
Towards Performance Engineering of Model Transformation
Raffaela Groner, Matthias Tichy

Institute for Software Engineering and Programming
Languages, Ulm University

Ulm, Germany
[raffaela.groner|matthias.tichy]@uni-ulm.de

Steffen Becker
Institute of Software Technology, University of Stuttgart

Stuttgart, Germany
steffen.becker@informatik.uni-stuttgart.de

ABSTRACT
Model transformations are an essential operation on models which
is applied at design time and even at run time. For this, the perfor-
mance of transformations is an important aspect, which needs to
be considered. The current research takes only the improvement of
transformation engines into account but there is no method or tool
support to help engineers to identify performance bottlenecks in
their transformation definition. In this paper we present our pro-
posed approach to develop a method for performance engineering
of model transformations. This method should support engineers
to improve the performance of their defined transformations by
providing visualizations of reasons for performance problems and
offering possible refactorings for a transformation which can im-
prove its performance.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; Software performance;

KEYWORDS
Model Driven Software Engineering; Model Transformation; Per-
formance Engineering; Henshin

ACM Reference Format:
Raffaela Groner, Matthias Tichy and Steffen Becker. 2018. Towards Per-
formance Engineering of Model Transformation. In ICPE ’18: ACM/SPEC
International Conference on Performance Engineering Companion , April
9–13, 2018, Berlin, Germany. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3185768.3186305

1 INTRODUCTION
One trend to handle the continuous growth of the complexity of
software systems is Model-Driven Engineering (MDE) which ad-
vocates using models as key artifacts. Model transformations are
the second key artifact as they translate input models into output
models. They are specified in transformation scripts executed by en-
gines. As such, they enable the generation of new models, realizing
changes on individual models, and the synchronization between
models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186305

Models can become large, e.g., in the automotive domain and
for performance predictions of information systems. For exam-
ple, an AUTOSAR model of a large electronic control unit for a
modern car has over 170.000 model elements. In such cases, the
execution of badly performing model transformations can take up
to hours. Hence, performance is an important quality of model
transformations, e.g., throughput in terms of model elements or
overall execution time.

Engineers today mostly address model transformation perfor-
mance not at all, in an ad-hoc fashion, or after first problems arise in
production. Various reasons for this exist: Current research address-
ing model transformation performance focuses on optimizing the
engines internally with different heuristics (e.g., [6, 16]). However,
this only optimizes each model transformation in a model transfor-
mation chain individually. Furthermore, transformation engineers
are not supported in improving the transformation scripts them-
selves which in our experience leads to massive complementary
performance gains. Unfortunately, this requires expert knowledge
about how the model transformation engines interact with the
transformation script to leverage these performance gains (cf. [12]).

Existing techniques addressing performance cannot be reused
as-is and need to be adapted. Traditionally, profiling approaches
enable inspecting systems during runtime to identify hot spots in
which the program consumes resources excessively. Worst case
execution time (WCET) analysis approaches compute worst case
execution times for program parts. Both only work on a program-
ming language level and, thus, are not reasonably applicable to
model transformation performance. Software Performance Engi-
neering (SPE) analyzes programs on a model level at design time to
predict their performance and, thus, identify performance problems
before they arise. However, existing approaches are not suitable for
model transformations since they neither understand the heuris-
tics of model transformation engines nor are able to analyze the
performance impact of model transformation language features.
Hence, the predictions can be completely wrong and, thus, useless.
In summary, there exist no research activities to systematically and
holistically enable the performance engineering of model transfor-
mations, i.e., to support the engineer in developing transformations
that achieve the required performance right from the beginning.

Our goal is to provide a first-class environment for support-
ing software engineers in effectively improving the performance
of model transformations. This evironment will enable software
engineers to systematically identify and visualize causes for per-
formance issues as well as predict and improve the performance of
model transformation.

In the next section, we discuss in more detail the related work
in performance and model transformations. Section 3 contains a
presentation of our proposed approach which is illustrated using an

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

33

https://doi.org/10.1145/3185768.3186305
https://doi.org/10.1145/3185768.3186305
https://doi.org/10.1145/3185768.3186305

example in Section 4. Thereafter, we conclude and give an outlook
on our next steps.

