
DIBS: A Data Integration Benchmark Suite
Anthony M. Cabrera, Clayton J. Faber, Kyle Cepeda, Robert Derber, Cooper Epstein, Jason Zheng,

Ron K. Cytron, and Roger D. Chamberlain
Washington University in St. Louis, St. Louis, Missouri, USA

{acabrera,cfaber,kcepeda,derber,cepstein,jasondzheng,cytron,roger}@wustl.edu

ABSTRACT
As the generation of data becomes more prolific, the amount of
time and resources necessary to perform analyses on these data in-
creases. What is less understood, however, is the data preprocessing
steps that must be applied before anymeaningful analysis can begin.
This problem of taking data in some initial form and transforming it
into a desired one is known as data integration. Here, we introduce
the Data Integration Benchmarking Suite (DIBS), a suite of applica-
tions that are representative of data integration workloads across
many disciplines. We apply a comprehensive characterization to
these applications to better understand the general behavior of data
integration tasks. As a result of our benchmark suite and character-
ization methods, we offer insight regarding data integration tasks
that will guide other researchers designing solutions in this area.

CCS CONCEPTS
• General and reference → Performance;

KEYWORDS
Big data, data integration, data wrangling
ACM Reference Format:
Anthony M. Cabrera, Clayton J. Faber, Kyle Cepeda, Robert Derber, Cooper
Epstein, Jason Zheng, Ron K. Cytron, and Roger D. Chamberlain. 2018.
DIBS: A Data Integration Benchmark Suite. In ICPE ’18: ACM/SPEC Inter-
national Conference on Performance Engineering Companion , April 9–13,
2018, Berlin, Germany. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3185768.3186307

1 INTRODUCTION
Generating and analyzing big data are tasks encountered by many
researchers in various disciplines. Social networks, computational
biology, sensor data, and entrepreneurial records are just a small
sample of the range of applications that encounter extensive data
streams. It is generally well understood that big data is voluminous
and prevalent in the research and industrial communities alike, and
there is often a non-trivial amount of time, effort, and resources
that are spent retrieving and preprocessing big data.

This problem of taking data in some initial form and transform-
ing it into a desired one comes in several flavors. It might involve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186307

field rearranging, altering boundary notations, encryption, parsing
non-record data and organizing it into a record-oriented form, etc.
We define this problem, collectively, as data integration. In the busi-
ness community, this is part of the Extract, Transform, and Load
(ETL) process, specifically the transform step. Other phrases that
are often used are data cleansing and pre-analytics. Frequently, the
challenges here include parsing of the data to extract what struc-
ture does exist (e.g., click streams) and text processing to address
unstructured data (e.g., blog posts). While the individual transforms
are each mostly straightforward, the task is quickly complicated
by voluminous data streams that require distinct transformation
specifications. Tens to hundreds of multi-Gigabyte data streams
must be concurrently integrated prior to actually doing any of the
real data analysis, the ultimate goal.

Data integration manifests itself in many preliminary steps taken
before analyzing any data. As an example, consider the needs of a
researcher in biosequence analysis. Genomic and proteomic data
sets are available from a wide variety of sources in a large number
of disparate formats (e.g., FASTA, FASTQ, SAM, BAM, AB1/SCF,
PDB, GTF, etc.). The data volumes are sufficiently large that simply
transforming the data from its original form into that needed for
analysis is becoming time prohibitive (e.g., three days are required
to perform duplicate marking, base score quality recalibration, and
local realignment on a 250 GB BAM file at 30× coverage [5]).

While there are a number of ways to organize data integration
applications, we will consider an individual data integration job to
be decomposed into one or more of the following three tasks:

• Parsing/Cleansing – the computation associatedwith recognizing
the records, fields, and/or other components of the input data,
including checking to see if it is well-formed and addressing any
example inputs that aren’t well-formed.

• Transformation – once parsed, the input data must be translated
into the form expected by the primary computation, typically
going from a file-oriented format to a memory-oriented format.

• Aggregation – any pre-analytics computations that result in
aggregate information about the input.

