
Adaptive Dispatch: A Pattern for
Performance-Aware Software Self-Adaptation

Petr Kubát, Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Petr Tůma
Department of Distributed and Dependable Systems

Faculty of Mathematics and Physics, Charles University

Malostranské náměstí 25, Prague 1, 118 00, Czech Republic

first.last@d3s.mff.cuni.cz

ABSTRACT

Modern software systems often employ dynamic adaptation to run-

time conditions in some parts of their functionality ś well known

examples range from autotuning of computing kernels through

adaptive battery saving strategies of mobile applications to dynamic

load balancing and failover functionality in computing clouds. Typ-

ically, the implementation of these features is problem-specific ś

a particular autotuner, a particular load balancer, and so on ś and

enjoys little support from the implementation environment beyond

standard programming constructs.

In this work, we propose Adaptive Dispatch as a generic coding

pattern for implementing dynamic adaptation. We believe that

such pattern can make the implementation of dynamic adaptation

features better in multiple aspects ś an explicit adaptation construct

makes the presence of adaptation easily visible to programmers,

lends itself to manipulation with development tools, and facilitates

coordination of adaptation behavior at runtime. We present an

implementation of the Adaptive Dispatch pattern as an internal

DSL in Scala.

ACM Reference Format:

Petr Kubát, Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Petr Tůma. 2018.

Adaptive Dispatch: A Pattern for Performance-Aware Software Self-Adapta-

tion. In Proceedings of ACM/SPEC International Conference on Performance

Engineering (ICPE’18 Companion). ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3185768.3186406

1 INTRODUCTION

Modern software systems need to cope with increasingly complex

and increasingly open environments. When engineering such sys-

tems, performance awareness ś or, the ability to design for and

manage software performance ś is a concern on par with function-

ality. Assessing performance in such systems requires continuous

evaluation in realistic environments with realistic workloads [8].

Compared to functionality, performance is much more of an

emerging property, determined by a multitude of interactions inside

the executing software system. This makes managing performance

through static design difficult (but still possible for certain classes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE’18 Companion, April 9–13, 2018, Berlin, Germany

© 2018 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186406

of systems, such as real-time software platforms). As an alternative

or complementary solution, software systems can utilize dynamic

adaptation [13, 19]. An adaptive system is able to observe (measure)

itself or its environment and adjust towards optimal performance

at runtime.

The said adaptation functionality can be implemented in special-

ized code, such as load balancer modules [2, 15] or autotuners [3],

or with adaptation frameworks ranging from fairly specialized au-

totuners [17] to architecture adaptation [16]. Our goal is to extend

this spectrum with adaptation support at programming language

level.

Towards our goal, we propose Adaptive Dispatch as a generic

coding pattern for implementing dynamic adaptation. The program-

mer can use Adaptive Dispatch to identify multiple implementation

alternatives in application code but postpone the selection of a

particular alternative to runtime, to be determined by observed

runtime performance. In this work-in-progress paper, we present

an implementation of the Adaptive Dispatch pattern as an internal

DSL in Scala1, summarize the potential benefits and prepare ground

for eventual evaluation.

Section 2 introduces the basic design of our Adaptive Dispatch

pattern. Section 3 continues with describing the runtime behavior.

Section 4 provides some discussion and related work.

2 ADAPTIVE DISPATCH PATTERN

We illustrate the Adaptive Dispatch pattern on an example where

the developer needs to encode and decode JSON content, perchance

used to communicate with a remote web service via its REST API.2

For that, the developer needs to choose one of the many available

JSON libraries. The selection process is influenced by many fac-

tors, such as the API feature set, licensing, documentation, and ś

importantly ś performance.

In our example, we assume the other factors help narrow the

choice down to two or three candidate libraries. All other things

being equal, the developer would now like to choose the fastest

library. Unfortunately, the speed of each library typically depends

on the input size and the structure of the input file, and performance

1 Our implementation of the Adaptive Dispatch pattern, as well as code fragments in
this paper, use the Scala programming language. Scala executes on top of any standard
Java Virtual Machine, but provides the flexibility required for seamlessly integrating
the Adaptive Dispatch pattern. Scala code can be invoked from Java and vice versa,
which makes our implementation widely applicable.
2 JSON is a data exchange format based on the notation for dictionary literals in
JavaScript. The format is widely used in systems exporting an HTTP REST API, which
thus need to encode and decode JSON content when sending a request or receiving a
response.

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

195

https://doi.org/10.1145/3185768.3186406
https://doi.org/10.1145/3185768.3186406
https://doi.org/10.1145/3185768.3186406

ICPE’18 Companion, April 9ś13, 2018, Berlin, Germany Petr Kubát, Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Petr Tůma

import scalaadaptive.api.Implicits._

val parseJson = (

parseFlexjson

or { (s: String) => gson.fromJson(s) }

or jacksonMapper.readValue

)

parseJson("""{"JSON":"some text", ...}""")

Listing 1: Use of Adaptive Pattern for selection of the fastest

JSON library. Note that the framework allows us to freely

combine functions, lambdas and methods.

parseJson(...)

