
Energy-Driven Reconfiguration of Applications for Wireless
Sensor Networks

Vittorio Cortellessa
University of L’Aquila, Italy
vittorio.cortellessa@univaq.it

Antinisca Di Marco
University of L’Aquila, Italy
antinisca.dimarco@univaq.it

Daniele Di Pompeo
University of L’Aquila, Italy

daniele.dipompeo@graduate.univaq.
it

Francesco Gallo
University of L’Aquila, Italy
franscesco.gallo@univaq.it

Stefano Pace
Smartly srl, L’Aquila, Italy
stefano.pace@smartlysrl.it

Luigi Pomante
University of L’Aquila, Italy
lugi.pomante@univaq.it

Walter Tiberti
University of L’Aquila, Italy

walter.tiberti@graduate.univaq.it

ABSTRACT
The reconguration of Wireless Sensor Networks is a well-known
problem that has been tackled in the last few years mostly with ap-
proaches operating at the network level. In this paper, we introduce
an approach for the automated reconguration of WSNs, driven by
energy problems, at the level of software application. In particular,
we dene reconguration actions with Proteus, that is a framework
to specify and implement reconguration plans on top of Agilla,
that is a mobile agent middleware for Wireless Sensor Networks. A
Reconguration Engine acts on agents within a WSN to activate
reconguration plans when required, e.g. when the batteries of
several sensors located in a critical geographical area are exhausted.
We have started to experiment the approach on a real application.

CCS CONCEPTS
• Networks → Sensor networks; Network performance analysis;
• Hardware → Power and energy;

KEYWORDS
Wireless Sensor Network; Energy

ACM Reference Format:
Vittorio Cortellessa, Antinisca Di Marco, Daniele Di Pompeo, Francesco
Gallo, Stefano Pace, Luigi Pomante, andWalter Tiberti. 2018. Energy-Driven
Reconguration of Applications for Wireless Sensor Networks. In Proceed-
ings of ACM/SPEC International Conference on Performance Engineering
(ICPE’18 Companion). ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3185768.3186312

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE’18 Companion, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186312

1 INTRODUCTION
In the era of the Internet of Things, Wireless Sensor Networks
(WSN) are increasing their importance because they enable each
object to be connected. A WSN consists of spatially distributed
autonomous devices using sensors to monitor physical or environ-
mental conditions [3].

Sensing, processing, and communicating become complex activ-
ities with a limited amount of energy. Hence, they require cross-
layer design approaches that jointly consider distributed signal/data
processing, medium access control, communication protocols and
application layer. In this sense, one of the leading open challenges
in the WSN context is to develop cross-layer energy-ecient so-
lutions to increase the network lifetime without compromising its
operability [8].

The lack of stability in WSN claims for frequent recongurations
aimed at avoiding service degradation. Recently, WSN recongu-
ration has been mostly tackled with approaches operating at the
network level. In this paper, we introduce a novel application level
energy-driven approach for automated reconguration of WSNs
that leverages on Agilla [6].

Our framework is made up of a WSN of IRIS nodes (also called
motes), and a Refactoring Engine. The latter is a set of Java objects
that aim at processing a plan and sending the code to nodes that are
targeted by the plan. The Refactoring Engine communicates with
the user through a GUI, and it uses a database, namely a Recongura-
tion plans DB, which contains every available reconguration plan
and its code. In our approach, each mote runs TinyOS as operating
system and Agilla as middleware on top of it.

TinyOS is a well-known library that provides useful API to in-
teract with the mote’s hardware (i.e. sensors) [1].

Agilla is an agent-driven framework that allows the developer
to instruct nodes at runtime, without interrupting their service, by
sending and running agents on the WSN node or by stopping their
execution [6]. Agilla does not naturally provide application logic
to apply automatic adaptations. Hence, to overcome this limit and
to provide an automated adaptation of WSN to network events (e.g.
energy issues), we introduce the Reconguration Engine (RE).

