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ABSTRACT
The modeling of the relationship between power usage and perfor-

mance for complex computing systems is challenging due to the

vast amount of tunable parameters that influence both metrics. To

simplify the energy management of information systems from indi-

vidual embedded machines to whole data centers we use a modular,

hierarchical concept called Energy/Utility to model individual parts

of a system. We present first results that show the decomposition of

an individual asymmetric multi-processing system into hardware

and software models. We show that using the Energy/Utility ap-

proach these models can stay manageable reducing total benchmark

running time and modeling overhead while providing sufficiently

high precision for performance and energy usage prediction.
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1 INTRODUCTION
The energy consumption of devices or applications has become

a major factor for the design and deployment of today’s systems.

For example, for mobile devices such as mobile phones, tablets or

laptops, that rely heavily on their battery life, being more energy

efficient has become an important differentiator. In data-centers, a

trend to energy-based payment methods is emerging [16], giving

customers a monetary incentive to deploy energy efficient applica-

tions and systems.

Accordingly, accurate knowledge about the energy usage of ap-

plications and the trade-offs between energy use and performance

is vital. Consider for example a simple server system. Users usually

have expectations regarding the performance of the system, such

as a lower bound on the number of transactions or requests per

second. But in addition, they want to save energy and thus may

have a bound on the application’s power usage or the energy spent
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to process a request. To schedule energy as a resource, the oper-

ating system needs to be aware of these trade-offs and the users’

performance and power bounds so that it can configure the system

in the most energy efficient way.

Several methods exist to monitor or estimate a system’s energy

usage. Typical examples are hardware measurement tools [14, 18],

the RAPL power counters available with recent Intel
®

proces-

sors [10, 22, 28, 31], simulator-based energy computation [3, 27, 32],

and model-based energy estimation during runtime [1, 29, 33].

While all of them provide their own set of properties and have

their own use-case, we us a model-based approach in this work

since it allows good estimation of the energy consumption at run-

time without the need for specialized hardware.

Unfortunately, due to the increasing complexity of modern hard-

ware, creating models that can accurately predict a device’s energy

consumption or an application’s performance characteristics re-

quires a lot of training effort because of the large amount of pa-

rameters influencing both, performance and energy use. Since an

application’s performance and energy characteristics are usually

input dependent, the problem of exhaustively modeling complex

applications for a diverse set of inputs quickly becomes intractable.

To address this problem, we introduce a modular energy modeling
approach based on the Energy/Utility concept [13]. By decoupling

the hardware and software models of a system, we can significantly

reduce the amount of benchmarking required for adequate model

generation, while maintaining good accuracy. This enables us to

quickly evaluate new configuration options of software and to eas-

ily adapt to changing workloads. In this paper, we will show first

results that illustrate this modeling approach for a state-of-the-art

embedded multi-core system.

The remainder of this paper is structured as follows: In Section 2

we introduce our modular energy modeling technique. Section 3

details the information about our modeling methodology as well as

the verification setup. Results of our modular modeling approach

are shown in Section 4 comparing them to a traditional modeling

approach. In Section 5 we discuss techniques presented in related

research and conclude our work in Section 6.

2 MODULAR ENERGY MODELING
The predominant approach to model the energy consumption and

performance of a device, is to create one overall model that in-

corporates all of the device’s properties and characteristics [4, 29].

Typically these models are based on hardware specific events such

as performance counters [5, 8, 19, 25, 30], which can be easily mon-

itored by the operating system and usually correlate well with the

device’s power consumption or an applications performance.

However, as user or operator of a system one goal should be to

know the trade-off between energy savings and the corresponding

reduction of the system performance — or utility. For example,
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Figure 1: Overview of the modular modeling approach.
Power estimation is based many small models, stacked to-
gether to resemble the device structure, model intermediate
steps from the usermeasurable utility (Requests/s) to power

reducing the system power draw by 50 % may be acceptable when

the throughput is only halved as well, but may be deemed to costly

when just 25 % of the system performance can be reached. Making

this trade-off visible requires a model that maps the achievable

utility (e.g. the application performance) to the energy use of the

system. Modeling both of these aspects in one overall model has

several severe disadvantages:

• Large configuration space. The configuration space of

a system which needs to be modeled and benchmarked is

effectively a cross-product of all of its software and hard-

ware configuration options.Modeling this space exhaustively

quickly becomes intractable for a real system.