We present the Data Integration Benchmark Suite (DIBS), a set
of applications spanning several different application domains and
the above three types of data integration tasks. DIBS tries to be
reasonably comprehensive with respect to both applications and
tasks. To help us address how comprehensive they truly are, the
benchmarks are characterized through different measures in order
to capture the properties (and idiosyncrasies) across the various
data integration tasks represented in the suite. The goals of DIBS
are to provide insight into the the nature of data integration tasks
to guide research in this area, and to create a way in which different
research groups can compare their work and improve performance.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

25

https://doi.org/10.1145/3185768.3186307
https://doi.org/10.1145/3185768.3186307
https://doi.org/10.1145/3185768.3186307

ICPE ’18, April 9–13, 2018, Berlin, Germany AM Cabrera et al.

2 BACKGROUND AND RELATEDWORK
The data integration problem has received considerable attention
already in the research community. Quoting from Kandel et al. [6],
“In spite of advances in technologies for working with data, analysts
still spend an inordinate amount of time diagnosing data quality is-
sues and manipulating data into a usable form. This process of ‘data
wrangling’ often constitutes the most tedious and time-consuming
aspect of analysis.” Dasu and Johnson indicate that data reformat-
ting and cleaning accounts for up to 80% of the development time
and cost in data warehousing projects [3].

Customized domain specific languages and graphical user inter-
faces exist that are designed explicitly for describing data trans-
formation workflows. Examples include Potter’s Wheel [11] and
Wrangler [7]. In addition, there are commercial systems available
both to specify and execute workflows, e.g., IBM’s InfoSphere and
Informatica. There are also many systems aimed at scientific data
(e.g., see [4, 9]). While there is significant disparity of data formats
in many disciplines, other disciplines have a stronger culture of data
description via XML and semantic ontologies, enabling a higher
degree of automation in the specification of data transformations.

Our interest is in helping research groups compare and improve
implementations of systems that execute data transformations by
providing a baseline implementation and its accompanying charac-
terization. The classic way to do this is via a benchmark suite. Poess
et al. [10] have developed an enterprise-centric data integration
benchmark, but do not speak to the more general data integra-
tion audience. To the best of our knowledge, we present the first
benchmark suite that broadly characterizes data integration tasks.

3 OVERVIEW OF BENCHMARK SUITE
The challenges in selecting candidate applications for any bench-
mark suite include whether or not the candidates that are ultimately
included are both representative of the field and comprehensive
in their coverage of the field. To help us assure that the selected
applications are representative, we consider each application across
two dimensions. First, we want to capture the breadth of applica-
tion domains that handle large volumes of data. Second, we include
tasks that span the three composite parts of data integration.

To address this, we have selected data integration applications
from a variety of disciplines that span different dimensions (i.e., 1-
and 2-D data) and tasks. The relationship between the five appli-
cation domains, types of integration tasks, and elements included
in the benchmark are all summarized in Table 1. In all cases, the
data integration applications are written in C and the input data set
size is large enough such that any second-order effects caused by
start-up transients can be ignored.

To assess the extent to which the benchmark suite provides
comprehensive coverage, we will rely primarily on the distribution
of the properties of the applications, described in Section 4 below.

4 CHARACTERIZATION
In determining what attributes to choose to characterize our bench-
mark suite, we want to address two specific things. The first is
choosing an analysis that allows for a comprehensive look at the
suite through many characteristic dimensions to capture the overall
behavior of each task and capture any idiosyncrasies associated

Data Integration Tasks

Domain Parsing/Cleansing Transformation Aggregation

Computational Biology Separate bases and meta-data fa→2bit Track total sizeHandle non-A,T,G,C bases 2-bit→fa

Image Processing Parse FITS tags

fits→tiff Pixel statistics
idx→tiff Histogram

optdigits→tiff Taking log of pixels
unipen→tiff

Enterprise Adjust non-ASCII characters ebcdic→txt Count number of elementsfix→float

Internet of Things Tokenize input
tstcsv→csv

Running total of file sizegotrackcsv→csv
plt→csv

Graph Processing Parse edge list edgelist→csr Get total vertex/edge count
Compute vertex edge degree

Table 1: Data Integration Task Classification.

with them. Second, we wish to craft an analysis that is independent
of the system that our suite is deployed on. From this, we have
chosen to characterize the applications based on spatial/temporal
locality, branch entropy, and instruction mix.