In this paper, the RE is meant to autonomously manage recong-
uration plans based on energy properties to recongure the network

ENERGY-SIM Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

79

https://doi.org/10.1145/3185768.3186312
https://doi.org/10.1145/3185768.3186312
https://doi.org/10.1145/3185768.3186312

and to guarantee longer life to it. To prove our approach, we have
conducted several experiments in our laboratory. As expected, us-
ing Agilla there is a higher consumption of the battery than the
case without. However, even if the Agilla middleware consumes
more battery, it introduces runtime reconguration capabilities
that are very useful in case of unsafe or critical network status.
The experiments we conducted demonstrate that the battery con-
sumption in presence of Agilla in combination with reconguration
plans, that recongure the nodes to smartly manage their battery,
is the same of the nodes with no Agilla agents. Hence, the simple
recongurations used in the experiments permit to eliminate the
energy overhead introduced by Agilla and in some cases, oppor-
tunely reducing the rate of temperature sensing, it is even possible
to increase the uptime of the whole WSN.

This paper is organized as follows: Section 2 overviews the main
background concepts; Section 3 describes our approach; Section 4
introduces a case study; related work is discussed in Section 5, and
conclusions are given in Section 6.

2 BACKGROUND
In this section we introduce the main concepts on which our frame-
work is built on, that are the Agilla framework and Proteus.

2.1 Agilla
Agilla is a middleware based on a multi-agent paradigm [6], and it
supports star topologyWSNs. Motes in aWSN cannot communicate
to each other, but they must use a particular node, namely “base
station”, to transmit data (among them and to the user). The base
station and the server are directly connected. Thus, the latter has
no battery problems.

To fully support the Agilla framework, a “virtual machine” runs
on each node belonging to the network under analysis. The detri-
ment of energy due to the virtualization is fully compensated by the
agent-based paradigm. An agent is a snippet of TinyOs [1] code, and
its behaviour can be edited by avoiding to restart the node. Hence,
this functionality results to be very useful when a system must be
alive during a reconguration. Furthermore, from its rst release,
Agilla provides a user-friendly Java-based application, namely “Ag-
illaInjector”, which allows the user to directly write her/his snippet
of code and, additionally, it provides functionality for interacting
with the nodes. The AgillaInjector is in charge of taking the user
code and injecting it into the whole WSN or a subset of it (even a
single node).

2.2 Proteus
Proteus is a reconguration framework that exploits its language,
grounded on a proprietary XSD, aimed at building and managing
rules for software reconguration [12]. Rules are generated and
managed using the concept of virtual membrane, directly borrowed
from biology world. A virtual membrane embraces a subset of
resources grouped by shared properties (e.g. battery type, sensor
type) and these resources are the only ones that are targeted by the
rules. Moreover, a membrane allows users to: i) select a resource
or group of resources belonging to the system, and ii) dene new
interactions within the system, which consequently modies their
behaviour.

The Proteus module deals with obtaining, parsing, interpreting
and executing a reconguration plans and it uses a socket con-
nection to send a plan into the network. Hence, a reconguration
contains information about the properties that nodes under recon-
guration must respect, the reconguration action to be taken, and
the agent snippet code to be injected.

Listing 1 depicts a simple example of a reconguration plan, in
which the property tag and its sub-tags (see lines 3-7) identify
which node(s) is involved. Act tag, instead, contains the snippet
code, i.e. the body tag (see lines 11-29). Users can write within
the latter, snippet code as complex as they need since Proteus
supports the whole grammar of Agilla agent∗. In particular, that
snippet instruments the node whose battery is lower thanTHBATT
threshold to sense the environment temperature less frequently,
that is every 10 second (line 30).By exploiting the property tag,
we can dene new membranes, and, by further exploiting dierent
operators on <op> sub-tag, it is possible to dene much more dense
virtual membranes.