2 RELATEDWORK
While extensive state of the art exists in the general area of software
and performance analysis, we focus in the following on the state of
the art closely related to performance and model transformations.

Model transformations basically follow two different paradigms:
operational and relational transformations (see [5] for a more de-
tailed taxonomy). Operational model transformations follow the
paradigm of imperative programming languages where the devel-
oper explicitly defines the different changes to the models and the
control flow between them. Relational and graph-transformation
based model transformations specify the changes in a declarative
way and the transformation engines changes the model in such a
way that the defined relations resp. graph patterns hold.

While operational model transformations are more similar to
programming languages studied in performance engineering, they
still differ in the way transformations are expressed and in the char-
acteristics of models as inputs. Relational model transformations
are quite different and the engine heuristics have a high impact on
the resulting performance.

Research in performance optimization in model transformations
primarily addresses transformation execution engines. As many
different approaches exist, we only review representatives of the
general classes.

A class of approaches, e.g. [21], statically analyze the model
transformation and use heuristics for optimizing the average case
execution time. Our own previous work [4, 11] does the same for the
worst case execution time. Another line of research, e.g., [2, 6, 16]
including the Henshin interpreter [12], additionally considers the
model to execute the model transformation on and optimizes the
search plan accordingly, e.g., using heuristics and cost models.

While the previous approaches address only the model trans-
formation engine internally, some approaches exist to assess the
performance of model transformations and improve it. A first area
is the definition of metrics for model transformations [14, 17]. These
papers’ approaches mainly adapt metrics from programming lan-
guages to model transformations. While [14] is mainly concerned
with maintainability metrics, only few of the metrics presented in
[17] are related to performance.

Specifically for Henshin graph transformations, Taenzter et al. de-
fine bad smells and refactorings [10]. However, they do not address
performance. Our own preliminary work [12], describes several
performance related bad smells including detectors formalized as
Henshin graph transformations. However, it is currently limited
due to only statically analyzing the syntax and not integrating
monitoring information from the execution.

Mészáros et al. present a concrete case [8] where they manu-
ally optimized a set of model transformations and achieved a 70%
increase in performance. Similarly, Bruni and Lluch-Lafuente com-
pare different ways to specify model transformations with respect
to their performance in different benchmarks [3] and include some
guidelines how to improve the performance by changing the model
transformations. Wimmer et al. present a catalog of model transfor-
mation refactorings [18] which includes a few refactorings which

improve and degrade the performance of the model transformations
in their experimental evaluation.

While all these approaches show that significant performance
gain can be achieved by refactoring the model transformations
done by expert engineers (with extensive knowledge of the model
transformation engine), a systematic process to support the normal
engineer is currently lacking.

3 PROPOSED APPROACH
Our goal is to develop an approach which helps engineers to im-
prove the performance of their implemented transformations by
predicting the performance of model transformation executions, vi-
sualizing causes for performance bottlenecks and offering refactor-
ings that influence the performance of a transformation positively.

We plan an iterative approach, which consists of five work pack-
ages: Monitoring, Predict, Analyze, Visualize, and Improve.
This approach is similar to the steps presented in [7] for a perfor-
mance evaluation study and also contains software performance
engineering activities mentioned in [20]. After those five work pack-
ages we plan to use different evaluation techniques like proof-of
concepts or empirical evaluation to guarantee that the interplay
of the single results realize our overall goal. Therefore, we plan
to develop a benchmark suite and we will evaluate the complete
approach with users.

Monitoring: To analyze the performance of model transforma-
tions it is necessary to identify and understand the properties that
affect the performance of a transformation. Those properties can
be e.g. the input model complexity, like the number of objects and
the number of different types of objects a model contains, their
in- and out-degree, the resource demands of the execution of a
transformation or parameters of the transformation engine. With
the help of the framework Kieker ([15]) and our own monitoring
infrastructure we collect raw data, that we need for the further
proceeding.

Predict: Based on the raw data from Monitoring we want to
develop a prediction framework. This framework should support an
engineer to predict the performance change of a model transforma-
tion execution based on changes in the input model, in the model
transformation, in the engine’s infrastructure or by exchanging
the engine heuristic strategy. With the help of this framework an
engineer should be able to predict e.g the performance changes of
a transformation execution, if the number of objects in the input
model is changed.