Measures of locality allow us to examine the behavior of a pro-
gram’s memory access patterns. Qualitatively, a program’s spatial
locality is described by whether or not subsequent memory ref-
erences will be located near previous memory accesses. Higher
spatial locality is generally beneficial to performance because it
allows contiguous chunks of data to exist in caches with less thrash-
ing and evictions. In order to quantify this in an architecturally
independent manner, we draw from work fromWeinberg et al. [12].
In this metric they describe the stride of a memory access as the
difference between two memory reference addresses in units of a
64-bit word size and quantify spatial locality in the following way:

LSpatial =
∞∑
i=1

str ide i
i (1)

where stridei is the total number of memory accesses that are of
stride length i . The result of this expression is a normalized score
in the range [0,1] that can be used to compare the spatial locality
between programs.

Temporal locality is a characteristic of a program’s memory ac-
cess pattern that describes the frequency of memory accesses to
the same memory location. Higher temporally local programs refer-
ence the same memory locations numerous times which positively
affects performance. To quantify temporal locality, we again draw
from Weinberg et al. [12] and examine data reuse. Given a particu-
lar memory address, data reuse is the number of unique memory
addresses that have been accessed before that particular memory
address is referenced again. The formula used to quantify temporal
locality is shown below:

LT emporal =

log2 (N)−1∑
i=0

[(r euse2i+1−r euse2i) × (log2(N)−i)]
log2 N

(2)

where reuse2i is the number of dynamic memory accesses with
reuse distance less than or equal to 2i and N is the largest reuse
distance used. This metric also produces a score within the range
[0,1] with which to compare temporal locality scores of programs.

The predictability of a program’s control flow can be character-
ized by the regularity of the program’s branching behavior dur-
ing execution. Regularity in a program’s control can dictate the
performance of a program on an underlying architecture. Strong
regularity in control behavior allows for more confident branch
predictions. To quantify branching behavior, we draw from work

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

26

DIBS: A Data Integration Benchmark Suite ICPE ’18, April 9–13, 2018, Berlin, Germany

CPU Intel Core i7 930
Clock rate 2.8 GHz

L1 d-cache size 32 KB
L1 i-cache size 32 KB
L2 cache size 256 KB
L3 cache size 8192 KB
RAM size 24 GB
Compiler GCC 4.8.4

ISA x86-64

Application Throughput
(MB/s)

fa→2bit 23.4
2bit→fa 12.2
fits→tiff 43.8
idx→tiff 13.2

optdigits→tiff 133
unipen→tiff 0.113
ebcdic→txt 139
fix→float 204
tstcsv→csv 75.8

gotrackcsv→csv 104
plt→csv 123

edgelist→csr 40
Table 2: Experimental machine specifications (left).

Table 3: Throughput results (right).

done by Yokota et al. [13] regarding branch entropy. Specifically,
we use their formulation for table reference entropy, based on the
values that a pattern history register assumes. The pattern history
register acts as a shift register that either shifts in a 1 or 0 for a
branch that is taken or not taken, respectively. In this case, we will
make the shift register 16 bits in length. A table reference entry,
then, is a resulting 16-bit value that the pattern history register
takes after it is updated by a branching decision. The formula for
the branch entropy metric is shown below:

BE = −∑
i
p(Ei) log2 p(Ei) (3)

where Ei is the i-th entry of the table, and p(Ei) is the probability
of Ei occurring.

The instruction mix of a program is a measure of the unique in-
struction classes the program contains and the distribution of those
instructions during execution. We classify instructions in three cat-
egories: compute, control flow/branch, and data movement. In our
benchmark suite, we examine dynamic instruction mix, which is the
count of how many times the aforementioned classes of machine
instructions were executed. This metric can reveal hotspots of a pro-
gram’s execution and characterize the execution-time leanings of
the program, for example, mostly compute or an equal combination
of data movement and compute.

5 EXPERIMENTAL METHODS
In this work, we are only considering program execution on a single
core and the working set size fits in the experimental machine’s
RAM. We leave to future work the deployment on multiple cores
and heterogeneous/distributed systems.

