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ABSTRACT

Spark is one of most widely deployed in-memory big data technol-
ogy for parallel data processing across cluster of machines. The
availability of these big data platforms on commodity machines
has raised the challenge of assuring performance of applications
with increase in data size. We have build a tool to assist application
developer and tester to estimate an application execution time for
larger data size before deployment. Conversely, the tool may also be
used to estimate the competent cluster size for desired application
performance in production environment. The tool can be used for
detailed profiling of Spark job, post execution, to understand perfor-
mance bottleneck. This tool incorporates different configurations
of Spark cluster to estimate application performance. Therefore, it
can also be used with optimization techniques to get tuned value
of Spark parameters for an optimal performance. The tool’s key
innovations are support for different configurations of Spark plat-
form for performance prediction and simulator to estimate Spark
stage execution time which includes task execution variability due
to HDFS, data skew and cluster nodes heterogeneity. The tool using
model [3] has been shown to predict within 20% error bound for
Wordcount, Terasort,Kmeans and few SQL workloads.
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1 INTRODUCTION

Apache Spark is one of the widely deployed commodity cluster
big data platforms available in open source for in-memory parallel
processing. Application deployment on commodity Spark cluster
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system has challenge of assuring its performance over time with
increase in data size. Conversely, appropriate capacity sizing of
production system is needed for desired performance irrespective
of increase in data size. This raises the need for a performance
assurance model and tool, which can estimate an application per-
formance for larger data sizes and variable cluster sizes before
deployment. Here, by performance we mean application execution
time.

We had built an analytic model to predict a Spark job execution
time for larger data size using its measurements on small data
size in small Spark cluster [3]. One of the key component of the
model is Spark’s stage simulator to estimate a stage execution
time. Similar approach has been used for MR job performance
prediction as well [4]. The model can be used for different Spark
configurations by varying Spark parameters which can be changed
during application execution and hence the tool may be used with
optimization techniques to get tuned value of Spark parameters for
auto tuning. [1, 2] discuss instrumentation of Spark job for tuning,
however, we employ grey box approach. The paper is organized as
follows. Section 2 discuss the performance prediction model [3] in
brief. Section 3 presents the tool features and architecture in detail
and finally the paper is concluded in Section 4.

2 SPARK APPLICATION PERFORMANCE
MODEL

We assume a small size Spark cluster with application and its rep-
resentative data sets available in development environment. The
cluster is assumed to have atleast one instance of each type of
heterogeneous nodes deployed in production system. The applica-
tion is executed in this small cluster on small data size (DevSize).
An application is executed as a serial execution of a number of
Spark jobs.A Spark job is executed in a form of directed acyclic
graph (DAG), where each node in the graph represents a stage. A
new stage is created whenever next operation requires data to be
shuffled. A job’s execution time is predicted as summation of the
estimated execution time of all its stages. Each stage is executed
as set of concurrent executors with parallel tasks in each executor,
depending on values of number of executors and number of cores
per executor parameters respectively. Because of hetereogenity of
nodes, HDFS and data skewness the symmetry of task execution
across different core is broken, and we have built a stage simulator
to estimate a stage execution time for larger number of tasks or
data size.

The application logs created by Spark platform are parsed to
collect granular level performance data as given in [3]. A stage tasks
are divided into two waves - first wave and rest wave tasks. The
granular level measurements are used to estimate task’s scheduler
delay, task’s JVM time and task’s shuffle time for both the waves
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executor memory | 4g

Total Application Time: 151.686 seconds.
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Figure 1: Spark Job Analyzer Screen

for larger data and cluster size. A stage execution is simulated for
larger data size using the task’s estimated execution time which
gives stage’s estimated execution time.

3 TOOL ARCHITECTURE

The tool has two components - Spark job Log Analyzer (SLA) and
Spark job Performance Predictor (SPP). SLA parses and analyzes a
Spark job log after its execution. SPP uses model [3] to predict a
Spark job execution time.

3.1 Spark Job Log Analyzer

Spark Log Analyzer(SLA) parses a Spark job log after its execution
and collects all stage and task level time details. SLA processes
granular level data to display meaningful higher level performance
counters. This module has challenge of using data structures effi-
ciently to process large data sets. SLA outputs number of waves,
set of tasks started and finished in parallel in almost same time
window, in a job execution. The tool also displays data for disk read
and writes, clean up time and split of execution time at various
granular levels such as per stage, per task, per executor and per
node. Once a Spark job log file with its absolute path is provided,
SLA displays four parameters on screen as shown in Fig 1. Below
that, eight options are provided to an user for selection. User can
select option as per requirement and view the specific data.

3.2 Spark Job Performance Prediction Tool

The tool is comprised of three components Log Parser, Model
Builder and Spark Job Execution Time Predictor as shown in Fig 2.
e Log Parser : Input to the Log Parser is the log file generated
on execution of a Spark job on small data and cluster size.
This is constrained version of SLA. It parses the execution
log file, required and filtered contents are further provided

to the job execution time predictor.
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Figure 2: Spark Job Performance Estimation Tool Architec-
ture

e Model Builder: Model builder uses system configuration de-
tails such as spark memory size and number of cores per
node, size of cluster and network bandwidth to simulate
Spark job execution on different configurations to build JVM
and Shuffle time prediction models. These models’ param-
eters are stored in plain text files and used by Spark job
execution time predictor.

o Spark Job Execution Time Predictor: This uses measurements
given by Parser, JVM and Shuffle models to predict a given
Spark job execution time for the production configuration
and data size given in 'Requirements’ file as shown in Fig 2,
using model [3].

4 CONCLUSIONS

The wide availability of commodity based big data platforms has
raised the challenge of assuring application performance post de-
ployment with increase in data size. In this paper, we have presented
a tool which can be used to estimate a Spark job execution time for
larger data sizes, using measurements of the job execution on small
data size in small cluster, before deployment. The tool is based on
the model presented in [3] and can predict with an average accu-
racy of 80%. The tool can also be used to do detailed analysis of the
Spark job execution to understand the performance bottlenecks.
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