Enough
data?

Select random
alternative

Run with
measurement

Select the
fastest alternative

Run

No

Yes

Figure 1: High-level overview of the Adaptive Dispatch pat-

tern semantics. The call hides the actual selection of the

fastest alternative and the initial measurements of all alter-

natives.

improvements appearing in new library versions may change the

relative ranking of the libraries.

A standard approach in this situation would be to benchmark

the candidate libraries and use the benchmark results to choose

the library. This assumes that the performance of the library in the

benchmark is representative of the performance under practical

workload. When this assumption does not hold, the choice may end

up being wrong. Instead, the developer can postpone the selection

until runtime, employing the Adaptive Dispatch pattern.

The use of the Adaptive Dispatch Pattern in Scala is shown in

Listing 1. In essence, the pattern provides the developer with a

mechanism to aggregate the encoding or decoding functions of the

candidate JSON libraries into a single function, which selects among

the alternatives adaptively at runtime as illustrated in Figure 1.

The pattern is syntactically similar to function composition

known from functional languages, where the andThen operator

is used to chain function execution. Unlike function composition

though, only one of the alternative functions is executed when the

aggregate function is invoked. In this sense, the pattern is analogous

to dynamic dispatch as one of the core concepts of object-oriented

programming. Where dynamic dispatch chooses the method to in-

voke based on the target object type, the Adaptive Dispatch pattern

chooses the function based on the observed performance history.

As is the case with dynamic dispatch, the pattern assumes that the

functions have compatible interfaces.

In more detail, the Adaptive Dispatch pattern shown in List-

ing 1 relies on user defined infix operators and implicit typecasts3.

The parseJson function is of a custom type AdaptiveFunction4,

which conforms to the standard Function trait5 and behaves like a

normal function from the user perspective. The caller is not aware

of the implementation variants ś dispatched to different libraries ś

and works only with the aggregate interface.

Finally, the DSL provides a way to specify what factors the per-

formance of the adaptive function depends on. In our example

below we specify that the performance is likely to depend (in some

way unknown to the developer) on the size of the input collection.

Further, the DSL allows us to scope the measurement to distin-

guish that the same adaptive function is used in multiple distinct

situations, which may need different decisions. Technically this

determines which measurements are used to build the statistics to

decide which alternative is the best given the particular input.

val parse = (

parseFlexjson or parseJackson

by (_.length)

selectUsing Selection.InputBased

storeUsing Storage.Global

)

The complete implementation consists of two core parts ś the

internal DSL that the developer uses to specify the interchangeable

implementations of adaptive functions, and the runtime component

that handles the collection of performance information and the

alternative selection.

3 RUNTIME COMPONENT

At runtime, the implementation of the AdaptiveFunction type col-

lects performance observations and uses them to select the function

to call in each Adaptive Dispatch pattern invocation. The decision

process is highly configurable to fit various application needs ś

each Adaptive Dispatch pattern configuration consists of a chain of

Selection Policies, which determine how the data for the eventual

decision is collected, and a Selection Strategy, which implements

the selection once the data is available.

3.1 Selection Policies

The Selection Policies serve to regulate the overhead of selecting

the function alternative on each invocation. The key idea here is

that gathering performance observations and selecting the best

alternative is typically computationally more demanding than just

reusing the selection from the previous invocation. We permit the

developer to freely configure the choice of policies in chains, such

as:

ś Select a new alternative every N-th call, use the last selected

alternative otherwise.

3 For object methods, this relies on the eta-expansion mechanism of Scala.
4 Both AdaptiveFunction and Function types have multiple variants depending on
the arity of the function, e.g. AdaptiveFunction1, Function2, etc. For simplicity, the
arity is omitted from the type names in the text.
5 Equivalent to interface in other object oriented languages.

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

196

Adaptive Dispatch: A Pattern for Performance-Aware Software Self-Adaptation ICPE’18 Companion, April 9ś13, 2018, Berlin, Germany

ś First gather data from M invocations, then select a new al-

ternative on each of N invocations, and finally keep using

the most often selected alternative but make a new selection

every O-th call.

ś For every M seconds spent on executing the adaptive func-

tion, use at most N seconds for gathering data, then at most

O seconds on selecting new alternatives, and use the last

selected alternative afterwards.