To measure locality, branch entropy, and instruction mix, we use
a dynamic binary instrumentation framework called Pin for IA-32,
x86-64, and MIC ISAs that allows us to dynamically instrument our
applications[8]. Thus, instrumentation is performed at run time,
which captures dynamic application behaviors. The Pin framework
allows us to mostly perform architecturally independent analyses
of each program in our benchmark suite.

Since instruction mix is inherently architecture dependent, we
compile all programs with the default level of optimization in GCC
to prevent the exploitation of architecturally specific features at
compile time. We also use a coarse categorization of instruction
types to abstract away details of differing architectures. Since x86-
64 is a CISC instruction set, some instructions do have implicit

Figure 1: Spatial locality measure. Maximum score of 1.

Figure 2: Temporal locality measure. Maximum score of 1.

data movement within an instruction. In these cases, we categorize
the instruction based on its main function. For a subset of the
applications, we provide instruction mix data for the ARM AArch64
instruction set. Since the AArch64 instruction set is not supported
by the Pin framework, we use the gem5 simulation environment [1]
and cross-compile our applications to make this characterization.

To provide baseline performance numbers, we executed each
benchmark application on a single core of the machine whose prop-
erties are shown in Table 2. The throughput rates (input data size

execution time)
are shown in Table 3. In each case, the average over 100 runs is re-
ported. These reported rates are below that achievable in a modern
I/O subsystem, therefore warranting investigation of their compu-
tational performance properties.

6 RESULTS AND DISCUSSION
Spatial and temporal locality results are shown in Figures 1 and 2.
Since most data records are located next to each other in mem-
ory, we expected that most programs exhibit high LSpatial . Since
data are effectively streamed, we expected LT emporal be generally
low. Although LSpatial and LT emporal across the suite are not as
high and low, respectively, as originally posited, they are consis-
tent relative to each other. This supports the notion that most data
integration applications do have a uniform degree of locality. The
applications in which this does not fully hold allows this character-
ization to capture the idiosyncrasies associated with those tasks,
which adds to the insight and comprehensiveness.

Decomposing the cumulative sums used to calculate LSpatial for
each task, we observe that 75% of memory references occur within a
stride of 80 bytes for 10 of the 12 data integration applications. Eight
of the 12 applications have higher spatial locality than temporal
locality. Decomposing the temporal locality scores, we observe
that these integration tasks show minimal data reuse at smaller
reuse distances which explains the lower temporal scores. Future
approaches to performance improvement could be tailored to either
exploit the current degree of locality or increase the locality present.

Figure 3 shows the branch entropy results. We observe that there
is a wide swing in branch entropy, which speaks to the variabil-
ity of each application with respect to control flow. However, the
applications execute with some degree of control flow regularity,
since no application in the benchmark suite exceeds 8 bits, where
the max is 16. Achieving the maximum value of branch entropy

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

27

ICPE ’18, April 9–13, 2018, Berlin, Germany AM Cabrera et al.

Figure 3: Branch entropy measure. Maximum score of 16.

Figure 4: x86-64 dynamic instruction mix.

Figure 5: AArch64 dynamic instruction mix.

requires an equal probability of occurrence of all possible entries in
the pattern history register. This is not the case in our application
suite because at their core, all integration tasks take the form of
iterating over a set of data records. This result has implications for
how complex the branch predicting algorithms and hardware of a
particular system needs to be for data integration tasks.

Figure 4 shows the results for the dynamic instruction mix char-
acterization. One observation is that the instruction mix varies
fairly significantly across the suite; an indication that the choice
of applications is comprehensive. Additionally, we see the promi-
nence of data movement instructions in each integration task. 8 of
12 tasks are comprised of 50% or more data movement instructions,
noting that this figure could be even larger but was limited as a
result of how we binned complex instructions. This follows from
the fact that our benchmark suite is comprised of data-related op-
erations. Since data movement is expensive and time-consuming,
this presents opportunities towards minimizing data movement or
exploring processing-in or near-memory approaches.

Figure 5 shows the results for 7 of the 12 benchmark applica-
tions when compiled to the ARM instruction set. An important
observation is that these results are distinct from those reported in
Figure 4, confirming that this characterization is at least somewhat
architecture dependent. This necessitates a review of performance
when porting and compiling data integration codes across different
architectures because optimizations for one architecture may not
exhibit the same gains on another architecture. Second, the fraction
of data movement instructions is noticeably smaller (especially for a
few of the applications), which could easily be due to the distinction
between the RISC and CISC instruction set styles.

