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ABSTRACT
The performance of a recently developed Hessenberg reduction

algorithm greatly depends on the values chosen for its tunable

parameters. The problem is hard to solve effectively with generic

methods and tools. We describe a modular auto-tuning framework

in which the underlying optimization algorithm is easy to substitute.

The framework exposes sub-problems of standard auto-tuning type

for which existing generic methods can be reused. The outputs of

concurrently executing sub-tuners are assembled by the framework

into a solution to the original problem. This paper presents work-

in-progress.
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1 INTRODUCTION
The motivation behind this work starts from the distributed parallel

multishift QR algorithm [9], which is the key step in solving large

dense unsymmetric eigenvalue problems. On the critical path of

the distributed QR algorithm lies a costly process known as Ag-

gressive Early Deflation (AED) [2, 3]. AED is composed of three

major parts: Schur decomposition, eigenvalue reordering, and Hes-

senberg reduction. The AED process is currently a bottleneck in
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the distributed QR algorithm and we aim to accelerate it in the

hopes of improving the performance and scalability of the QR al-

gorithm. We recently developed a new NUMA-aware Hessenberg

reduction algorithm [7] based on the Parallel Cache Assignment

(PCA) technique [4, 5, 10]. The performance of the new algorithm

depends greatly on the values chosen for its tunable parameters.

Auto-tuning is required due to both the large number of parameters

and the interactions between different parameters.

In this paper, we propose a modular auto-tuning framework

that helps with the tuning process. In particular, the framework

tries to search the huge search space efficiently by partitioning the

parameters into subsets that are tuned independently, grouping

similar sub-problems into the same bin and tune them as one, and

searching in multiple stages (first coarsely and then finely). The

framework by itself is not a complete solution. At the heart of the

framework is a generic module for optimizing a sub-problem of

standard type. The framework provides a clean interface to generic

optimization methods and extends them into an auto-tuner for the

complex and non-standard original problem. In addition, this makes

it easy to experiment with different search algorithms.

The framework works as pre- and post-processing layers around

the NUMA-aware algorithm. The interactions between the frame-

work and the algorithm are as follows. The user provides to the

framework an input matrix A ∈ Rn×n and the number, p, of avail-
able cores. Based on n and p, the framework chooses specific values

for all the algorithmic parameters of the Hessenberg algorithm. The

framework then executes the algorithm on A with the specified

parameters. The output matrices H and Q are returned to the user.

Simultaneously, the Hessenberg algorithm feeds back internal time

measurements to the framework for use in the tuning process.

2 NUMA-AWARE HESSENBERG REDUCTION
Hessenberg reduction is an orthogonal similarity transformation

that maps a matrix A ∈ Rn×n to an upper Hessenberg matrix H =
QTAQ . The state-of-the-art algorithm [12] performs the reduction

in a blocked manner. The matrix is reduced one block of columns (a

panel) at a time from left to right. Each panel is reduced column-by-

column using Householder reflectors. The reflectors are also applied

to the rest of the matrix to update it. Most of the work associated

with the updates are delayed. One iteration consists of two phases:

a reduction phase, in which a panel is reduced, and an update phase,
in which the delayed updates are fully applied, see [12] for details.

Figure 1 shows the shapes of A and other matrices used in the

reduction after the first k columns of A have been reduced. Here b
refers to the width of the next panel.
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The operations in the reduction phase are mainly matrix–vector

operations, which makes the whole phase memory-bound. The

most expensive operation is a large matrix–vector multiplication

involving A2,2:3 during the computation of Y2. To perform this

multiplication efficiently, our NUMA-aware algorithm [7] uses the

PCA technique [4, 5, 10].

The NUMA-aware algorithm provides two parallelization strate-

gies for the reduction phase. In the partial parallelization strategy,
multi-threading is used only for the most expensive multiplication

while in the full parallelization strategy multi-threading is used for

most of the operations.

k b
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Figure 1: Partitioning of matrix A after reducing the first k
columns, andY ,V andT will be used to reduce the panelA22.

2.1 Algorithmic Parameters
There are four families of tunable parameters in the NUMA-aware

algorithm (see Table 1). There is one instance of each parameter per
iteration of the algorithm, which means that there are 4N parame-

ters to tune if there are N iterations. A complicating factor is that

N in turn depends on the values chosen for the panel width param-

eters (b). Since our particular context (as a part of AED) implies

that n might be relatively small (hundreds to thousands) compared

to p (available cores), it may turn out to be sub-optimal to use all

available cores, especially towards the end of the computation. The

parameters tr and tu therefore specify the number of threads/cores

(≤ p) to use in the reduction and update phases, respectively.

Table 1: The four families of algorithmic parameters.

