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ABSTRACT 
In this work we show how to build a deep neural network (DNN) 
to predict SPEC® scores – called the SPECnet. More than ten 
years have passed since the introduction of the SPEC CPU2006 
suite (retired in January 2018) and thousands of submissions are 
available for CPU2006 integer and floating point benchmarks. 
We build a DNN which inputs hardware and software features 
from these submissions and is subsequently trained on the 
corresponding reported SPEC scores. We then use the trained 
DNN to predict scores for upcoming machine configurations. We 
achieve 5%-7% training and dev/test errors pointing to pretty 
high accuracy rates (93%-95%) for prediction. Such a prediction 
rate is very comparable to expected human-level accuracy of 
97%-98% achieved via careful performance modelling of the core 
and un-core system components. In addition to the CPU2006 
suite, we also apply SPECnet to SPEComp2012 and SPECjbb2015. 
Though the reported submissions for these benchmark suites 
number in hundreds only, we show that such a DNN is able to 
predict for these benchmarks reasonably well (~85% accuracy) 
too. Our SPECnet implementation uses state-of-the-art 
Tensorflow infrastructure and is extremely flexible and 
extensible. 
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INTRODUCTION 
SPEC® [8] benchmarks are as the supporting memory, 
interconnect, I/O etc). widely used to measure CPU and system 
performance. But predicting SPEC scores for upcoming system 
configurations remains a challenging task (Here a system will 
refer to the SoC containing the core as well). This task is 
important in view of the criticality of such scores for positioning  
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these systems in the market - especially in the server business. 
Long before such systems are actually built and shipped, micro-
architects and performance experts try to predict the scores that 
can be achieved by the new systems. This involves careful 
modeling (analytical or otherwise) of the core as well as the 
other components like memory and interconnect. With the 
advent of hyper-threaded multi-cores having a large number of 
cores, presence of NUMA as well as NUCA, and complex 
interconnects between the dies hosting the cores, such modeling 
have becoming increasingly complicated. And if you are trying 
to predict SPEC scores ahead of time, such modeling may need 
to depend on simulators which are slow and time-consuming. 
All these factors usually lead to high prediction error even after 
considerable effort is spent. 
We take a different approach. Our idea is to reach a prediction 
estimate using coarse-grained system features rather than fine-
grained modeling. This saves time and effort in a big way as long 
as the prediction error is within acceptable limits. In view of this, 
we extract these features from the SPEC submissions. These 
features comprise of both hardware and software components as 
reported in each of the SPEC submissions. Once the features are 
extracted, we apply a Deep Neural Network (DNN) that uses 
these features as inputs and learns from the corresponding SPEC 
scores using an iterative process called Gradient Descent that 
minimizes the prediction error. This phase is called the training 
phase. Once the prediction error-rate in training reaches 
acceptable levels and saturates we stop the training process. The 
DNN is now ready for predicting scores for new systems that 
have not been seen before. Since some of these systems are 
forward-looking it may be difficult to estimate the full efficacy of 
the method till those systems are built. However, we see low 
prediction error-rates when such a DNN is fed with system 
configurations from the SPEC-submitted results not encountered 
by the DNN before. 
We call our DNN the SPECnet. SPECnet can predict scores for 
SPECint_rate2006, SPECfp_rate2006, SPEComp2012 and 
SPECjbb2015 [8]. The architecture of SPECnet for each of these 
benchmark suites are very similar though they differ slightly in 
certain parameters. Theoretically, we could have built a single 
DNN for predicting all these scores, but at this point we prefer to 
keep them separate in order to learn more about the 
characteristics of each of these suites and how they behave for 
different kinds of submitted system configurations. SPECnet 
achieves good prediction rates for the dev/test sets that are kept 
aside from the submitted results and are not presented to the 
DNN for training. In the following sections we give a brief 
overview of Deep Neural Networks and Tensorflow. We show 
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the architecture of SPECnet and present results. We conclude 
with background and future work. 

2 DEEP NEURAL NETWORK: OVERVIEW 
Neural networks are inspired from a neuron’s computation that 
involves a weighted sum of the input values. Furthermore, the 
neuron does not output that weighted sum. Instead there is a 
functional operation which is a non-linear function that causes a 
neuron to generate an output only if the inputs cross some 
threshold. Thus by analogy, neural networks apply a non-linear 
function to the weighted sum of the input values [10]. 