Our vision is that the future of computer architecture is heading
to a situation where increased customization of execution platforms

is available (e.g., big.LITTLE, reconfigurable logic accelerators, etc.).
This implies that application developers canmore effectively exploit
properties of their applications for performance gains. Currently,
we are investigating how to model performance given the resulting
characterization, total number of instructions, ISA, and the rela-
tionships between these parameters in order to yield theoretical
estimates of throughput and quantify the effects of each parameter.
Ideally, such a model could guide the design of systems that have
higher performance on data integration, generally.

7 CONCLUSIONS
The Data Integration Benchmark Suite (DIBS) is a set of data in-
tegration applications that is representative of various disciplines
and integration tasks. We explore the general qualities and id-
iosyncrasies of the suite by applying a comprehensive and (mostly)
architecturally-independent characterization to each application.
From this, we observe that most data integration tasks have a con-
sistent level of both spatial and temporal locality and usually exhibit
higher spatial locality. The applications also exhibit high degrees of
control flow regularity and data movement. The characterization
of the applications is only the first step of a work-in-progress. We
anticipate that the insights gained from our characterizations will
guide both software and hardware research in exploring and exploit-
ing the qualities of data integration tasks to improve performance.
Finally, we have made these applications and datasets publicly avail-
able [2] so that researchers can compare data integration-specific
solutions and systems.

ACKNOWLEDGEMENTS
This work was supported by the NSF under grant CNS-1527510.

REFERENCES
[1] Nathan Binkert et al. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News

39, 2 (Aug. 2011), 1–7.
[2] Anthony Cabrera et al. 2018. Data Integration Benchmark Suite V1. https:

/doi.org/10.7936/K7NZ8715. (April 2018).
[3] Tamraparni Dasu and Theodore Johnson. 2003. Exploratory Data Mining and

Data Cleaning. John Wiley & Sons, Inc.
[4] Ewa Deelman et al. 2005. Pegasus: A framework for mapping complex scientific

workflows onto distributed systems. Scientific Programming 13, 3 (2005), 219–237.
[5] Matt Massie et al. 2013. ADAM: Genomics Formats and Processing Patterns for

Cloud Scale Computing. Technical Report UCB/EECS-2013-207. UC Berkeley.
[6] Sean Kandel et al. 2011. Research directions in data wrangling: Visualizations

and transformations for usable and credible data. Information Visualization 10, 4
(Oct. 2011), 271–288.

[7] Sean Kandel et al. 2011. Wrangler: Interactive Visual Specification of Data
Transformation Scripts. In Proc. of SIGCHI Conf. on Human Factors in Computing
Systems. 3363–3372.

[8] Chi-Keung Luk et al. 2005. Pin: Building Customized ProgramAnalysis Tools with
Dynamic Instrumentation. In Proc. of ACM SIGPLAN Conference on Programming
Language Design and Implementation. 190–200.

[9] Tom Oinn et al. 2006. Taverna: Lessons in creating a workflow environment for
the life sciences. Concurrency and Computation: Practice and Experience 18, 10
(2006), 1067–1100.

[10] Meikel Poess et al. 2014. TPC-DI: The first industry benchmark for data integra-
tion. Proceedings of the VLDB Endowment 7, 13 (2014), 1367–1378.

[11] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Inter-
active Data Cleaning System. In Proc. of 27th Int’l Conf. on Very Large Data Bases.
381–390.

[12] JonathanWeinberg et al. 2005. Quantifying locality in thememory access patterns
of HPC applications. In Proc. of ACM/IEEE Supercomputing Conference.

[13] Takashi Yokota, Kanemitsu Ootsu, and Takanobu Baba. 2008. Potentials of
branch predictors: From entropy viewpoints. In Proc. of International Conference
on Architecture of Computing Systems. 273–285.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

28

https:/doi.org/10.7936/K7NZ8715
https:/doi.org/10.7936/K7NZ8715

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Overview of Benchmark Suite
	4 Characterization
	5 Experimental Methods
	6 Results and Discussion
	7 Conclusions
	References

