
SPECnet: Predicting SPEC Scores using Deep Learning
Extended Abstract†

Dibyendu Das
AMD

dibyendu.das@amd.com

Prakash Raghavendra
AMD

prakash.raghavendra@amd.com

Arun Ramachandran
AMD

aruncoimbatore.ramachandran@amd.com

ABSTRACT
In this work we show how to build a deep neural network (DNN)
to predict SPEC® scores – called the SPECnet. More than ten
years have passed since the introduction of the SPEC CPU2006
suite (retired in January 2018) and thousands of submissions are
available for CPU2006 integer and floating point benchmarks.
We build a DNN which inputs hardware and software features
from these submissions and is subsequently trained on the
corresponding reported SPEC scores. We then use the trained
DNN to predict scores for upcoming machine configurations. We
achieve 5%-7% training and dev/test errors pointing to pretty
high accuracy rates (93%-95%) for prediction. Such a prediction
rate is very comparable to expected human-level accuracy of
97%-98% achieved via careful performance modelling of the core
and un-core system components. In addition to the CPU2006
suite, we also apply SPECnet to SPEComp2012 and SPECjbb2015.
Though the reported submissions for these benchmark suites
number in hundreds only, we show that such a DNN is able to
predict for these benchmarks reasonably well (~85% accuracy)
too. Our SPECnet implementation uses state-of-the-art
Tensorflow infrastructure and is extremely flexible and
extensible.

ACM Reference format:
Dibyendu Das, Prakesh Raghavendra, and Arun Ramachandran. 2018.
SPECnet: Predicting SPEC Scores using Deep Learning. In ICPE ’18:
ACM/SPEC International Conference on Performance Engineering
Companion, April 9 – 13, 2018, Berlin, Germany. ACM, New York, NY,
USA, 4 pages. DOI: https://doi.org/10.1145/3185768.3186301

INTRODUCTION
SPEC® [8] benchmarks are as the supporting memory,
interconnect, I/O etc). widely used to measure CPU and system
performance. But predicting SPEC scores for upcoming system
configurations remains a challenging task (Here a system will
refer to the SoC containing the core as well). This task is
important in view of the criticality of such scores for positioning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICPE '18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04…$15.00
https://doi.org/10.1145/3185768.3186301

these systems in the market - especially in the server business.
Long before such systems are actually built and shipped, micro-
architects and performance experts try to predict the scores that
can be achieved by the new systems. This involves careful
modeling (analytical or otherwise) of the core as well as the
other components like memory and interconnect. With the
advent of hyper-threaded multi-cores having a large number of
cores, presence of NUMA as well as NUCA, and complex
interconnects between the dies hosting the cores, such modeling
have becoming increasingly complicated. And if you are trying
to predict SPEC scores ahead of time, such modeling may need
to depend on simulators which are slow and time-consuming.
All these factors usually lead to high prediction error even after
considerable effort is spent.
We take a different approach. Our idea is to reach a prediction
estimate using coarse-grained system features rather than fine-
grained modeling. This saves time and effort in a big way as long
as the prediction error is within acceptable limits. In view of this,
we extract these features from the SPEC submissions. These
features comprise of both hardware and software components as
reported in each of the SPEC submissions. Once the features are
extracted, we apply a Deep Neural Network (DNN) that uses
these features as inputs and learns from the corresponding SPEC
scores using an iterative process called Gradient Descent that
minimizes the prediction error. This phase is called the training
phase. Once the prediction error-rate in training reaches
acceptable levels and saturates we stop the training process. The
DNN is now ready for predicting scores for new systems that
have not been seen before. Since some of these systems are
forward-looking it may be difficult to estimate the full efficacy of
the method till those systems are built. However, we see low
prediction error-rates when such a DNN is fed with system
configurations from the SPEC-submitted results not encountered
by the DNN before.
We call our DNN the SPECnet. SPECnet can predict scores for
SPECint_rate2006, SPECfp_rate2006, SPEComp2012 and
SPECjbb2015 [8]. The architecture of SPECnet for each of these
benchmark suites are very similar though they differ slightly in
certain parameters. Theoretically, we could have built a single
DNN for predicting all these scores, but at this point we prefer to
keep them separate in order to learn more about the
characteristics of each of these suites and how they behave for
different kinds of submitted system configurations. SPECnet
achieves good prediction rates for the dev/test sets that are kept
aside from the submitted results and are not presented to the
DNN for training. In the following sections we give a brief
overview of Deep Neural Networks and Tensorflow. We show

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

29

the architecture of SPECnet and present results. We conclude
with background and future work.