Analyze: The obtained raw data from work package Monitor-
ingwill be too detailed to help a transformation engineer to identify
the causes for performance problems. For this, we want to develop
in this work package an analysis approach which identifies and
ranks possible causes for performance problems. Corresponding to
code bad smells model transformations can also contain bad smells,
which influence the performance negatively [13].

Visualize: To improve the performance of a transformation it
is important to understand in which way the transformation is
executed, why is it executed in that way and what are the factors
influencing the performance of this execution. To help a transfor-
mation engineer to understand those aspects we plan to develop
visualizations for causes like properties of the input model, engine

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

34

decisions and performance results. Such visualizations could be
a blame graph, which shows the possible causes for performance
problems or a scatter plot, which relates the execution time of a
transformation on a model to the number of its objects.

Improve: In this package, we plan to develop refactorings, which
improve the performance of model transformations. Those sugges-
tions for improvement should help to fix the causes of performance
problems from work packageAnalyze, as well as refine and extend
the performance improving refactorings from literature like [19]
and [9] for previous identified performance problems. A suggestion
for improvement for a transformation, which contains a bad smell,
could be a refactoring. The performance gain of a suggestion for
improvement depends also on the context of the transformation
application. For this, we plan to investigate those dependencies
and develop guidelines, when a suggestion for improvement can
be applied as well as how and why it improves the performance.

4 ILLUSTRATIVE EXAMPLE
We illustrate our proposed approach with the help of an exam-
ple consisting of a model transformation in Henshin. Henshin is
a model transformation language, which is based on graph trans-
formation concepts. A transformation is defined by a rule which
consists of two attributed, typed graphs, called left hand side (LHS)
and right hand side (RHS). The LHS defines the precondition and
describes how a part of the model has to be defined to apply the
transformation. The RHS defines the postcondition and describes
how the model is changed when the rule is executed [1]. Our illus-
trative transformation rule is called transferMoney and is shown
on the top of Figure 1. This representation of the rule combines
the LHS and RHS and annotates the pre- and postcondition. This
transformation rule transfers an amount of money, that is defined
by amount, from one account with credit x, which is referred by an
map entry (EInt2AccountMap) with key fromId, to another account
with credit y, which is referred by an map entry with the the value
toId for its key. amount, fromId and toId are parameters which are
set by the user before the transformation is executed. x and y are
variables which serve as place holders for the real values assigned
to credit.

Figure 1: Matching of the transformation rule transfer-
Money

In our example we applied the transformation transferMoney
with amount=1, fromId=1 and toId=2 on the model in the bot-
tom of Figure 1. This model consists of one Bank instance and
20000 Account instances, which are connected by corresponding
EInt2AccountMap instances. First, a search plan is created, that de-
termines the order in which for each node of the LHS a strategy
is derived how to find a model element with the same type, the
same references and the same attribute values. If such a model ele-
ment is found its called a match. The search plan for this example
is {entry1, entry2,bank, f rom, to}. To find a match for entry1, all
model elements with the same type, here {e1, e2, ..., e20000}, are
candidates. The Henshin engine iterates this list in reverse order
and investigates each element if its attribute key has the value
fromId. In this example the engine investigates e20000 to e1 and
determines e1 as match for the node entry1. Afterwards the engine
tries to find in the same way a match for entry2 and determines
e2. Then a match for bank is searched in the same way. Because
the matched model element for bank needs to refer the matched
model elements for entry1 and entry2, the engine does not only
consider the type and the attribute values but also the existence
of those references. Our example model only has one instance of
type Bank and this refers all EInt2AccountMap instances, so this b
is the match for bank. Next the engine searches a match for from.
The LHS defines that the match for from needs to be referred by
the match for entry1. Thus the list of candidates for from is reduced
to all instances of Account, which are referred by the match for
entry1 . Here, this means only a1 has to be investigated. This model
element is a match for from because x is only a place holder that
doesn’t define a constraint. At last a match for to is searched in the
same way. The found matching is illustrated in Figure 1 as dashed
arrows.

