Impact of replica task load on failed QoS tasks

1.00

to use a sub-optimal choice in the hope of finding a better scenario.

In Figure 9 we illustrate Q’(s, A) for one run of the simulation -
to aid reading the ‘best’ replica count has been marked with a white
circle. It can be seen that a replica count of 0 (no replication) is by far
the most preferred choice for most hours of the day. The interesting
exceptions to this are 4am, 7am 11am, 8pm and 9pm. The 4am slot is
just after the nightly reboot of the system in which case lots of task
will be re-started and be contending for resources. 7am is just before
many people come to the university, thus running many replicas
helps with reducing failed QoS. 11am, although having a ‘best’
choice of 0 doesn’t have any real strong winner - a consequence of

ENERGY-SIM Workshop

s QoS Bound
= + One

s - Two

3 -+ Three

E 100 -+~ Four

2 -+ DAY

8 -+ LOAD

& -~ SINGLE

1] - WEEK

o -o- DAY_LENGTH
g + DAY_LOAD

025 1.00

050 075
Proportion of tasks considered for replication

Figure 8: Impact of replica task load on Energy

Hour of day

0 2 4 6 8 10
Job replication count

Figure 9: RL rewards for one day

Hour of day
Hour of day

Job replication count

Job replication count

Figure 10: RL rewards split on job size
lots of users coming in at lunchtime. For 8pm and 9pm, this could
be a consequence of students coming in to do work in the evening
after eating.

We break Figure 9 up into short jobs (less than one hour) and
long jobs (more than one hour) in Figure 10 — left and right side
respectively. Longer jobs have a greater tendency to go for no
replication while shorter jobs seem to favour more replication. This
could be a consequence of the greater potential energy wastage
when a longer job fails. Between 4am and 3pm there is no clear
winner for replication count of longer jobs — with all actions having
poor potential rewards. This would suggest that not even trying
to run the task would be the best option. You would automatically
fail the QoS bound, though this is likely to happen anyway due to
the large number of interactive users.

7 CONCLUSIONS

Motivated by the success of replicated tasks in single HTC applica-
tions the purpose of the paper here was to evaluate if replicating
tasks in a university HTC cluster could save energy whilst at the
same time improve the number of tasks which completed within a

90

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

QoS bound. Unfortunately, due to the nature of the workload here
this did not turn out to be the case. Not performing replications
was observed to be the preferred option in both fixed replications
and when using Reinforcement Learning (RL).

In prior work the focus of replication has not been to increase
the number of tasks achieving a QoS bound for multiple users, but
rather to tolerate faults or dishonest users, or reduce the turnaround
time for individual tasks. Although turnaround could be reduced
here for individual tasks this is often at the cost of other tasks in
the system. If we limited the number of tasks in the system such
that it would not overload the cluster with replications it would be
assumed we could achieve this goal.

The use of RL has provided insights into how we could bet-
ter handle tasks within the cluster — such as not submitting long
tasks during the core working day. Further analysis of this could
help in maximising throughput - though at the expense of some
HTC users. Likewise, analysis of different values of € and when to
change between them could help improve the performance of the
RL approach.

REFERENCES

[1] David P Anderson. 2004. Boinc: A system for public-resource computing and
storage. In Grid Computing, 2004. IEEE, 4-10.

David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
2002. : An Experiment in Public-resource Computing. Commun.
ACM 45, 11 (Nov. 2002), 56—-61. https://doi.org/10.1145/581571.581573

Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan, and
David Patterson. 2009. Statistical Machine Learning Makes Automatic Control
Practical for Internet Datacenters. In USENIX HotCloud. Article 12. http://dl.acm.
org/citation.cfm?id=1855533.1855545

M. Forshaw, A.S. McGough, and N. Thomas. 2016. HTC-Sim: a trace-driven
simulation framework for energy consumption in high-throughput computing
systems. Concurrency and Computation: Practice and Experience 28, 12 (2016),
3260-3290. https://doi.org/10.1002/cpe.3804 cpe.3804.