2 DEEP NEURAL NETWORK: OVERVIEW
Neural networks are inspired from a neuron’s computation that
involves a weighted sum of the input values. Furthermore, the
neuron does not output that weighted sum. Instead there is a
functional operation which is a non-linear function that causes a
neuron to generate an output only if the inputs cross some
threshold. Thus by analogy, neural networks apply a non-linear
function to the weighted sum of the input values [10].

Figure 1: Neural Network with hidden neurons and layers

Fig 1 shows a picture of a computational neural network with
several neurons in the input layer and only one neuron in the
output layer. It also has a number of intermediate layers called
the ‘hidden layers’. Each neuron in a layer is connected to all the
neurons in the next layer – this architecture is known as a ‘Fully
Connected’ layer architecture [1,9]. The neurons in the input
layer receive some values (features in this case) and propagate
them to the neurons in the middle layers of the network. The
propagation is nothing else but matrix multiplications (usually)
followed by the application of a non-linear function (ex: sigmoid,
tanh, ReLu [1,9] etc.). The activation function is not shown in the
figure for simplicity. The outputs from the hidden layers are
propagated to the output layer, which presents the final outputs
of the network. The computation at each layer can be stated as:

𝑌 = 𝑓(𝑊 ∗ 𝑋 + 𝐵)
Where W is the weight matrix representing the edge
connectivity between two successive layers. X and Y are vectors
representing input and output activations, respectively. f is a
non-linear function like ReLU (Rectified Linear Unit). The bias
vector is represented as B. For the first hidden layer X = F where
F is the feature vector. For latter layers, the output Y from an
earlier layer becomes the input X of the next layer.
Neural networks having more than three layers, i.e., more than
one hidden layer is usually termed a Deep Neural Network
(DNN). DNNs are capable of learning high-level features with
more complexity and abstraction than shallower neural
networks. An example that demonstrates this point is using
DNNs to process visual data [1]. This deep feature hierarchy

enables DNNs to achieve superior performance in many tasks.
DNNs can be used either for classification (as in what kind of
image is this) and regression (function fitting). SPECnet is an
example of the latter type whereby the DNN learns a function
from the input feature set to a SPEC score. In DNNs, learning
involves determining the value of the weights (and bias) in the
network, and is referred to as training the network. Once
trained, the program can perform its task by computing the
output of the network using the weights determined during the
training process referred to as inference or prediction. The main
goal for training a DNN is to determine the weights that
minimizes the loss. For SPECnet the loss is the deviation of the
predicted score from the actual score submitted. When training a
network, the weight matrices are usually updated using a hill-
climbing optimization process called gradient descent. A
multiple of the gradient of the loss relative to each weight, which
is the partial derivative of the loss with respect to the weight, is
used to update the weight. Note that this gradient indicates how
the weights should change in order to reduce the loss. The
process is repeated iteratively to reduce the overall loss. An
efficient way to compute the partial derivatives of the gradient is
through a process called backpropagation [1,9].

3 SPECNET
In this section we look at the architecture of the SPECnet. Before
that we need to focus on the features that need to be extracted
from the SPEC submitted results that will be fed to the DNN for
training and inference.

