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ABSTRACT

Many applications in the enterprise domain require batch process-

ing to perform business critical operations. Batch jobs perform

automated, complex processing of large volumes of data without

human intervention. Parallel processing allows multiple batch jobs

to run concurrently to minimize the total completion time. How-

ever, this may result in one or more jobs exceeding their individual

completion deadline due to resource sharing.

The objective of this work is to predict the completion time of a

batch job when it is running in conjunction with other batch jobs.

Batch jobs may be multi-threaded and threads can have distinct

CPU requirements. Our predictions are based on a simulationmodel

using the service demand (total CPU time required) of each thread

in the job. Moreover, for multi-threaded jobs, we simulate the server

with instantaneous CPU utilization of each job in the small intervals

instead of aggregate value while predicting the completion time.

In this paper, a simulation based method is presented to predict

the completion time of each batch job in a concurrent run of multi-

ple jobs. A validation study with synthetic benchmark FIO shows

that the job completion time prediction error is less than 15% in the

worst case.
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1 INTRODUCTION

Batch workloads are usually compute intensive with repetitive

transactions. One interesting challenge in batch workloads is to

study the impact of one job on other concurrently running jobs

in the batch. Although batch jobs are scheduled to run during

off-hours, known as batch window, but these jobs can over run

long enough in the presence of other jobs to impact the critical

transactions during business hours. Hence it is very important to

estimate the completion time of a job a priori in the presence of

other jobs.
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Generally multiprocessor compute resources used for batch jobs

are managed using time sharing. The completion time of each

individual batch job, when it runs concurrently with other jobs, can

be derived simply from its clock time in isolation. This naive way of

execution time computation generates correct results when number

of cores available is more than the cores required by concurrent

jobs. If in a case when the number of cores is less than the total

requirement of the jobs, cores are shared between jobs or threads

according to the operating system policy. This requires an advanced

job execution model for completion time predictions.

Moreover, predicting the completion time of batch jobs becomes

more challenging if these jobs are multi-threaded with distinct

service demands of threads. Different threads constituting a job

may have different service demands which directly affects the job

completion time. This is due to the fact that early finishing threads

do not compete for the resources and those unused computing

resources are available for remaining threads. This results in faster

overall execution of the remaining threads in the system.

We present a method to predict the completion time of concur-

rent batch jobs. Our method considers distinct service demands of

threads in jobs. We consider CPU utilization of a job as a function

of time or a distribution while simulating a thread on a server.

2 OUR APPROACH

We first characterize individual batch job. We observe the service

demand of each thread in the job and also measure the CPU utiliza-

tion of the job at small intervals of time during the execution. A

job execution model is designed based on the statistical analysis of

the job characterization data. The job execution model is simulated

using a discrete event simulation tool called PROWL developed by

us.

2.1 Service Demand Measurement

Threads in a job may be assigned unique work and hence their

service demands are non-identical within a job. This variation in

service demand among threads in a job affects the completion time

of all the jobs running concurrently. Hence it is very important to

measure the service demand of each thread in a job for accurate

simulation and prediction of job completion time of parallel running

jobs in a batch. We measure the service demand of each thread in a

job in isolation.

2.2 CPU Utilization Measurement

The varying CPU consumption by a job during the different stages

of execution affects the completion time of other jobs. The aber-

rations in the completion time prediction of a batch job can be

mitigated by simulating the thread execution behavior for smaller

intervals of time. This requires capturing the CPU utilization value
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Figure 1: (a) Job execution model (b) Thread execution in

small intervals

of the job at small intervals in isolation and fitting into a regres-

sion (linear or non-linear, exponential, polynomial of degree n etc.)

function or distribution. Thus CPU utilization of a job can be rep-

resented with the help of a appropriate function of time or some

distribution. Instead of using the constant CPU utilization for the

entire run of a thread, instantaneous values of CPU utilization can

be derived with the distribution or function of time for each of the

smaller intervals during simulations.

2.3 Job execution model

The job execution model that we use is as shown in the Figure 1a.

In our approach we model the execution time of a thread in small

intervals of time based on time spent in CPU and its idle time outside

CPU. Total execution time of each individual thread i is divided into

small intervals n of size T such that n ∗T = Ei (Figure 1b). Within

each interval we determine the idle time td and execution time te
of the thread i as below.

te = T ∗Ct
td = T ∗ (1 −Ct )

Where Ct is the CPU utilization of the job defined at time t of

execution. In order to consider the fluctuations in idle time and

executions as in a real operating system, we do not want all threads

to start execution or go to idle state at the same time. Hence for each

interval we choose the idle time and execution from the uniform

distribution with average td and te .

2.4 Simulation tool and algorithm

We conducted simulations using our simulation tool called PROWL.

This tool is an extension of our previously developed tool DE-

SiDE [2]. PROWL is a discrete event simulation environment and it

has capabilities to perform what-if scenarios for capacity planning

purpose.

As discussed above, unique feature of PROWL is its capability

to address varying CPU utilization with time. CPU utilization in

PROWL can be defined as a function of time (e.g. polynomial re-

gression) or some distribution and its instantaneous value can be

determined for each interval. We use processor sharing queuing

model to simulate the concurrent execution of threads in jobs.

3 EVALUATION

The experiments were performed using synthetic benchmark called

FIO [1]. The tests was run with HT enabled and with HT disabled

on one Intel Xeon server with 8 physical cores and also on another

server with 28 physical cores. With HT enabled, this results in 16

and 58 logical cores respectively.
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Figure 2: Experimental vs predicted job completion time of

4 concurrent FIO jobs (a) 8 core machine (No-HT) (b) 28 core

machine (No-HT) (c) 16 core machine (HT) (d) 56 core ma-

chine (HT)

First we ran FIO jobs in isolation on two different servers. We

observed per-thread service demand of each job and its CPU uti-

lization with HT enabled and HT disabled. This data was fed into

our simulator PROWL and we predicted the completion time of

each job as if they were running concurrently. The average of five

simulation runs with different seeds was taken as the predicted

completion time. The predicted time was compared with an actual

concurrent run on the two servers. We ran experiments with differ-

ent workloads. In one experiment, the workload comprised of four

FIO jobs running concurrently. We introduced some thinktime in

the IO operations of each job such that each job while running in

isolation results in some CPU idle time (Figure 2a and Figure 2b).

This experiment was repeated with HT as well (Figure 2c and Fig-

ure 2d). We observed small difference between actual and predicted

completion time of the jobs. We attribute this prediction error to

the difference in service demand of some FIO jobs when running

in isolation vis-á-vis running concurrently with other batch jobs.

4 CONCLUSION

We have proposed a technique to predict the execution time of

individual batch job running concurrently with other batch jobs

and sharing resources. We take into account per-thread demand

variation in each job. We also break this per-thread demand into

time slices using random variate distribution. This method ensures

the accurate prediction of completion time of each job with the

maximum observed error being 15%. We have also built a server

simulator called PROWL. We believe that the modeling technique

we have proposed can be used to predict and optimize any system

involving workflows.
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