 
 
Figure 1: Neural Network with hidden neurons and layers 
 
Fig 1 shows a picture of a computational neural network with 
several neurons in the input layer and only one neuron in the 
output layer. It also has a number of intermediate layers called 
the ‘hidden layers’. Each neuron in a layer is connected to all the 
neurons in the next layer – this architecture is known as a ‘Fully 
Connected’ layer architecture [1,9]. The neurons in the input 
layer receive some values (features in this case) and propagate 
them to the neurons in the middle layers of the network. The 
propagation is nothing else but matrix multiplications (usually) 
followed by the application of a non-linear function (ex: sigmoid, 
tanh, ReLu [1,9] etc.). The activation function is not shown in the 
figure for simplicity. The outputs from the hidden layers are 
propagated to the output layer, which presents the final outputs 
of the network. The computation at each layer can be stated as:  

𝑌 = 𝑓(𝑊 ∗ 𝑋 + 𝐵) 
Where W is the weight matrix representing the edge 
connectivity between two successive layers. X and Y are vectors 
representing input and output activations, respectively. f is a 
non-linear function like ReLU (Rectified Linear Unit). The bias 
vector is represented as B. For the first hidden layer X = F where 
F is the feature vector. For latter layers, the output Y from an 
earlier layer becomes the input X of the next layer.  
Neural networks having more than three layers, i.e., more than 
one hidden layer is usually termed a Deep Neural Network 
(DNN). DNNs are capable of learning high-level features with 
more complexity and abstraction than shallower neural 
networks. An example that demonstrates this point is using 
DNNs to process visual data [1]. This deep feature hierarchy 

enables DNNs to achieve superior performance in many tasks. 
DNNs can be used either for classification (as in what kind of 
image is this) and regression (function fitting). SPECnet is an 
example of the latter type whereby the DNN learns a function 
from the input feature set to a SPEC score. In DNNs, learning 
involves determining the value of the weights (and bias) in the 
network, and is referred to as training the network. Once 
trained, the program can perform its task by computing the 
output of the network using the weights determined during the 
training process referred to as inference or prediction. The main 
goal for training a DNN is to determine the weights that 
minimizes the loss. For SPECnet the loss is the deviation of the 
predicted score from the actual score submitted. When training a 
network, the weight matrices are usually updated using a hill-
climbing optimization process called gradient descent. A 
multiple of the gradient of the loss relative to each weight, which 
is the partial derivative of the loss with respect to the weight, is 
used to update the weight. Note that this gradient indicates how 
the weights should change in order to reduce the loss. The 
process is repeated iteratively to reduce the overall loss. An 
efficient way to compute the partial derivatives of the gradient is 
through a process called backpropagation [1,9]. 

3 SPECNET 
In this section we look at the architecture of the SPECnet. Before 
that we need to focus on the features that need to be extracted 
from the SPEC submitted results that will be fed to the DNN for 
training and inference. 

3.1  Input Features 
Each SPEC submission (CPU2006, OMP2012, jbb2015) comprises 
of a number of hardware and software features that can be 
downloaded from the SPEC website [8] in .csv format. These 
features include the processor type, clock speed, memory type, 
compiler used, vendor name, year of publication etc. In addition, 
the text/pdf files contain details about the compiler flags and 
associated details. We have whittled down the set of features to 
be input to SPECnet to 13. They are the following: 
< Number of cores, Number of chips, Base Frequency, Boost 
Frequency, Processor Type, Base Copies, Year of PublicaƟon, L3 
per core, L2 per core, L1 per core,  Memory Speed, Memory 
Size, Compiler Used > 
Note that some of these features are ‘categorical’ in nature 
which means that there is no direct numerical association of this 
feature. The processor type and the compiler used are two such 
cases. Popular methods of encoding categorical variables include 
‘one hot encoding’ [9] as well as hashing. For SPECnet we have 
used a slightly different approach. We have manually associated 
numerical values with the processor type and compiler used. To 
simplify things, we have encoded the processor type with a 
number for each processor manufacturing company, with a 
higher number signifying a more powerful processor. A similar 
policy has been adopted for compiler encoding. 
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3.2  SPECnet Architecture 
The DNN for SPECnet consists of an input layer which accepts 
the 13 features described above, an output layer of one neuron 
that emits the predicted SPEC score and three hidden layers. 
Hence it’s a 5-level DNN. All the layers are fully connected. Each 
hidden neuron has an activation function that is a ReLU. As 
mentioned earlier, each layer applies a matrix multiplication 
followed by a ReLU operation on each of the outputs of the 
neurons. Fig 2. Shows the architecture of SPECnet: 

 
Figure 2: SPECnet architecture 
The input features to SPECnet are listed as F1…F13 as we have 13 
input features. At each successive layer, the weight matrix is 
multiplied by the output of the previous layer and ReLU applied 
on the resultant vector. We arrived at the architecture above via 
several experiments and hyper-parameter tuning. We observed 
that reducing the number of hidden layers reduced the quality of 
prediction (error rate increases). Also, adding layers beyond 3 
did not help in improving the error rates further. 