E. M. Heien, N. Fujimoto, and K. Hagihara. 2008. Computing low latency batches
with unreliable workers in volunteer computing environments. In 2008 IEEE
International Symposium on Parallel and Distributed Processing. 1-8. https://doi.
org/10.1109/IPDPS.2008.4536442

Derrick Kondo, Andrew A Chien, and Henri Casanova. 2004. Resource manage-
ment for rapid application turnaround on enterprise desktop grids. In ACM/IEEE
Supercomputing.

D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson. 2009. Cost-benefit
analysis of Cloud Computing versus desktop grids. In 2009 IEEE International
Symposium on Parallel Distributed Processing. 1-12. https://doi.org/10.1109/
IPDPS.2009.5160911

Eric J. Korpela. 2012. SETI@home, BOINC, and Volunteer Distributed Computing.
Annual Review of Earth and Planetary Sciences 40, 1 (2012), 69-87. https://doi.org/
10.1146/annurev-earth-040809-152348 arXiv:https://doi.org/10.1146/annurev-
earth-040809-152348

Antonios Litke, Dimitrios Skoutas, Konstantinos Tserpes, and Theodora Var-
varigou. 2007. Efficient task replication and management for adaptive fault
tolerance in Mobile Grid environments. Future Generation Computer Systems 23,
2(2007), 163 — 178. https://doi.org/10.1016/j.future.2006.04.014

M. Litzkow, M. Livney, and M. W. Mutka. 1988. Condor-a hunter of idle worksta-
tions. In ICDCS.

A.S. McGough, C. Gerrard, J. Noble, P. Robinson, and S. Wheater. 2011. Analysis
of Power-Saving Techniques over a Large Multi-use Cluster. In IEEE DASC. https:
//doi.org/10.1109/DASC.2011.78

A. Stephen McGough and Matthew Forshaw. 2014. Reduction of wasted energy
in a volunteer computing system through Reinforcement Learning. Sustainable
Computing: Informatics and Systems 4, 4 (2014), 262 — 275. https://doi.org/10.
1016/j.suscom.2014.08.014

Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Mingliang Liu, Yan Zhai, Wenguang
Chen, and Weimin Zheng. 2013. Employing checkpoint to improve job scheduling
in large-scale systems. In Job Scheduling Strategies for Parallel Processing. Springer,
36-55.

R.S. Sutton and A.G. Barto. 1998. Reinforcement Learning: An Introduction. Brad-
ford Book.

The Condor Team. 2010. Condor Manual. http://www.cs.wisc.edu/condor/
manual/. (Oct 2010). University of Wisconsin.

(10]

(11]

[12

[13

[14]

[15]

https://doi.org/10.1145/581571.581573
http://dl.acm.org/citation.cfm?id=1855533.1855545
http://dl.acm.org/citation.cfm?id=1855533.1855545
https://doi.org/10.1002/cpe.3804
https://doi.org/10.1109/IPDPS.2008.4536442
https://doi.org/10.1109/IPDPS.2008.4536442
https://doi.org/10.1109/IPDPS.2009.5160911
https://doi.org/10.1109/IPDPS.2009.5160911
https://doi.org/10.1146/annurev-earth-040809-152348
https://doi.org/10.1146/annurev-earth-040809-152348
http://arxiv.org/abs/https://doi.org/10.1146/annurev-earth-040809-152348
http://arxiv.org/abs/https://doi.org/10.1146/annurev-earth-040809-152348
https://doi.org/10.1016/j.future.2006.04.014
https://doi.org/10.1109/DASC.2011.78
https://doi.org/10.1109/DASC.2011.78
https://doi.org/10.1016/j.suscom.2014.08.014
https://doi.org/10.1016/j.suscom.2014.08.014
http://www.cs.wisc.edu/condor/manual/
http://www.cs.wisc.edu/condor/manual/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 HTC-Sim
	2.2 HTC Condor At Newcastle

	3 Related Work
	4 Task Replication
	4.1 Metrics
	4.2 Reinforcement Learning
	4.3 Comparison Cases

	5 Experimental Setup
	6 Results
	7 Conclusions
	References