Listing 1: The Reconguration Plan for adaptation in case
of low battery

1 <?xml version="1.0" encoding="UTF−8" standalone="yes"?>
2 <program virtualid="Virtual Add Class" persistence="y">
3 <property propertyid="Prop 1">
4 <item>battery</item>
5 <op> < </op>
6 <val>${THBATT }</val>
7 </property>
8 <act actionid="Add State 1">
9 <type>eld</type>
10 <action>add</action>
11 <body>
12 pushc 0
13 setvar 0 // set heap[0] = 0 (init. seq. no.)
14 BEGIN pushc 26
15 [...]
16 pushc TEMP
17 sense // sense temperature
18 copy
19 pushc BATTERY // sense battery value (in Volt)
20 pushc 24
21 copy
22 [...]
23 </body>
24 </act>
25 </program>

3 APPROACH
In this section, we describe our approach for energy-aware recong-
uration of a Wireless Sensor Network, by introducing a description
of our framework.

∗Agilla Documentation - http://mobilab.wustl.edu/projects/agilla/docs/index.html.

ENERGY-SIM Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

80

3.1 Framework
In order to overcome the limit introduced by Agilla and to provide
an automated adaptation of WSN to network events (e.g. energy
issues), we introduce the Reconguration Engine (RE) framework,
which is illustrated in Figure 1. The most important asset in our RE
is Proteus [12], which is a tool that allows us to specify application-
level adaptations by writing XML les conforming to a proper XML
Schema [14]. It is based on the bio-inspired membrane concept,
namely Virtual Membrane, that provides logical compartments of
a system. For example, in the WSN of Figure 1, the three closed
curves depict three dierent membranes. Each membrane embraces
a set ofWSN nodes that share some properties (e.g. geo-coordinates,
type of battery, kind of sensing).

Figure 1: An overview of our framework

To interact with the WSN nodes, we extend the original Agilla
agent injector in RE, by enabling it to process Proteus les and to
instrument relative motes. The injector is named as WSN Manager
in Figure 1. It takes selected Proteus XML les (i.e. reconguration
plans) as input, and it properly instruments the Base Station. An-
other important functionality of RE is to provide a GUI that enables
the user to interact with the system.

The last asset in RE is the Reconguration plans DB, in which
all available plans are stored. Autonomously, our reconguration
engine can select the best plan to react to network issues.

The Base Station, instead, is in charge to send Agilla agents
into the WSN motes and to collect, elaborate, and send network
information to the WSN Manager. Together with the Proteus asset
and WSN Manager, they can autonomously interact with motes in
order to properly react to the network bad events.

3.2 Energy-aware membrane
By exploiting the Proteus membrane concept, we introduce here
logical predicates with the aim to support the detection of bad
network status or unsafe human situation. In order to support an
automated network reconguration, we introduce logical predicates
to describe the current state of the network and to group nodes
with same properties in the same membrane.

The proposed approach aims at extending the WSN lifetime by
increasing the battery life of each node belonging to it. Hence, the
initial problem of making the WSN life longer can be reduced to
make the battery life of its nodes longer. The WSN life duration is
determined by the time that elapses between the instant the WSN
is active (i.e., all its nodes are active) and the time the WSN changes
topology due to even a single node stop for battery depletion.

In order to allow automated reactions to network events (i.e. en-
ergy issue, high environmental temperature), we introduce a novel
methodology for describing network states as logical predicates.
The idea is taken from the representation of performance antipat-
tern as logical predicates, introduced by Cortellessa et al. in [5]. Due
to space limitation, we only report three new logical predicates that
identify three dierent membranes: i) Battery Lack membrane, ii)
High-Temperature Border membrane, and iii) the Safe Neighbours
membrane. The latter is composed of nodes that are neighbours of
motes with low battery availability (i.e., in Battery Lack membrane)
and that are sensing high-temperature (i.e., in High-Temperature
Border membrane). To deal with predicates like the last one, RE
knows where motes are deployed, saving their geo-position into a
database.

Note that the High-Temperature Border membrane is here de-
ned to show how our framework manages application-dependent
events (i.e., a dangerous high-temperature). Instead, the Battery
Lack membrane is dened by energy-aware predicates aimed at
identifying critical and unsafe situations in a Wireless Sensor Net-
work, where nodes typically have a limited battery, and they are not
easily accessible. On one hand, we can detect network criticality
when a battery of a node is below a threshold; on the other hand, we
can additionally detect an unsafe state for users when, for example,
a high temperature is sensed (it could be started a re in the room).
Our framework can autonomously select the correct reaction based
on the network state.