• Limited adaptability. If one component in the system

changes (e.g. the CPU or a vital software part such as the

network stack) all benchmarks have to be re-done, leading

to large costs when the system is modified.

• Workload dependence. Generating accurate models re-

quires that the calibration workloads are a representative

of the production workloads. Once usage patterns change

significantly, calibration of the model has to be re-run for

the new workload types on all configuration settings.

To tackle these problems of power and performance modeling,

we utilize the modular Energy/Utility approach, that was first de-

scribed by Härtig et al. [13]. The general idea of this technique

is outlined in Figure 1: Instead of building only one model that

combines all the characteristics of the device and works for all

possible applications, Energy/Utility uses multiple smaller models

that describe different components of the system. These models are

combined in a hierarchy and composed by the operating system to

estimate the system’s power consumption and performance.

With the system configuration shown in Figure 1, six models

that interact with each other are used to estimate the power con-

sumption and performance of the Apache application. Each of the

models describes a component in the system that provides a ser-

vice to either the user or another component — for example, the

CPU that can execute instructions, the memory subsystem that

can perform memory accesses or the SQL database that can be

queried for information. To provide their service, every component

(and hence the corresponding model) may in turn require services

implemented by other components. How the models interact is

defined by the dependencies between the system components. For

instance, Apache provides the service of handling website requests.

To provide this service, Apache uses a database for internal man-

agement state as well as other system components such as the CPU,

the memory, and the network interface. Accordingly, the model

that is used to describe Apache interacts with the CPU model, the

memory model, the NIC model and the SQL database model. To

be able to combine the individual models, they have to decide on

a common interface. As shown in Figure 1, the input interface for

the NIC model is bandwidth. Hence, since Apache uses the network
interface, the model that describes Apache has to have a function

that maps Apache’s input interface requests to network bandwidth.

Each individual model in the hierarchy has a configuration space

that describes how the operating system can manage the device or

configure the software. These are for example, different frequencies

and core counts for the CPU, speed setting for the NIC or the

number of workers in the Apache server. These configurations

are internal to the model and not visible for other models in the

hierarchy. Since all the models in the hierarchy do not depend on

the internal configuration options of other models, they can be

calibrated independently — or even in parallel by different parties.

Only the interface with which the models can be combined has to

be well defined beforehand.

When using the modular Energy/Utility approach, moving an

application to new hardware or changing a single component does

not require the re-calibration of the whole model hierarchy. Only a

new hierarchy needs to be put together consisting of the models of

all new parts. Similarly, if a model of an application needs to be re-

calibrated due to workload changes (e.g. a different type of database

queries) this re-calibration can be performed independent of the

configuration space of the hardware (e.g. frequencies). The software

must just be benchmarked with its own set of configuration options

since all the other configuration options are already handled by the

other models in the hierarchy. This significantly reduces the cost

of training the models. The same applies to hardware changes.

Energy/Utility even allows to re-calibrate a software model on

the fly during production, as no expensive — and possibly invasive

— calibration benchmarks are required. The operating system only

needs to be able observe the application’s performance as well as

its interaction with other components. Both can be achieved during

run-time through software monitoring interfaces and hardware

performance counters.

3 EXPERIMENTAL SETUP & METHODOLOGY
In this paper we show that it is possible to provide a modular

model
1
for a reasonably complex system that

• provides accurate energy and performance data compared

to a monolithic model and

• can adapt to new configuration options and workloads

1
We will make measurement data, the generated models and the scripts to generate

the models available on GitHub upon publication
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Figure 2: Directly measured profile

3.1 Experimental Setup
For our experiments we use the ARM big.LITTLE system Odroid

XU3 from Hardkernel. We choose this system because its out-of-

order architecture is complex enough to feature most of the mod-

eling obstacles of a full blown x86 system, while also featuring

integrated energy monitoring sensors. This allows easy and fast

generation of the individual component models.

