
Performance Prediction for Families of Data-Intensive Software
Applications

Jacques Verriet
TNO-ESI

Eindhoven, The Netherlands
jacques.verriet@tno.nl

Reinier Dankers
Océ Technologies B.V.
Venlo, The Netherlands
reinier.dankers@oce.com

Lou Somers
Océ Technologies B.V.
Venlo, The Netherlands
lou.somers@oce.com

ABSTRACT

Performance is a critical system property of any system, in
particular of data-intensive systems, such as image processing
systems. We describe a performance engineering method
for families of data-intensive systems that is both simple
and accurate; the performance of new family members is
predicted using models of existing family members. The
predictive models are calibrated using static code analysis
and regression. Code analysis is used to extract performance
profiles, which are used in combination with regression to
derive predictive performance models. A case study presents
the application for an industrial image processing case, which
revealed as benefits the easy application and identification of
code performance optimization points.

CCS CONCEPTS

• Software and its engineering → Software perfor-
mance; • Mathematics of computing → Regression anal-
ysis; • Theory of computation → Program analysis; •
Computing methodologies → Modeling methodologies;

KEYWORDS

Software performance engineering; loop analysis; product
families; data-intensive systems

ACM Reference Format:
Jacques Verriet, Reinier Dankers, and Lou Somers. 2018. Perfor-

mance Prediction for Families of Data-Intensive Software Appli-

cations. In Proceedings of ACM/SPEC International Conference
on Performance Engineering (ICPE’18 Companion). ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3185768.3186405

1 INTRODUCTION

Many companies make not a single product, but a family
of products that share components. Examples are printer
manufacturers, that use the same image processing software
for a family of printers, and car manufacturers, that develop

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICPE’18 Companion, April 9–13, 2018, Berlin, Germany

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186405

different cars that share the same chassis. The product family
members’ similarities allow development cost to be divided
over several products. To allow software reuse within a family
of products, the software needs to capture the commonalities
of the family members; the differences are typically captured
by the software’s configuration options.

It is essential to have an accurate estimation of a system’s
performance during the early phases of development. Encoun-
tering performance issues in the later stages of development
typically involves high correction costs, whereas correction
in the early stages have much lower cost [21].

This paper describes a method to predict the performance
of families of data-intensive systems. Examples of such sys-
tems are image processing pipelines, which can be found in
printing systems, health care systems, advanced driver assis-
tance systems and electron microscopes. The method allows
performance prediction for future product family members
from data collected from existing family members.

The method consists of three steps: (1) static code analysis,
(2) model fitting, and (3) performance prediction. Our work
builds on the work of Hendriks et al. [14], who couple model-
based performance engineering to the V-model development
process [9]. The regression used by Hendriks et al. [14] is
based on the knowledge of the performance engineer: the
validity of fitted performance models is checked using the
engineer’s knowledge of the software. In case of complex
(legacy) software, the mental model of the engineer need
not match the actual code organization. To consider the
software structure, we add static code analysis for model
calibration. This analysis is used to extract code structure
information, which is used for fitting performance models
that relate a function’s (configuration and input) parameters
and its execution time.

The paper is organized as follows. Section 2 provides an
overview of related work. Sections 3 and 4 describe the
method’s static code analysis and model calibration, respec-
tively. In Section 5, the method is applied to an industrial
image processing case. Section 6 concludes the paper.

2 RELATED WORK

Performance engineering has been applied to many types
of software systems. An overview of software performance
engineering literature can be found in the survey by Bal-
samo et al. [1]. The method described in this paper uses two
methods that are commonly used for performance engineer-
ing, i.e. static code analysis and regression, but that, to our

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

189

https://doi.org/10.1145/3185768.3186405
https://doi.org/10.1145/3185768.3186405

knowledge, have not been used in combination. The combi-
nation allows more informed model calibration, as structural
software knowledge is used for model fitting.
Model Extraction The model structure is extracted from
the code and interactively refined to obtain a performance pro-
file used for regression. Ferrari et al. [8] and Van Gemund [19]
use a similar, but manual, approach; they create and refine
code structure models to predict a system’s performance.