Finally, Safe Neighbours membrane shows how to combine mem-
branes to deal with 2nd-order complex situations the WSN must
autonomously react to.

Battery Lack.

IF n.battery ≤ $THBATT THEN n ∈ Nb (1)

In Predicate 1 above, the Nb membrane encloses those nodes
whose battery level is under a pre-denedTHBATT threshold. This
condition supports the identication of those nodes that are in
critical status.

In case of no-high-temperature detection, motes must send their
temperature value at a pre-dened rate. In this case, when a node
has low energy, the system must be able to identify the best recon-
guration plan that increases the uptime of the whole network. In
the current version of our framework, we have identied and devel-
oped two reconguration plans. The rst one is a reduction of the

ENERGY-SIM Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

81

sending rate, and the second one consists in turning o a suering
node, by introducing in the membrane a new node that could be
a neighbour node or a new one. The latter task requires human
interaction. The system is aware of this change, and it recongures
the new node after some interactions with the base station.

High-Temperature Border.

IF node .temp ≥ $THHT THEN n ∈ Nht (2)

Predicate 2 above depicts the logical predicate that the frame-
work uses for identifying a high-temperature in the physical en-
vironment (e.g., when a re occurs). In particular, we dene by
Nht the subset of motes with an environment temperature higher
than a pre-dened THHT safety threshold. Thus, each node n with
environment temperature n.temp greater than THHT will be part
of the “high-temperature virtual membrane” Nht . This condition
can be used, for example, to estimate the re perimeter as narrow
as possible.

This denition of such a virtual membrane can be also useful
in an ordinary case when the environment temperature should
be under control. For example, if a WSN is used for sensing in a
botanical garden, it is most important to control the temperature
in dierent areas of the garden.

Safe Neighbours.

IF {Nht ∩ Nb } , ∅ THEN

∀n ∈ {Nht ∩ Nb } ∃k ∈ N →

Fdist (n,k) < $THDIST AND k .battery > n.battery (3)

Predicate 3 represents an example of a new membrane spec-
ication that uses pre-dened ones. In particular, this predicate
leverages the intersection between two membranes to dene more
complex conditions. When the intersection Nb ∩ Nht is not an
empty set, we are sure that exists at least a node n that has trig-
gered a high-temperature alarm and has a low battery. In this case,
if the predicate is true then for each of these nodes there exists a
close node belonging to the whole set N of nodes (i.e., one with
Fdist (n,k) < $THDIST) that has a sucient amount of battery
(i.e., k .battery > n.battery) to replace the suering node. We can
then apply our planned reconguration, which consists to send
Agilla agents to the selected node, by exploiting mote’s geotagging
information, in order to instrument it properly.

4 APPROACH ATWORK
In this section, we present a real-life case study where we have
applied our approach, in order to present runtime reconguration
capabilities of real WSN applications.

Among all Agilla compliant devices, for the sake of our approach
validation, we select the IRIS node family on which TinyOS (i.e. the
operating system) is running. Every mote has a 8 MHz µ-controller,
128 KB of ash memory and 8 KB of data RAM. We selected a
MIB520CB device as base station†, which provides USB connec-
tivity to IRIS family of Motes for communication and in-system

†http://www.aceinna.com/userles/les/Datasheets/WSN/6020-0091-03_A_-
DATA_SHEET_MIB520_USB_INTERFACE_BOARD-03_A_MIB520CB.pdf

programming, and MDA100 as sensor board that allows us to use
dierent sensors for dierent scopes‡.

4.1 The Wildre Rescue Application
We consider here an extract of Wildre Rescue real-life application
from the VISION ERC project (ERC-240555), see Figure 2. In the fol-
lowing, we show the eectiveness of the reconguration occurring
upon energy-related alarms.