Parameter name Type Domain Phases

Panel width (b) Integer {1, . . . ,n − k } Both

Strategy (s) Category {Full, Partial} Reduction

No. of threads (tr ) Integer {1, . . . ,p} Reduction

No. of threads (tu ) Integer {1, . . . ,p} Update

3 TECHNIQUES
At the heart of the framework is a search module (see Section 4.1

ahead), which abstracts any standard auto-tuning method behind a

generic interface. The main aim of the framework is to extend the

limited capability of the tuning algorithm within the search module

into a complete auto-tuner for the NUMA-aware algorithm. The

framework achieves this by employing three specific techniques

described in this section.

3.1 Sub-Problem Decomposition
The algorithm consists of an outer loop with non-overlapping iter-

ations, so it is reasonable to assume that parameters from different

iterations are uncoupled. However, the four parameters within an

iteration do strongly interact and must be tuned together. This leads

to the thought of decomposing the problem of tuning all 4N param-

eters at once into tuning N independent sets of 4 parameters. Yet,

since the number of iterations, N , depends on one of the parameter

families (the panel width) this idea cannot be directly applied.

By analyzing the Hessenberg reduction algorithm and Figure 1 it

becomes clear that the shape ofA at the start of an iteration depends

only on n and k . We associate a sub-problem with each pair (n,k ).
The sub-problem for (n,k ) is defined as finding optimal parameter

settings for the upcoming iteration. The objective function (for the

sub-problem) is to maximize the performance

P =
Fr + Fu
Tr +Tu

,

where Fr and Fu are the flop counts for the reduction and update

phases, respectively, and Tr and Tu are the wall clock times. Since

the total flop count for reducing a matrix is fixed, improving the

performance of the sub-problems will also speed-up the overall

problem, but not necessarily optimize its performance.

We collect the values of the parameters for one sub-problem

into a 4-tuple referred to as a parameter tuple. We arrange all the N
parameter tuples as columns (from left to right) in a parameter table.
The objective for the auto-tuner represented by the framework is

to find a parameter table that minimizes the total execution time.

3.1.1 Concurrent Solution of Several Sub-Problems. The size of
a parameter table depends on the number of iterations, which in

turn depends on the chosen panel widths. For an input matrix

of fixed size n, there are n − 2 possible sub-problems (n,k ) for
k = 0, 1, . . . ,n−3. Any particular parameter table therefore consists

of parameter tuples extracted from some subset of the sub-problems.

One execution of the Hessenberg algorithm uses N parameter

tuples provided by the framework and in turn feeds back measure-

ments used by the framework to make progress on N sub-problems.

In other words, the framework concurrently solves several sub-

problems. But note, however, that exactly which subset of the n − 2
sub-problems are relevant for a given execution depends on the

chosen panel widths. See Figure 2 for an illustration of the rela-

tionships between sub-problems, parameter tuples, and parameter

tables. The framework logically keeps track of n− 2 partially solved
sub-problems and after each particular execution of the Hessenberg

algorithm is able to make progress on some subset of them.

3.2 Binning Similar Sub-Problems
Two distinct sub-problems (n,k ) and (n′,k ′) are similar if n ≈ n′

and k ≈ k ′ simply because the shapes of all operands are similar.

What this means is that we could (with some loss of accuracy) treat
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Figure 2: Two examples of parameter tables for n = 15.

the two as one single sub-problem. This has several benefits. First,

it reduces the total number of sub-problems that need to be solved.

Second, it allows the effort invested into making progress on one

sub-problem to benefit also other (similar) sub-problems.

Specifically, we group adjacent sub-problems into bins and tune

each bin as if it represents a single sub-problem. The bins are rect-

angular of size ∆n × ∆k as illustrated by the example in Figure 3

for ∆n = 2 and ∆k = 3. In particular, the sub-problems (10, 4) and
(9, 6) belong to the same bin (4, 2).
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Figure 3: Binning of (12 × 12) space using bins of size (2 × 3).

3.3 Searching in Multiple Stages
Parameter tuples that yield good performance have a strong ten-

dency (in this application) to cluster in one region of the search

space. By performing the search in multiple stages, we can (poten-

tially) more rapidly localize the search to this promising region. The

idea is to start with a sparse but well distributed subset of the search

space in the first stage. Once (near-)convergence is reached, the

search space is made denser and also restricted to a region around

the converged point in subsequent stages.

For example, consider the two-stage search in Figure 4 which

involves only tr and tu for simplicity. The goal is to optimize within

the domain {1, . . . , 10}. In the first stage, we choose the sparse

but well distributed sub-domain {1, 4, 7, 10}. Suppose the search

in the first stage converges to the point (tr, tu) = (4, 7). Then we

include more points and restrict the search in the second stage to

the sub-domain {2, 3, 4, 5, 6} for tr and {5, 6, 7, 8, 9} for tu.
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Figure 4: Two-stage search for 2D parameter space.