To illustrate the DSL syntax, here is an example of a policy chain that

will gather data from 50 invocations, then select new alternative

each one of 50 additional invocations, and then repeat the whole

process unless the same alternative was selected the last 20 times:

val customPolicy: Policy = (

gatherData

until (totalRunCount growsBy 50)

andThen selectNew

until (totalRunCount growsBy 50)

andThenIf ((stats: StatisticDataProvider) =>

stats.getStreakLength >= 20)

goTo (useLast forever)

andThenRepeat

)

3.2 Selection Strategies

Given the collected performance observations for individual func-

tion alternatives, and possibly for individual input features, a Selec-

tion Strategy selects an alternative. We distinguish two basic types

of selection strategies, mean-based and input-based. A mean-based

strategy assumes the execution time of an alternative does not de-

pend on the input, and uses standard statistical tests to select the

alternative with the shortest average execution time.

The input-based strategies are intended for selecting alternatives

whose execution time depends on the function input. We require

that each relevant input can be reduced to an integer feature (for

example a size for an input list that the function traverses), and use

the performance observations associated with corresponding in-

put features to construct a regression model that approximates the

function performance. The model is then used to determine which

alternative is likely to provide the best performance for a particu-

lar input. The framework currently implements three regression

models which enable different trade-offs between complexity (and

the implied computation overhead) and accuracy ś the fastest and

least accurate is a linear regression model based on least squares,

followed by a window-bound linear regression, and finally a local

regression (LOESS) [7].

4 DISCUSSION AND RELATEDWORK

Our design goals for the Adaptive Dispatch pattern focus on ease

of use from the developer perspective and general flexibility where

the runtime component is concerned. We have briefly tested the

design in basic use cases such as the library selection discussed in

the introduction, or classical load balancing, and we envision more

potential uses. On the downside, the Adaptive Dispatch pattern

does not (yet) permit a simple expression of some more complex

adaptation mechanisms such as the optimum search strategies used

in autotuning. We have also examined the overhead associated

with adaptation ś the overhead obviously depends on the Selection

Strategy, but for the use cases above reasonable combinations were

easily available.

As a concept, the Adaptive Dispatch pattern is not limited to

adaptation based on performance. With access to relevant data, the

adaptation can be performed based on memory usage or energy

consumption, which can be especially relevant for mobile and IoT

devices. The condition itself can also change dynamically ś for

example, mobile applications can adapt for energy consumption

while (low) on battery power but switch towards performance when

connected to a charger. These changes are permitted by decoupling

the dynamic invocation from the Selection Policies and the Selection

Strategy ś eventually, we envision the possibility of coordinating

adaptation across the entire application in the style of a MAPE

control loop.

If adopted, the Adaptive Dispatch pattern will make it easier to

implement adaptation mechanisms, which should ultimately lead

to applications with more adaptation points, i.e. more locations

where a dynamic adaptation is performed. As a broader question,

we should care whether such applications are still manageable, or

whether the interaction of potentially many adaptation points will

lead to unpredictable performance. We should, however, realize that

between our highly adaptive processors, operating systems, virtual

machines and middleware frameworks, this situation may already

exist to a large degree. Perhaps we should pragmatically resign

ourselves to the fact that our systems are and will remain highly

adaptive ś and in this context, introducing the Adaptive Dispatch

pattern contributes to making the adaptation more explicit and

more manageable.

On the related work side, the development of adaptive systems

is a widely studied topic. In many cases, systems that are capable of

some form of autotuning are among the fastest in their class ś for

example the FFTW library [10], which is considered to be the fastest

non-commercial FFT implementation in the world, relies on adap-

tation performed statically by recompiling the application code [9].

Among well known autotuning frameworks, OpenTuner [1] can

use similar process to find optimum application configuration.

Our earlier work on an adaptation framework with feedback

from runtime measurements is presented in [4]. The framework fo-

cuses on architectural adaptation in component-based applications,

with use cases including verification of component performance

contracts or DevOps-style performance feedback integrated into

performance documentation. A special language called SPL [5] is

used to express the performance requirements and the adaptation

conditions.

Inherent to the dynamic adaptation process is the need to predict

future application performance (which the adaptation should re-

flect), in particular performance under certain (expected) workload.

The work of Goldsmith [11] takes a runtime approach, where the

basic blocks of a program are identified and their performance is

measured for inputs described by selected features. Regression is

used to find an approximate relationship between the feature values

and the basic block execution frequencies, and the resulting model

can be used to formulate predictions.

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

197

ICPE’18 Companion, April 9ś13, 2018, Berlin, Germany Petr Kubát, Lubomír Bulej, Tomáš Bureš, Vojtěch Horký, Petr Tůma

A relatively accurate prediction of execution time is provided by

theMantis framework [6], which is based on instrumenting the code

and automatically identifying its essential features (loops, branches,

variable values and so on). These features are characterized (branch

counts, loop counts and so on) at runtime and machine learning is

used to select those important for the overall performance. Finally,

a predictive model can be constructed from the data [12].