Figure 2: Mote reconguration process

Figure 2 depicts the reconguration process a single mote can
undergo during execution of our case study. In the gure, rectangles
depict sensing actions, white diamonds depict decision points, and
labels represent rates and battery measurements. For the sake of
readability, we do not show in Figure 2 each possible path, but we
just report cases of no alarm occurs (upper level of the gure) and
of Fire Alarm rst occurs (lower part of the Figure).

In the absence of an alarm, every mote senses the environment
temperature at every second and sends the battery level to the base
station. To prevent a node’s death, each node sends its battery level
together with a temperature measure. By sending the battery level
together with a temperature measure, it should avoid the node’s
death.

In case of a Fire Alarm, the High-Temperature Border membrane
is determined and a reconguration plan is sent to all its nodes.
Such a plan aims to manage the unsafe situation. If a subsequent
low battery alarm is triggered, that is in case of the battery of a
node is below 3 V, our framework sends a special agent to that node
in order to reduce the rate of the temperature sensing, sensing it
every 10 seconds.

‡http://www.memsic.com/userles/les/Datasheets/WSN/mts_mda_-
datasheet.pdf

ENERGY-SIM Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

82

Figure 3: An overview of obtained results

4.2 Energy Consumption Validation
Here, we report our experiments to validate our approach with
respect to energy consumption of nodes, by comparing the energy
consumption both on nodes without Agilla agent and on nodes
augmented with Agilla agents. For the sake of pages limitation, we
report only the most interested scenarios. In particular, we classied
the scenarios in: idle mode, where no agent is running on the node;
two normal modes, where there is an agent sensing and sending
messages (rst at 1 Hz frequency, then at 4 Hz frequency); a slow
mode, where the agent senses and sends messages at a slower rate
(i.e. 0.1 Hz) and three alarm modes where the battery voltage level
is detected to be below the threshold (i.e. $THBATT) in the case
where no agent, an agent sensing at 1 Hz and an agent sensing at
0.1 Hz.

Setup. To simulate on eld usage, we use a pair of AA batteries
as a power supply line (i.e. V1) on the IRIS mote, and we use an
oscilloscope in order to retrieve measurements. The shunt resistor
resistance value is not important (given that the owing current
is enough to power on the node), the only characteristic needed is
that the selected value is precise, stable and as linear as possible.
Without lack of repeatability, we choice, for our experimentations,
a resistor of 8 Ohm.

Results. Here, we report the results of our experiments. In par-
ticular, we have performed our measurements in two dierent cases:
i) in case of fully charged node, i.e. Scenarios 1-4„ and ii) in case of
no fully charged node, i.e. Scenarios 5-7, as reported below.

In Figure 3, for each scenario, we report the current absorbed
by the node and the resulting energy consumption within the 60
seconds time window (i.e., x-axis).

Scenario 1 shows a mote running in idle mode i.e. (with no Ag-
illa agent running on it) in the case of a fully charged battery. In
scenarios 2, 3 and 4 Agilla agents are added that sense temperature
each 1 second, 0.25 seconds, and 10 seconds, respectively, which
produces a varying detriment of the battery. It is worth to notice
that Agilla agents consume around 7% more energy respect the idle
mode, and this detriment is due to the execution of Agilla agents.
What we have seen, is that Scenario 1 is the least battery hungry

with 70.2 mAh of energy consumption. Instead, by using Agilla
agents, i.e. Scenario 2 to Scenario 4, we have noticed an increment
of the energy consumption. In particular, with sensing each second
and every 0.25 seconds (i.e. Scenario 2 and Scenario 3) the detriment
of the battery is the highest, around 75 mAh; instead by sensing
every 10 seconds we have seen a reduction of 1 mAh of the energy
consumption, i.e. 74 mAh. Though this is a light reduction of the
energy consumption, it should be a meaningful reduction when
motes are dived in a real context.

The last three scenarios, i.e. Scenario 5, 6, and 7 respectively,
represent cases of a not fully charged battery. We have noticed that
an Agilla agent consumes less energy with respect to the previous
four scenarios thanks to the application of a reconguration plan. In
fact, in this case the Agilla agent increases the energy consumption
by around 4%, instead of 7% that we have obtained before the
reconguration.