3.3  SPECnet Implementation using 
Tensorflow 

We use Tensorflow [3] to implement SPECnet. Tensorflow is an 
interface for expressing machine-learning algorithms from 
Google, based on Python. The algorithms can be expressed as 
high-level computation graphs in a data-flow style with matrix 
operations and activation functions available as basic operations. 
The SPECnet is specified as a computation graph and a gradient 
descent optimizer is used that minimizes the loss between the 
predicted SPEC score and the reported SPEC score. We use 
MAPE (Mean Absolute Percentage Error) [2] as the loss function. 
If the predicted SPEC score is PSP and the actual score is SP then 
the loss function is given by:  

100 ∗ |𝑃𝑆𝑃 − 𝑆𝑃|

|𝑆𝑃|
  

The gradient descent optimizer [1] works iteratively using a 
forward-propagation pass and a backward propagation pass. 
Each such combined pass is called an epoch. Tensorflow 
provides in-built gradient descent optimization functions which 
can minimize the specified loss function over a number of 

epochs. The number of epochs is a tunable hyper-parameter and 
the iterative process is continued till the loss reaches acceptable 
limits or there is divergence between the training and dev/test 
error rates. 
Here’s a snippet of the Tensorflow code that shows the 
computation graph with ‘x’ being the input layer and the 
‘out_layer’ being the predicted SPEC score. ‘weights’ and ‘biases’ 
are the matrices corresponding to the weights and biases that the 
gradient descent algorithm tries to infer for minimizing the loss. 

 

 

4 EXPERIMENTS 
In this section we outline our experiments using SPECnet for 
CPU2006 INT and FP suites, OMP2012 and jbb2015.  

4.1 Methodology 
For our experiments we have downloaded the entire history of 
submitted results for the SPEC suites mentioned above. The 
SPECint_rate2006 and SPECfp_rate2006 suites contain more than 
14000 and 13000 results respectively. We remove those results 
which are invalid (SPEC score of 0) as well as the ones submitted 
with auto-parallelization turned ON. We now divide these 
results into separate training and dev/test sets in the rough ratio 
of 80%-20%. So for INT we use about 11000 results for training 
and about 2500 for dev/test. The dev/test set is not presented to 
the DNN for training. The SPEComp2012 and SPECjbb2015 on 
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the other hand contain only about 100-plus submitted results. 
This poses a problem as DNNs require thousands of training data 
to achieve good prediction rate. However, we use ‘transfer 
learning’ [1] that provide good prediction rates using a much 
smaller data set. 

4.2   SPECint_rate2006/fp_rate2006 
For INT we use a DNN with 3 hidden layers of 16 neurons each. 
Fig 3 show the how the cost, the training error (%Dev(Train)) 
and the dev/test error (%Dev(Dev)) change with the epochs. The 
training and dev errors start diverging around epoch number 
725. Hence we stop the training after this (known in DNN 
literature as ‘early stopping’ [9]. At this point we observe that 
the training error is about 5% and the dev/test error is about 7%.  

 
For FP we use a DNN of 3 hidden layers of 12 neurons each. In 
this case we observe that the training and dev error almost have 
similar error rates. Hence we continue running the iterative 
process for 1000 epochs. The error rate is achieved is of the order 
of 6%. The dev/train trends are very similar and overlap in the 
figure below. 

 

4.3   SPEComp2012 and SPECjbb2015 
We use a DNN similar to CPU2006 for SPEComp2012 and 
SPECjbb2015. For OMP we observe that a 3-hidden layer DNN 
having 18,10,12 neurons work well. The accuracy level of this 
DNN is lower than that of CPU2006. This is expected as the 
training data set is really small. However we still achieve a 
prediction rate of about 90%. SPECjbb2015 uses a 3-hidden layer 
DNN comprising of 14,10,12 hidden neurons. The accuracy 
achieved is about 85%. 

5 Related Work 
Using regression models for predicting performance is not new. 
This is known as empirical performance modeling [7]. However, 
most of these works depend on either linear regression or much 
simpler neural networks [4,5,6]. Also, these target mainly micro-
architectural performance but not a full system. The work that is 
closest to our current work [4] was done in 2008 using the SPEC 
CPU2000 suite which had about 3000 data sets. The authors 
applied both a linear regression model and a simple neural 
network. They concluded that the prediction accuracy of linear 
regression was better than the neural net. This could be due to 
various reasons including the fact that DNN was not prevalent 
ten years back. Also tools like Tensorflow were not available. 

6 Conclusions and Future Work 
In summary, we have performed an empirical modeling of 
current computer systems as reported in the SPEC website vis-à-
vis several performance benchmarks. We use a modern DNN 
implemented using Tensorflow. We have shown that our 
prediction error rate is low despite such coarse-grain modeling. 
This augurs well for understanding the approximate 
performance envelope of future systems which are still being 
designed and built. Our technique achieves better accuracy when 
compared to Linear Regression or Decision-Tree-based 
techniques. 
We would like to build DNNs with lower error rates. Whether 
that would require additional features that are unavailable in 
SPEC submissions, has to be investigated. Encoding categorical 
data like the processor type and compiler is a challenge. We 
would like to compare SPECnet with other modern machine 
learning algorithms like Boosted Decision Trees to get a fair 
comparison. Lastly, we would like to investigate alternate 
architectures of SPECnet (number of layers, number of neurons). 
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