Among earlier works, the authors of [18] obtain predictions in

two steps. First, a greedy or genetic algorithm finds similar inputs in

historical measurements, then simple mean or linear regression is

used to generate prediction. Some similarities can be found also in

the techniques used to construct black box performancemodels [14].

Our particular use calls for models that facilitate prediction in

the course of function invocation, overhead is therefore of utmost

importance.

5 CONCLUSION

In this work-in-progress paper, we have introduced our Scala based

implementation of the Adaptive Dispatch pattern, a software con-

struct aimed at simplifying the implementation of dynamic adapta-

tion mechanisms. Our design aims to make the adaptation elements

in software more explicit ś this should not only improve readability,

but also open the way for development tool support (such as tying

the adaptation statistics from live systems into the information

provided by the development environment) or runtime adaptation

coordination (such as directing multiple adaptation points towards

shared goals or preventing oscillations through interactions be-

tween multiple adaptation mechanisms). The implementation is

already available at http://d3s.mff.cuni.cz/software/adp, we are cur-

rently working on use cases to assess the (currently still hypotheti-

cal) benefits.

ACKNOWLEDGMENTS

This work was partially supported by Charles University Institu-

tional Funding (SVV) and by the Research Group of the Standard

Performance Evaluation Corporation (SPEC).

REFERENCES
[1] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly,

and S. Amarasinghe. Opentuner: An extensible framework for program autotun-
ing. In PACT. ACM, 2014.

[2] Apache Software Foundation. Apache Camel. https://camel.apache.org/, 2018.
[3] ATLAS. Automatically Tuned Linear Algebra Software. http://math-atlas.

sourceforge.net/, 2016.
[4] L. Bulej, T. Bures, V. Horky, J. Keznikl, and P. Tuma. Performance Awareness in

Component Systems: Vision Paper. In Proc. 36th IEEE Computer Software and
Applications Conference Workshops, pages 514ś519, July 2012.

[5] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. Trojánek, and P. Tůma. Unit
testing performance with Stochastic Performance Logic. Automated Software
Engineering, pages 1ś49, 2016.

[6] B.-G. Chun, L. Huang, S. Lee, P. Maniatis, and M. Naik. Mantis: Predicting System
Performance through Program Analysis and Modeling. arXiv:1010.0019 [cs], Sept.
2010.

[7] W. S. Cleveland, S. J. Devlin, and E. Grosse. Regression by local fitting. Journal
of Econometrics, 37(1):87ś114, Jan. 1988.

[8] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Development and Deployment
at Facebook. IEEE Internet Computing, 17(4):8ś17, 2013.

[9] M. Frigo. A Fast Fourier Transform Compiler. In PLDI, pages 169ś180. ACM,
1999.

[10] M. Frigo and S. G. Johnson. FFTW: an adaptive software architecture for the FFT.
In Proc. Intl. Conf. on Acoustics, Speech and Signal Processing, volume 3, pages
1381ś1384 vol.3, May 1998.

[11] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson. Measuring Empirical Compu-
tational Complexity. In ESEC-FSE, pages 395ś404. ACM, 2007.

[12] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik. Predicting Execution
Time of Computer Programs Using Sparse Polynomial Regression. In NIPS, pages
883ś891, USA, 2010. Curran Associates Inc.

[13] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41ś50, Jan. 2003.

[14] M. Kuperberg, K. Krogmann, and R. Reussner. Performance prediction for black-
box components using reengineered parametric behaviour models. In Proceedings
of the 11th International Symposium on Component-Based Software Engineering,
CBSE ’08, pages 48ś63, Berlin, Heidelberg, 2008. Springer-Verlag.

[15] Netflix. Ribbon. https://github.com/Netflix/ribbon, 2018.
[16] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime Software Adaptation: Frame-

work, Approaches, and Styles. In Companion of the 30th International Conference
on Software Engineering, pages 899ś910. ACM, 2008.

[17] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua, M. Veloso,
R. W. Johnson, M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson. Spiral: A generator for platform-adapted libraries
of signal processing algorithms. Int. J. High Perform. Comput. Appl., 18:21ś45,
2004.

[18] W. Smith, I. T. Foster, and V. E. Taylor. Predicting Application Run Times Using
Historical Information. In Proc. Workshop on Job Scheduling Strategies for Parallel
Processing, pages 122ś142. Springer, 1998.

[19] M. Wirsing, M. Holz, N. Koch, and P. Mayer. Software Engineering for Collective
Autonomic Systems - The ASCENS Approach. 2015.

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

198

http://d3s.mff.cuni.cz/software/adp
https://camel.apache.org/
http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/
https://github.com/Netflix/ribbon

	Abstract
	1 Introduction
	2 Adaptive Dispatch Pattern
	3 Runtime Component
	3.1 Selection Policies
	3.2 Selection Strategies

	4 Discussion and Related Work
	5 Conclusion
	References