We like to remark that the frequency used to send messages
inuences the current behaviour which shows "ripples" due the
additional consumption by the radio apparatus of the node. How-
ever, the experiments demonstrate that the battery consumption
in presence of Agilla in combination with reconguration plans
that recongure the nodes to smartly manage their battery, is the
same of the nodes with no Agilla agents, that is 70.2mAh. Hence,
the simple recongurations used in the experiments permit to elim-
inate the energy overhead introduced by Agilla and in some cases,
opportunely reducing the rate of temperature sensing, it is even
possible to increase the uptime of the whole WSN.

5 RELATEDWORK
Recently, in order to achieve a formal validation of refactoring
changes and for preserving the behaviour of a WSN, some work
have been conducted [7, 10, 13, 15, 16].

Liang et al. grounded their approach on a role-based context [9].
By still remaining in a dynamic evolution context, in order to solve
an energy-aware issue, they share the load among nodes by lever-
aging their battery status. In our approach the energy assumes
a relevant role, hence in this current version we do not support

ENERGY-SIM Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

83

any sort of sharing information, but we have already planned to
introduce such reconguration plan. We use the energy status for
creating a virtual membrane and we control what action the nodes
belonging to that membrane have to take, and thus we can recon-
gure the network in order to maintain the whole functionality.

In [18] the authors proposed a middleware solution to eciently
delimit and recongure the necessary portion of sensor software
instead of updating the full binary image. Besides, in [11], they pro-
posed a biologically inspired node conguration scheme in shared
recongurable sensor networks that can adapt to the changing
environment and eciently utilize WSN resources.

A dynamically recongurable system of agents is described in [4],
where the authors have proposed a type of agent that is capable
of migrating from hardware to software (or vice versa) based on a
decision that is made inside the application or even by an external
trigger. Moreover, in their approach a dynamically recongurable
agent can be executed as either a pure software agent or a hardware
one.

To the of best our knowledge, the approach presented by Silva et
al. [17] is the most related one to our scope. In fact, they have shown
a stable energetic consumption of the Iris sensors in comparison to
other competitors with similar characteristics. However, they do
not consider dynamic reconguration.

Radio transmission is one of the most energy-hungry aspect
in a WSN. In order to increase the lifetime of motes in [2], the
authors presented a novel idea, that is clustering the network to
reduce the required radio power by appointing cluster head nodes,
which collect data from owned sub-network. Dierently, we create
clusters not only by distance but also using dierent attributes, for
example the environment temperature level.

Finally, in [10] a distributed peer-to-peer framework has been
introduced for sake of energy eciency in the surveillance domain.
Our approach diers from it becausewe use a star topology network,
and we refer to our engine to identify the reconguration plan to
apply.

6 CONCLUSION AND FUTUREWORK
We have described a framework for a runtime reconguration of a
WSN based on energy concepts.

The framework supports some reconguration actions, such as
the replacement of a battery suering node, both in a normal case
and in a critical status. The framework is fully able to identify when
a critical situation is coming up.

Among other, as short-term future work we will experiment the
framework on joint performance and energy aspects. Moreover, we
plan to extend the reconguration plan database by considering
other performance parameters. We have also planned to apply our

approach in large size Wireless Sensor Networks to analyze its
scalability.

ACKNOWLEDGMENTS
This research work has been supported by the GAUSS National
Research Project funded by the MIUR under the PRIN 2015 program
under Grant No.: 2015KWREMX

REFERENCES
[1] TinyOS Alliance. 2017. TinyOS. (2017). http://tinyos.stanford.edu/tinyos-wiki/

index.php/TinyOS_Documentation_Wiki
[2] S. V. Basu, K. P. Ashwin, N. K. Neti, and B. S. Premananda. 2017. Improving the

network lifetime of a wireless sensor network using clustering techniques. In
2017 2nd IEEE International Conference on Recent Trends in Electronics, Information
Communication Technology (RTEICT).