The CPU consists of two core clusters with four cores each. The

LITTLE cluster features less powerful in-order ARM A9 cores while

the big cluster has full-fledged out-of-order ARM A15 cores. We

concentrate on the big cluster as it presents a more interesting

modeling challenge and is closer to traditional servers because of

its out-of-order architecture. In addition, Hähnel et al. [12] already

used a similar system for energy modeling in the past. The system

has 2GB of DRAM and the big cluster features clock frequency

scaling from 200MHz to 2GHz in 100MHz steps. Furthermore, the

system is equipped with a gigabit Ethernet USB adapter.

We measure the whole system energy consumption using an

external power meter — an Odroid SmartPower power meter. The

energy consumption of the individual system components such

as the memory, the GPU, the little cluster and the big cluster are

gathered using the built-in INA-231 energy sensors.

The application that we model is a memcached server. Mem-

cached is an in-memory key-value store, typically used as a cache

for web applications. We use a default configured memaslap bench-

mark as workload and run the server with configurations for 1 and

2 threads and memory cache sizes of 32, 64 and 256MB.

3.2 Decomposition
Figure 2 illustrates the monolithic energy/utility profile of mem-

cached when measured for all configurations directly. Each dot ( )

in the graph represents one configuration combination, the x axis

denotes performance in requests per second, the y axis is the total

system power. We also highlight the Pareto frontier ( ) in the profile

as this subset of configurations are the ones of interest for resource

scheduling. In the following, we decompose this measurement and

create separate hardware and software models for the system. All

models are generated using polynomial regression.

Hardware Model. In this paper we focus on the CPU and memory

models. To allow proper decomposition into the hardware and the

software model, the CPU and memory model need to have an

interface that can be used by software without knowledge of the

CPU internals. As already shown by previous work [1, 12, 29], the

power usage of the CPU is not only dependent on its configuration

(e.g. frequency, core count, idle mode) but also on which functional

parts of the CPU are used. The dominating factor for this system is

the memory-intensiveness of a workload. Accordingly, we define

the interface between the software and the hardware model to be

the number of required instructions and the memory intensiveness

of the instruction stream as memory instructions per cycle (IPC).

Based on this interface we define the dynamic part of the CPU

power model as:

IPC = f (f requency,ncores ,memoryIntensiveness)

PARM = f (f requency,ncores , IPC)

The adjusted R2 for both model parts is 0.98 indicating an excel-

lent fit of the models. For the memory we identified

PMEM = f (f requency,memoryIntensiveness)

to be the best representation with an adjusted R2 of 0.98. All

models are second degree polynomials.

Software Model. The software model for memcached provides

all the necessary data to map the cost of executing a request to the

resource usage from memory and CPU. The model is defined as:

IPR = f (sizememcache , threadsmemcache )

memoryHeaviness = f (sizememcache , IPR)

The models’ adjusted R2 of 0.97 and 0.96 indicate a good fit. All

models are second degree polynomials. The IPR metric (instructions
per request) is in addition to the software configuration also depen-

dent on the workload composition. The model was done for the

composition of the benchmark, but due to the modularity of the

Energy/Utility approach can easily adapt to changing workloads.

3.3 Monolithic Model
For comparison we use a traditional monolithic modeling approach

that tries to capture the system behavior in one single model. Ac-

cordingly, we combine our hardware and software configuration

settings as model parameters and define the model as:

P = f (f requency,ncores , sizememcache )

rps = f (f requency,ncores , sizememcache )

We again use a second degree polynomial for all components

but the frequency component in the power model. We find that a

better fit is achieved by a third degree polynomial for the frequency.

