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ABSTRACT
To make efficient use of multi-core processors, it is important to
understand the performance behavior of parallel applications. Mod-
eling this can enable the use of online approaches to optimize
throughput or energy, or even guarantee a minimum QoS. Accurate
models would avoid probe different runtime configurations, which
causes overhead. Throughout the years, many speedupmodels were
proposed. Most of them based on Amdahl’s or Gustafson’s laws.
However, many of those make considerations such as a fixed paral-
lel fraction, or a parallel fraction that varies linearly with problem
size, and inexistent parallelization overhead. Although such models
aid in the theoretical understanding , these considerations do not
hold in real environments, which makes the modeling unsuitable
for accurate characterization of parallel applications. The model
proposed estimates the speedup taking into account the variation of
its parallel fraction according to problem size, number of cores used
and overhead . Using four applications from the PARSEC bench-
mark suite, the proposed model was able to estimate speedups more
accurately than other models in recent literature.
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1 THE PROPOSED SPEEDUP MODEL
In this work, we propose a parallel speedupmodel that combines the
effects of the variation of the problem size and the number of pro-
cessors on the parallel fraction of the code—as similarly addressed
in [7], and the effect of parallelization overhead—as approached by
the authors of [11] and [5]. Important to note that none of these
authors considered both effects in their models, therefore, this is a
novelty proposed in our work.

The simplicity of our model allows for a straightforward com-
parison to previous work in this area. We take Amdahl’s speedup
as a starting point and add a quota for the parallelization overhead
in the parallel execution time and make the parallel fraction vary
with the number of processors and problem size, which leads us to

S =
1

(1 − f (p,N )) + f (p,N )
p +Q(p,N )

, (1)

where S is the speedup,Q is a quota for the parallelization overhead,
and the function f (p,N ) denotes the parallel fraction that varies
with the problem size N , and the number of processors p, as

f (p,N ) =max(min(f1 +
f2
p
+ f3 × f N4 , 1), 0), (2)

where f1, f2, f3 and f4 are empirical parameters used to characterize
the application. This function establishes that f has one fixed part
represented by f1, independent of the other execution parameters;
a component that is inversely proportional to p, represented by f2,
which can be explained by the fact that as p changes, the number
of instructions that can run in parallel also changes, since p can
become even larger than the parallelization capability; and another
component that varies exponentially with N , represented by f3 and
f4, which can be explained by the fact that the parallel and serial
parts can vary nonlinearly between each other, as N varies.

For Q , we propose the following function:

Q(p,N ) = q1 +
q2 × p

qN3
, (3)

where q1, q2 and q3 are empirical parameters used to characterize
the application. This function establishes that the overhead tends
to grow linearly with the increase of p, since more interprocess
communication is expected, and tends to decrease exponentially
with the increase of N , since less context switch is expected for
larger problems.
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Table 1: Results - Mean Square Error values and Coefficient of Determination (R2)

Applications Model proposed on (1) Model based on [1] Model based on [5] Model based on [7]
MSE R2 MSE R2 MSE R2 MSE R2

Blackscholes 0.1066% 0.9823 0.1056% 0.9823 0.1062% 0.9822 0.1111% 0.9814
Freqmine 3.446% 0.9898 260.77% 0.2251 260.58% 0.2256 5.078% 0.9849

Fluidanimate 0.2604% 0.9992 6.089% 0.9808 1.754% 0.9944 0.395% 0.9987
Vips 23.48% 0.9346 57.02% 0.8411 43.14% 0.8798 29.51% 0.9178

2 RESULTS
The results showed in this Section were extracted using a shared-
memory compute node of the High Performance Computing Center
at UFRN (NPAD/UFRN) with 2 CPUs Intel Xeon Sixteen-Core E5-
2698v3 2.3 GHz, 40M cache and 128 GB RAM DDR4 2133 RDIMM.

To estimate the parameters of (2) and (3), as all parameters in
[1], [7] and [5] used for comparison, we used a Particle Swarm
Optimization (PSO) algorithm to minimize the Mean Square Error
(MSE) of the model compared to measurements of a training set,
composed by the configurations where p = [2, 4, 8, 16, 32] and
N = [1, 2, 4, 5, 7, 8, 10] for all the applications.

The variation of N was done by modifying the linear component
of each application, as defined in [2], with the exception of freqmine,
which has no linear component. In this case, we vary linearly the
number of transactions, considering 99.000 transactions for N = 1
and 990.000 transactions for N = 10. To do those tasks we develop
a library in python, which can be accessed in [3].

Once the parameters were estimated, we compared the results
of the models with the measurement of a test set, composed by
the configurations where p = [3, 6, 12, 24] and N = [3, 6, 9] for
blackscholes, freqmine and vips, and p = [2, 4, 8, 16, 32] and N =
[3, 6, 9] for fluidanimate, because this application works only with
p as a power of two.

The summary of the results is presented in Table 1. The table con-
tains the MSE values, shown as a percentage of the mean speedups
of all the measurements of each application, and the coefficient
of determination (R2) for each model and application. It is possi-
ble to notice that our model obtained the smaller MSE, except for
blackscholes, which all models were able to make very good pre-
dictions, because their behavior is almost independent of N and p,
with f close to 1. Also, the values of the R2 of our model to all the
applications is very close to 1, higher than all other models, which
indicates that almost all the variation of the real measurements can
be explained by our model [6]. Fig. 1 shows that our model also
achieved the best maximum relative errors for all applications, with
the exception of blackscholes, compared to the others models.

3 CONCLUSIONS
The proposed model was able to make good estimations of the
speedup, which makes it a suitable candidate for further studying
the effects of other execution parameters. The next step is to apply
our model to a larger number of applications. The PARSEC has 8
more applications where is possible to manipulate their input sizes.
Similarly, for the Splash-2 [9] benchmarks. A possible extension
of this model should include the effect of varying the processor’s
clock frequency. For example, if the frequency decreases, memory

Figure 1: Maximum relative error of all applications and models us-
ing the test set.

bounded applications can start to perceive more memory requests
attended per processor cycle. This may have a significant positive
effect on the speedup. Also, energy-aware approaches to reduce
software energy consumption have often the hardware clock fre-
quency as an adjusting parameter, which makes a frequency-aware
speedup model very desirable for such techniques [4, 8, 10].
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