[3] Arne BrÃűring, Johannes Echterho, Simon Jirka, Ingo Simonis, Thomas Everd-
ing, Christoph Stasch, Steve Liang, and Rob Lemmens. 2011. New Generation
Sensor Web Enablement. Sensors 11, 3 (2011), 2652–2699.

[4] David Cemin, Marcelo Götz, and Carlos Eduardo Pereira. 2014. Dynamically re-
congurable hardware/software mobile agents. Design Automation for Embedded
Systems 18, 1 (01 Mar 2014).

[5] Vittorio Cortellessa, Antinisca Di Marco, and Catia Trubiani. 2014. An approach
for modeling and detecting software performance antipatterns based on rst-
order logics. Software and System Modeling 13, 1 (2014).

[6] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. 2009. Agilla: A Mobile
AgentMiddleware for Self-adaptiveWireless Sensor Networks. ACMTrans. Auton.
Adapt. Syst. 4, 3 (July 2009).

[7] J. Guevara, E. Vargas, F. Brunetti, and F. Barrero. 2013. Open architecture for
WSN based on runtime recongurable systems and the IEEE 1451. In 2013 IEEE
SENSORS.

[8] V. C. Gungor and G. P. Hancke. 2009. Industrial Wireless Sensor Networks:
Challenges, Design Principles, and Technical Approaches. IEEE Transactions on
Industrial Electronics 56, 10 (2009).

[9] Liang He, Yu Gu, Jianping Pan, and Ting Zhu. On-demand Charging in Wireless
Sensor Networks: Theories and Applications. In Proceedings of the 2013 IEEE 10th
International Conference on Mobile Ad-Hoc and Sensor Systems.

[10] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher, Liqian Luo,
Radu Stoleru, Ting Yan, Lin Gu, Jonathan Hui, and Bruce Krogh. 2004. Energy-
ecient Surveillance System Using Wireless Sensor Networks. In Proceedings
of the 2Nd International Conference on Mobile Systems, Applications, and Services
(MobiSys ’04).

[11] C. M. Hsieh, Z.Wang, and J. Henkel. 2013. DANCE: Distributed application-aware
node conguration engine in shared recongurable sensor networks. In 2013
Design, Automation Test in Europe Conference Exhibition (DATE).

[12] Antinisca Di Marco, Francesco Gallo, and Franco Raimondi. 2012. PROTEUS: A
Language for Adaptation Plans. (2012).

[13] M. D Nguyen. 2007. Recongurable Wireless Sensor Networks: A Survey and
Future Works. (2007).

[14] Stefano Pace. 2015. Development Framework for Adaptive Wireless Sensor
Networks Applications. (2015).

[15] V. N. P. Prasuna, A. Valarmathi, and J. A. V. Selvi. 2016. Parametric analysis of a
novel recongurable Wireless Sensor Network architecture. In 2016 International
Conference on Emerging Trends in Engineering, Technology and Science (ICETETS).

[16] Natheswaran S and Athisha G. 2014. Remote recongurable wireless sensor
node design for Wireless Sensor Network. In 2014 International Conference on
Communication and Signal Processing.

[17] Edgar M Silva, Pedro Maló, and Michele Albano. 2016. Energy Consumption
Awareness for Resource-Constrained Devices: Extension to FPGA. Journal of
Green Engineering 6, 3 (2016), 229–256.

[18] Amir Taherkordi, Frederic Loiret, Romain Rouvoy, and Frank Eliassen. 2013. Opti-
mizing Sensor Network Reprogramming via in Situ Recongurable Components.
ACM Trans. Sen. Netw. 9, 2 (April 2013).

ENERGY-SIM Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

84

http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Documentation_Wiki
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Documentation_Wiki

	Abstract
	1 Introduction
	2 Background
	2.1 Agilla
	2.2 Proteus

	3 Approach
	3.1 Framework
	3.2 Energy-aware membrane

	4 Approach at Work
	4.1 The Wildfire Rescue Application
	4.2 Energy Consumption Validation

	5 Related work
	6 Conclusion and future work
	Acknowledgments
	References