We repeated the application of the rule transferMoney 100 times
on the same input model, with amount=1 and randomized for each
application the values of fromId and toId. In the package Monitor-
ing, we monitor the matching order of the nodes from the LHS,
which is defined by the search plan, and the duration until a match
for each node was found. We also monitor for each node of the
LHS the number of model elements, which were investigated until
one was found that matches this node. In our first simple Analyze
phase, we use our knowledge about how the order in the search
plan can influence the number of model elements which need to be
investigated. E.g. we described above that the candidates for from
are reduced because they need a reference from entry1. If entry1
wasn’t matched at this time all instances of Account have to be
investigated. For this, we developed in the Visualize package the
visualizations for our example as shown in Figure 2. The x-axis of
this box plot shows the order of the nodes in the search plan, here
{entry1, entry2,bank, f rom, to}. The y-axis shows the number of
model elements, which are investigated until a match was found.
With the help of this visualization, a transformation engineer gains
the insight that during the matching of the map entries entry1 and
entry2 a lot of model elements are investigated to find a match for
them. This leads to a duration of on average 10,8ms until a match
for the whole LHS was found.

Based on our expert knowledge of the Henshin engine, we knew
that the automatically derived search plan is bad, since the en-
try nodes entry1 and entry2 are matched first. An improvement

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

35

entry1 entry2 bank from to

100

101

102

103

104

N
um

b e
ro

fi
nv

es
tig

at
ed

m
od

el
el
em

en
ts

Figure 2: Application of transferMoney

(package Improve) is to change the order in the search plan to
{bank, entry1, entry2, f rom, to}. Because if the node bank is matched
first the Henshin matching engine identifies that the nodes entry1
and entry2 are map entries and uses a map to lookup the accounts
from and to. The guideline for this improvement is that nodes like
entry1 and entry2, which are map entries should be matched after
the node that refers them. Figure 3 shows the performance mea-
surements of the improved application of the rule transferMoney. It
clearly shows that the change of the order reduces the number of
investigated model elements. Therefore, the duration of finding a
match for transferMoney drops to an average of 2,56ms.

bank entry1 entry2 from to

100

101

102

103

104

N
um

b e
ro

fi
nv

es
tig

at
ed

m
od

el
el
em

en
ts

Figure 3: Optimized application of transferMoney

5 CONCLUSION AND FUTUREWORK
The performance of model transformations is an important factor,
but at the moment there is no actual support for engineers to im-
prove their transformations. We propose an approach to solve this
problem consisting of a combination of the packages Monitoring,
Predict, Analyze, Visualize and Improve and illustrate these,
excluding Predict, with an example. Currently, we are working
on the realization of our work packages. In order to evaluate the
usability and the effectiveness of our approach we will perform
user studies with transformation engineers.

6 ACKNOWLEDGEMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Ti 803/4-1.

REFERENCES
[1] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele

Taentzer. 2010. Henshin: advanced concepts and tools for in-place EMF model
transformations. Model Driven Engineering Languages and Systems (2010), 121–
135.

[2] Gernot Veit Batz, Moritz Kroll, and Rubino Geiß. 2008. A First Experimental
Evaluation of Search Plan Driven Graph Pattern Matching. In Proc. 3rd Intl.
Workshop on Applications of Graph Transformation with Industrial Relevance
(AGTIVE ’07) (LNCS), Vol. 5088. Springer. http://www.info.uni-karlsruhe.de/
papers/agtive_2007_search_plan.pdf

[3] Roberto Bruni and Alberto Lluch-Lafuente. 2011. Evaluating the Performance
of Model Transformation Styles in Maude. In FACS (Lecture Notes in Computer
Science), Vol. 7253. Springer, 79–96.

[4] Sven Burmester, Holger Giese, Andreas Seibel, and Matthias Tichy. 2005. Worst-
Case Execution Time Optimization of Story Patterns for Hard Real-Time Systems.
In Proc. of the 3rd International Fujaba Days 2005, Paderborn, Germany. 71–78.

[5] Krzysztof Czarnecki and Simon Helsen. 2006. Feature-based survey of model
transformation approaches. IBM Systems Journal 45, 3 (2006), 621–645.