4 THE FRAMEWORK’S ARCHITECTURE
The framework consists of three modules described in this section.

4.1 The Search Module
The purpose of the Search Module is to encapsulate some standard

auto-tuning method behind an abstract interface. The framework

does not provide any implementation of this module by itself.

The Search Module has two primary functions: choose a param-

eter tuple for a given sub-problem and advance the search for a

given sub-problem by one step in response to feedback. The module

implementation itself is supposed to be state-less. A search state

is instead encapsulated by the implementation into an opaque ob-

ject
1
that is externally managed by the framework (see Sections 4.2

and 4.3 ahead). Since the specifics of what constitutes a “search

state” depends entirely on the implementation of the SearchModule,

the framework views these objects as binary blobs
2
.

The Search Module exposes the following interface:

• Create–State: Creates a new state.

• Select–Parameters: Chooses a parameter tuple.

• Receive–Feedback: Feeds back time measurements.

• Update–State: Performs a search step using feedback.

• Check–Convergence: Check if the search has converged.

4.2 The Management Module
The Management Module provides the glue that binds all the other

modules together with the user input/output and the Hessenberg

algorithm. The core functions of the module are as follows:

Construct parameter table. Starting from k = 0 and repeatedly

calling the Select–Parameters function of the Search Module,

a complete parameter table can be constructed. The search state

to use is either fetched from the Database Module or initialized

using Create–State. Binning is applied before looking up a search

state. The process of constructing a parameter table also implicitly

selects the subset of active sub-problems, i.e., sub-problems used

in the next execution. So before calling Select–Parameters, the
function Update–State is called on to make one step in the op-

timization algorithm. Furthermore, if the Check–Convergence

function signals convergence, then the state is re-initialized with

the search space used in the next stage of the multi-stage search.

Run the Hessenberg algorithm. The parameter table is passed

alongside the other inputs to the Hessenberg algorithm. The com-

puted matrices are output to the user.

1
An object whose content and structure are not concretely known.

2
Collection of data stored in binary as a single entry.
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Feed back measurements. The internal time measurements from

each iteration are fed back to the active sub-problem search states

using the Receive–Feedback function.

4.3 The Database Module
The Database Module stores binary blobs representing the search

states. The search states are indexed by bin coordinates.

5 EXPERIMENTAL RESULTS
The framework is dependent on the implementation of the Search

Module. In order to test the framework we implemented the Search

Module using the Nelder-Mead algorithm [11], with α = 1, β = 1

2
,

γ = 2. This is neither the best nor the worst choice of algorithm.

Ultimately the choice is not so important since the aim of this

section is to show that the framework is able to make gradual

improvements of the overall performance even though the actual

optimization is only performed on small sub-problems. What the

most effective implementation of the Search Module looks like is an

open problem and something we do not contemplate in this paper.

We used bins of size 10 × 10 and multi-stage search spaces as

defined by Table 2, where b ′, t ′r , t
′
u refer to the best values found

in the first stage. The vertices are mapped to the nearest integer

point. Figure 5 shows the execution times (dots) of 500 executions

(no repetition) for a matrix of order n = 1000. The curve shows

a moving average of 50 consecutive measurements. The results

indicate that in general the performance is improving over time.

We hope by using the best choice of algorithm to reach results

comparable to [7]. The experiments were performed on one node

of Abisko at HPC2N.
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Figure 5: Execution time of 500 runs of the new algorithm
for n = 1000 using the framework. The red curve represents
the moving average for a window of size 50.

Table 2: The search spaces used in multi-stage search.

Parameter symbol 1st stage domain 2nd stage domain

b 10 : 10 : 100 b ′ − 9 : b ′ + 10
s {Full, Partial} {Full, Partial}

tr 6 : 6 : 48 t ′r − 5 : t
′
r + 6

tu 6 : 6 : 48 t ′u − 5 : t
′
u + 6

6 SUMMARY
In this paper we propose a modular auto-tuning framework for

a recently developed Hessenberg reduction algorithm. A brief de-

scription of the new algorithm and its parameters are presented.

The algorithm’s parameters interact with each other and span a

huge search space which makes using generic tuning methods and

tools like [1, 6, 8] not directly applicable.

The framework applies search space decomposition, binning, and

multi-stage search to accelerate the search. It defines an abstract

module with clear interface which can encapsulate any standard

optimization methods or generic tuning tools. including [1, 6, 8].

This allows the experimentation with different tuning algorithms.

For testing the framework’s ability to improve the overall per-

formance of the new Hessenberg reduction algorithm, we used the

Nelder-Mead algorithm in the search module. The results show that

the performance is gradually improving over time.

Future work includes experimenting with both generic and spe-

cialized tuning algorithms in the search module and apply the idea

underlying the framework to other similar algorithms.
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