3.1 Input Features
Each SPEC submission (CPU2006, OMP2012, jbb2015) comprises
of a number of hardware and software features that can be
downloaded from the SPEC website [8] in .csv format. These
features include the processor type, clock speed, memory type,
compiler used, vendor name, year of publication etc. In addition,
the text/pdf files contain details about the compiler flags and
associated details. We have whittled down the set of features to
be input to SPECnet to 13. They are the following:
< Number of cores, Number of chips, Base Frequency, Boost
Frequency, Processor Type, Base Copies, Year of PublicaƟon, L3
per core, L2 per core, L1 per core, Memory Speed, Memory
Size, Compiler Used >
Note that some of these features are ‘categorical’ in nature
which means that there is no direct numerical association of this
feature. The processor type and the compiler used are two such
cases. Popular methods of encoding categorical variables include
‘one hot encoding’ [9] as well as hashing. For SPECnet we have
used a slightly different approach. We have manually associated
numerical values with the processor type and compiler used. To
simplify things, we have encoded the processor type with a
number for each processor manufacturing company, with a
higher number signifying a more powerful processor. A similar
policy has been adopted for compiler encoding.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

30

3.2 SPECnet Architecture
The DNN for SPECnet consists of an input layer which accepts
the 13 features described above, an output layer of one neuron
that emits the predicted SPEC score and three hidden layers.
Hence it’s a 5-level DNN. All the layers are fully connected. Each
hidden neuron has an activation function that is a ReLU. As
mentioned earlier, each layer applies a matrix multiplication
followed by a ReLU operation on each of the outputs of the
neurons. Fig 2. Shows the architecture of SPECnet:

Figure 2: SPECnet architecture
The input features to SPECnet are listed as F1…F13 as we have 13
input features. At each successive layer, the weight matrix is
multiplied by the output of the previous layer and ReLU applied
on the resultant vector. We arrived at the architecture above via
several experiments and hyper-parameter tuning. We observed
that reducing the number of hidden layers reduced the quality of
prediction (error rate increases). Also, adding layers beyond 3
did not help in improving the error rates further.

3.3 SPECnet Implementation using
Tensorflow

We use Tensorflow [3] to implement SPECnet. Tensorflow is an
interface for expressing machine-learning algorithms from
Google, based on Python. The algorithms can be expressed as
high-level computation graphs in a data-flow style with matrix
operations and activation functions available as basic operations.
The SPECnet is specified as a computation graph and a gradient
descent optimizer is used that minimizes the loss between the
predicted SPEC score and the reported SPEC score. We use
MAPE (Mean Absolute Percentage Error) [2] as the loss function.
If the predicted SPEC score is PSP and the actual score is SP then
the loss function is given by:

100 ∗ |𝑃𝑆𝑃 − 𝑆𝑃|

|𝑆𝑃|

The gradient descent optimizer [1] works iteratively using a
forward-propagation pass and a backward propagation pass.
Each such combined pass is called an epoch. Tensorflow
provides in-built gradient descent optimization functions which
can minimize the specified loss function over a number of

epochs. The number of epochs is a tunable hyper-parameter and
the iterative process is continued till the loss reaches acceptable
limits or there is divergence between the training and dev/test
error rates.
Here’s a snippet of the Tensorflow code that shows the
computation graph with ‘x’ being the input layer and the
‘out_layer’ being the predicted SPEC score. ‘weights’ and ‘biases’
are the matrices corresponding to the weights and biases that the
gradient descent algorithm tries to infer for minimizing the loss.

4 EXPERIMENTS
In this section we outline our experiments using SPECnet for
CPU2006 INT and FP suites, OMP2012 and jbb2015.

4.1 Methodology
For our experiments we have downloaded the entire history of
submitted results for the SPEC suites mentioned above. The
SPECint_rate2006 and SPECfp_rate2006 suites contain more than
14000 and 13000 results respectively. We remove those results
which are invalid (SPEC score of 0) as well as the ones submitted
with auto-parallelization turned ON. We now divide these
results into separate training and dev/test sets in the rough ratio
of 80%-20%. So for INT we use about 11000 results for training
and about 2500 for dev/test. The dev/test set is not presented to
the DNN for training. The SPEComp2012 and SPECjbb2015 on

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

31

the other hand contain only about 100-plus submitted results.
This poses a problem as DNNs require thousands of training data
to achieve good prediction rate. However, we use ‘transfer
learning’ [1] that provide good prediction rates using a much
smaller data set.

4.2 SPECint_rate2006/fp_rate2006
For INT we use a DNN with 3 hidden layers of 16 neurons each.
Fig 3 show the how the cost, the training error (%Dev(Train))
and the dev/test error (%Dev(Dev)) change with the epochs. The
training and dev errors start diverging around epoch number
725. Hence we stop the training after this (known in DNN
literature as ‘early stopping’ [9]. At this point we observe that
the training error is about 5% and the dev/test error is about 7%.