[6] Holger Giese, StephanHildebrandt, andAndreas Seibel. 2009. Improved Flexibility
and Scalability by Interpreting Story Diagrams. ECEASST 18 (2009). http://eceasst.
cs.tu-berlin.de/index.php/eceasst/article/view/268

[7] Raj K Jain. 1991. The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation and modeling. (1991).

[8] Tamás Mészáros, Gergely Mezei, Tihamer Levendovszky, and Márk Asztalos.
2010. Manual and automated performance optimization of model transformation
systems. STTT 12, 3-4 (2010), 231–243.

[9] Tamás Mészáros, Gergely Mezei, Tihamér Levendovszky, and Márk Asztalos.
2010. Manual and automated performance optimization of model transformation
systems. International Journal on Software Tools for Technology Transfer (STTT)
12, 3 (2010), 231–243.

[10] Gabriele Taentzer, Thorsten Arendt, Claudia Ermel, and Reiko Heckel. 2012.
Towards refactoring of rule-based, in-place model transformation systems. In
Proceedings of the First Workshop on the Analysis of Model Transformations (AMT
’12). ACM, New York, NY, USA, 41–46. https://doi.org/10.1145/2432497.2432506

[11] Matthias Tichy, Holger Giese, and Andreas Seibel. 2006. Story Diagrams in
Real-Time Software. In Proc. of the 4th International Fujaba Days 2006, Bayreuth,
Germany (Technical Report), Holger Giese and BernhardWestfechtel (Eds.), Vol. tr-
ri-06-275. University of Paderborn, 15–22.

[12] Matthias Tichy, Christian Krause, and Grischa Liebel. 2013. Detecting perfor-
mance bad smells for Henshinmodel transformations. In Proc. of the 2ndWorkshop
on the Analysis of Model Transformations (AMT), September 29, Miami, USA, Benoit
Baudry, Jürgen Dingel, Levi Lécio, and Hans Vangheluwe (Eds.).

[13] Matthias Tichy, Christian Krause, and Grischa Liebel. 2013. Detecting Perfor-
mance Bad Smells for Henshin Model Transformations. AMT@ MoDELS 1077
(2013).

[14] Marcel van Amstel, Mark van den Brand, and Phu H. Nguyen. 2010. Metrics
for Model Transformations. In BENEVOL 2010 (9th Belgian-Netherlands Software
Evolution Seminar, Lille, France, December 16, 2010. Proceedings of Short Papers).
Université Lille 1, 1–5.

[15] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Analysis.
In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE 2012). ACM, 247–248.

[16] Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr. 2015. An
algorithm for generating model-sensitive search plans for pattern matching
on EMF models. Software and System Modeling 14, 2 (2015), 597–621. https:
//doi.org/10.1007/s10270-013-0372-2

[17] Andrés Vignaga. 2009. Metrics for Measuring ATL Model Transformations. Tech-
nical Report TR/DCC-2009-6.

[18] Manuel Wimmer, Salvador Martínez, Frédéric Jouault, and Jordi Cabot. 2012. A
Catalogue of Refactorings for Model-to-Model Transformations. Journal of Object
Technology 11, 2 (Aug. 2012), 2:1–40. https://doi.org/10.5381/jot.2012.11.2.a2

[19] Manuel Wimmer, Salvador Martínez Perez, Frédéric Jouault, and Jordi Cabot.
2012. A Catalogue of Refactorings for Model-to-Model Transformations. Journal
of Object Technology 11, 2 (2012), 2–1.

[20] MurrayWoodside, Greg Franks, and Dorina C Petriu. 2007. The future of software
performance engineering. In Future of Software Engineering, 2007. FOSE’07. IEEE,
171–187.

[21] Albert Zündorf. 2002. Rigorous Object Oriented Software Development. University
of Paderborn.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

36

http://www.info.uni-karlsruhe.de/papers/agtive_2007_search_plan.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_search_plan.pdf
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/268
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/268
https://doi.org/10.1145/2432497.2432506
https://doi.org/10.1007/s10270-013-0372-2
https://doi.org/10.1007/s10270-013-0372-2
https://doi.org/10.5381/jot.2012.11.2.a2

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Illustrative Example
	5 Conclusion and Future Work
	6 Acknowledgements
	References