The adjusted R2 for these two models is 0.98 and 0.92 respectively.

4 RESULTS
The model evaluation in Table 1 shows the mean absolute percent-

age error and geometric mean relative absolute error (GMRAE)

for the two modeling approaches for all training configurations.

While the monolithic approach is quite good at prediction power

it has significant errors in the performance predictions, despite

the good fit indicated by the high adjusted R2. We attribute this

to the difficulty in modeling the interactions between individual

hardware components which, especially in respect to performance,

are not always additive in their effects and thus hard to capture

using polynomial models with additive model parameters.
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Power Performance

MAPE GMRAE MAPE GMRAE

monolithic 1.71% 1.08% 22.13% 5.99%

modular 2.63% 1.73% 4.08% 2.40%

Table 1: Mean absolute percentage error (MAPE) and geo-
metric mean relative absolute error in percent (GMRAE) for
power and performance for the two models
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Figure 3: Additional config measured, modeled and mono-
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Figure 4: Modeled vs. real Pareto frontier

4.1 Adaptability
We introduce a new additional software configuration that changes

the load characteristics of the application by adding the option to

have a 128MB memcached cache size.

Figure 3 shows how well the different models can estimate the

performance and power of this new configuration at the different

hardware configuration points. We also add a recalibrated software

model, as this easily is possible using our modular approach by

observing the changed CPU usage patterns of the application at

this new cache size. Please note how the monolithic model severely

underestimates the achievable power and performance at the lower

end of the configuration spectrum. This is especially sever as these

points will become part of the Pareto frontier.

To further illustrate this point we also plot the Pareto frontiers

obtained by the different modeling approaches and the measured
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Figure 5: Model profiles (modular and monolithic)
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values in Figure 4. Again, notice how at the low performance spec-

trum themonolithic model significantly deviates from themeasured

values. For the rest of the values both modeling approaches capture

the Pareto frontier satisfactorily.

Figure 5 shows how the two modeling approaches capture the

behavior of the real hardware for the performance and power trade-

offs. We measured all the additional configurations and plot the

complete profile for all four memcached cache sizes in Figure 6

as a baseline for Figure 5. Especially in the area where increasing

the frequency is of no additional benefit for performance (the four

vertical lines formed by the dots) the monolithic model fails to

capture the effect of the memory boundedness adequately. The

two tailed nature of the memory-bounded area in both models is

not completely clear. We assume that this is still an inefficiency in

our model, where the decomposition does not capture all system

aspects. However, we note that the monolithic model suffers from

the same problem, albeit to a lesser degree. Instead it overestimates

the performance impact increased frequency has, resulting in de-

creased performance at higher CPU clock speeds that is not visible

in the real system.

Table 2 shows the same metrics for the model estimation errors

as found in Table 1, but including the additional configuration. We

show MAPE and GMRAE for the monolithic model, the original

modular model and the re-trained modular model. Retraining is

only required for the software model. The hardware models remain

unchanged, enabling the immediate re-training upon the observa-

tion of the new load pattern.
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Power Performance

MAPE GMRAE MAPE GMRAE

monolithic 1.68% 1.11% 20.83 % 6.24%

modular 2.52% 1.68% 4.13% 2.56%

modular recalibrated 2.45% 1.58% 3.83% 2.58%

Table 2: MAPE and GMRAE for power and performance for
the models with an additional software configuration
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−20

20 MAPE: (2.45%,3.83%)

Power Error [%]

Performance Error [%]

Original configurations

New software configuration

Figure 7: Relative performance and power error for recali-
brated modular model

4.2 Model accuracy
Finally we want to show the prediction error for the two metrics

that are predicted for each configuration. In Figure 7 we plot the

relative percentage error for the power model on the x-axis and the

relative percentage error for performance model on the y-axis. We

use the re-calibrated model in this graph. The green dots ( ) mark

the configuration that were added later and caused a change in the

software model. The blue dots ( ) mark the original configurations.