For FP we use a DNN of 3 hidden layers of 12 neurons each. In
this case we observe that the training and dev error almost have
similar error rates. Hence we continue running the iterative
process for 1000 epochs. The error rate is achieved is of the order
of 6%. The dev/train trends are very similar and overlap in the
figure below.

4.3 SPEComp2012 and SPECjbb2015
We use a DNN similar to CPU2006 for SPEComp2012 and
SPECjbb2015. For OMP we observe that a 3-hidden layer DNN
having 18,10,12 neurons work well. The accuracy level of this
DNN is lower than that of CPU2006. This is expected as the
training data set is really small. However we still achieve a
prediction rate of about 90%. SPECjbb2015 uses a 3-hidden layer
DNN comprising of 14,10,12 hidden neurons. The accuracy
achieved is about 85%.

5 Related Work
Using regression models for predicting performance is not new.
This is known as empirical performance modeling [7]. However,
most of these works depend on either linear regression or much
simpler neural networks [4,5,6]. Also, these target mainly micro-
architectural performance but not a full system. The work that is
closest to our current work [4] was done in 2008 using the SPEC
CPU2000 suite which had about 3000 data sets. The authors
applied both a linear regression model and a simple neural
network. They concluded that the prediction accuracy of linear
regression was better than the neural net. This could be due to
various reasons including the fact that DNN was not prevalent
ten years back. Also tools like Tensorflow were not available.

6 Conclusions and Future Work
In summary, we have performed an empirical modeling of
current computer systems as reported in the SPEC website vis-à-
vis several performance benchmarks. We use a modern DNN
implemented using Tensorflow. We have shown that our
prediction error rate is low despite such coarse-grain modeling.
This augurs well for understanding the approximate
performance envelope of future systems which are still being
designed and built. Our technique achieves better accuracy when
compared to Linear Regression or Decision-Tree-based
techniques.
We would like to build DNNs with lower error rates. Whether
that would require additional features that are unavailable in
SPEC submissions, has to be investigated. Encoding categorical
data like the processor type and compiler is a challenge. We
would like to compare SPECnet with other modern machine
learning algorithms like Boosted Decision Trees to get a fair
comparison. Lastly, we would like to investigate alternate
architectures of SPECnet (number of layers, number of neurons).

REFERENCES
[1] Ian Goodfellow, Yushio Bengio and Aaron Courville. 2016. Deep Learning.

MIT Press, http://www.deeplearningbook.org/ .
[2] Arnaud De Myttenaere, Boris Golden, Benedicte Le Grand and Fabrice Rossi.

2015. Using the Mean Absolute Percentage Error for Regression Models.
https://hal.archives-ouvertes.fr/hal-01162980

[3] Matin Abadi et al. 2015. Tensorflow: Large Scale Machine Learning on
Heterogeneous Distributed Systems. Preliminary White Paper.

[4] Berkin Ozisikyyilmaz, Gokhan Memik and Alok Choudhary. 2008. Machine
Learning Models to Predict Performance of Computer System Design
Alternatives. ICPP ‘08.

[5] Engin Ipek, Sally A. McKee, Bronis R. de Supinski and Rich Caruana. 2006.
Efficiently Explooring Architectural Design Spaces via Predictive Modeling.
ASPLOS ’06.

[6] Benjamin C. Lee. 2011. An Architectural Assessment of SPEC CPU Benchmark
Relevance. Harvard Computer Science Group Technical Report TR-02-06.

[7] Sam Van den Steen, Sander De Pestel, Moncef Mechri, Stijn Eyerman, Trevor
Carlson, David Black-Schaffer, Erik Hagersten and Liven Eeckhout. 2015.
Micro-Architecture Independent Analytical Processor Performance and Power
Modeling. ISPASS 2015.

[8] SPEC®: Standard Performance Evaluation Corporation. http://www.spec.org
[9] Andrew Ng. https://www.coursera.org/learn/machine-learning
[10] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer. 2017. Efficient

Processing of Deep Neural Networks: A Tutorial and Survey.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

32