The red dot ( ) illustrates where the MAPE lies in this graph. We

note that the performance model usually stays within an error

margin of 10 %while the performance model tends to over-estimate

the performance but is also well below 10 % in most cases.

Figure 8 shows the same statistics for the monolithic model.

Again green dots ( ) illustrate the additional configurations while

pink dots ( ) show the original training set. Note that, while the

model is vastly better at predicting power usage, it has a significant

spread for the errors in the performance prediction, with errors

ranging as high as 30 %. For the additional data, predictions are

mostly wrong in significantly over-estimating the performance of

a given configuration.

5 RELATEDWORK
Modeling the energy consumption of computer systems at vari-

ous different levels has been a widely discussed research topic for

many years. In the literature, there exist various examples that

aim to model individual parts of the system such as the proces-

sor [1, 6, 15, 17, 30], the memory subsystem [6, 30] or the net-

working interface [6, 11]. Other approaches do not concentrate on

−5 5 10 15

−20

20
MAPE: (1.68%,20.83%)

Power Error [%]

Performance Error [%]

Original configurations

New software configuration

Figure 8: Relative performance and power error for mono-
lithic model (without recalibration)

individual components but predict the overall system power using

models [4, 9, 20, 25]. Besides calculating the energy consumption

of a device or its components, researchers also use power models

to determine the power draw of applications [24, 25, 29] as well

as of virtual machines [2, 5, 7]. Our work examines a hierarchical

modeling approach based on the Energy/Utility idea to tackle the

typical problems of power/energy and performance modeling. We

propose to model different parts of the system independently and

combine them according to the device configuration, thereby allow-

ing power and performance estimations at different system levels

as well as with different device configurations.

Based on the different platform characteristics and model re-

quirements, researches have used different events as basis for their

power models. A very wide spread approach is to use performance

counters combined with special platform knowledge to build power

and performance models [1, 4, 17, 25, 29, 30]. Such a technique

allows to create fine grained models with a small prediction error in

the range of 5 % to 10 %. However, to be able to generate such perfor-

mance counter based models, the performance counters have to be

identified that best correlate with the to-be-modeled characteristics.

Finding these counters either necessitate internal knowledge of the

target platform [7] or a very time consuming exhaustive search

through the configuration space [29]. Unfortunately, the accuracy

of performance counter based power models comes at a cost. Ever

time the model is deployed on a new device, the search for the

model basis (the best correlating performance counters) have to be

rerun to achieve the best possible result.

To make their approaches less platform dependent and thereby

more portable to other devices, Pathak et al. [23, 24] as well as

Zheng et al. [33] use system-call traces as a basis for their models

instead of performance counters. Shye et al. [26] use a very similar

technique to reduce the platform dependency of their models. They

extract the power consumption of the device from the component

usage (e.g. disk accesses, CPU utilization, or network usage) as

reported by the operating system. In our work, we are also able to

create platform independent models while still preserving a high

prediction accuracy. Our hierarchical modeling approach allows

changing models at the various hierarchy levels following changing

device configurations. Hence, depending on the device’s processor,
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a different processor power model can be plugged in the modeling

hierarchy and thereby be used by the higher level models. This

technique allows adaptation of the overall model to a new hardware

platform without the need to completely retrain everything. A

similar approach is also described byMalkamäki et al. [21], although

they only concentrate on lower level system components and their

power consumption and not on higher layers such as the application

layer like our solution.

6 CONCLUSION
We have shown that a modular energy modeling approach is fea-

sible for a complex out-of-order architecture. We modeled CPU,

memory and an application separately and combined the models

to generate an Energy/Utility profile for the system showing the

trade-offs between power and performance. Our approach has very

good prediction accuracy for power and performance and can com-

pete with a traditional monolithic modeling approach. Individual

models using the modular approach can even be simpler than the

monolithic models as they better model the real relationships be-

tween components, their energy use and performance. We envision,

motivated by these early results and the composability of our mod-

els, to scale this Energy/Utility approach from individual machines

over racks up to whole data-centers.
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