There are also examples of automated model extraction
for software systems. Unlike our approach, these typically
view the system as a black box. For instance, Krogmann et
al. [17] extract performance models from Java bytecode using
genetic search. For each operation, they derive a formula
describing the operation’s performance. Using a benchmark
of the underlying hardware platform, they are able to estimate
the bytecode’s performance. Brosig et al. [3] reconstruct an
architectural performance model by observing a system at
run time. They extract a system’s control flow and its relevant
parameters to create and calibrate a performance model for
component-based systems.
Static Code Analysis Our model extraction is based on
static code analysis, i.e. code analysis that does not rely on the
execution of the code. It has frequently been used for WCET
analysis [22], i.e. analyzing a program’s worst-case execution
time. Using control flow analysis, the possible control flows of
a piece of software are extracted. For data-intensive systems,
it is important to estimate the execution time of nested loops.
This involves an estimation of the execution time of the loop
body and an estimation of loop bounds. Often annotations
of the software developer are used [16], but fully automated
loop bound estimation is also possible [11, 12].

A drawback of the code analysis for WCET analysis is
its complexity: users need to know the analysis tools’ inter-
nals to obtain tight WCET estimations [22]. We use static
code analysis with a different goal: we extract nested loop
structures from code. This means that we can use simpler
code analysis techniques. We rely on parsers that produce
Abstract Syntax Trees (AST), which are traversed to obtain
the information needed to create a model. ASTs have been
used for program transformations [20], such as software re-
juvenation [4]. Besides WCET analysis, we have not found
applications of ASTs for performance engineering.
Regression Regression is commonly used for performance
engineering. We apply informed regression: knowledge about
the software is used to calibrate performance models. In
the literature, however, regression is typically done without
looking at the internal structure of the system being modeled.
The most common form of regression is (multiple) linear
regression [18]; it is also used for performance engineering [2,
7]. Huang et al. [15] use sparse polynomial regression for
performance prediction. Instead of looking at the structure
of the code, they introduce feature weights to search for
the most dominant system features in to fit a polynomial
performance model. Other regression techniques used for
performance engineering include robust regression [5] and
regression splines [6].

int main() {

int pop[R][C];

for (int j=1;j<R-1;j++) {

for (int i=1;i<C-1;i++)

pop[j][i]=rand()%2;

}

for (int x=0;x<G;x++) {

cout<<"Gen "<<x<<":"<<endl;

print(pop);

life(pop);

};

return 0;

}

void life(int old[R][C]) {

int tmp[R][C];

copy(old, new);

for (int j=1;j<R-1;j++) {

for (int i=1;i<C-1;i++) {

int cnt=old[j-1][i]+old[j-1][i-1]+

old[j][i-1]+old[j+1][i-1]+

old[j+1][i]+old[j+1][i+1]+

old[j][i+1]+old[j-1][i+1];

if (cnt<2||cnt>3) tmp[j][i]=0;

if (cnt==2) tmp[j][i]=old[j][i];

if (cnt==3) tmp[j][i]=1;

}

}

copy(new, old);

}

Figure 1: C++ code for Game of Life

FUNCTION int main()

SUM

FOR(int j=1;j++;j<R-1)

FOR(int i=1;i++;i<C-1)

FUNCTION rand

FOR(int x=0;x++;x<G)

SUM

FUNCTION print

FUNCTION life

FUNCTION void life(int pop[R][C])

SUM

FUNCTION copy

FOR(int j=1;j++;j<R-1)

FOR(int i=1;i++;i<C-1)

CONSTANT

FUNCTION copy

Figure 2: Filtered ASTs of Game of Life functions

3 STATIC CODE ANALYSIS

This section describes how functions’ execution profiles are
extracted from source code. The profiles are translated into
performance profiles that relate a function’s (configuration
and input) parameters and its execution time.

We aim for an easy-to-use manner to extract execution
profiles from source code. The code analysis consists of five
steps: (1) Parsing, (2) Tree filtering, (3) Function replacement,
(4) Tree simplification, and (5) Loop bound analysis.
Parsing For the first step, we use a parser that creates an
Abstract Syntax Tree (AST) for each source code file. Such
parsers are available for all common programming languages.

To demonstrate our method, we use the Game of Life [10]
as a running example. Two of its functions are shown in
Figure 1. To parse the code, we use a C++ parser of Rufino.1

Tree Filtering In the second step, the ASTs are traversed
and loop structure trees are created for each function defini-
tion. A tree’s root consists of a function’s name, parameters,
and return type. Its body consists of a subset of the function
bodies in the AST; it contains the loop structures and the
function calls. Other AST elements are removed, as we assume
that these do not significantly contribute to the execution
time of a data-intensive system.

For the Game of Life, the AST is traversed and a loop
structure tree is created for each function declaration. The
trees of functions main and life are shown in Figure 2.
Function Replacement The third step is interactive: a
user needs to specify a function that is to be analyzed. The
corresponding loop structure tree contains loop constructs
and function calls. The function replacement step selects
a function call and retrieves the trees of all functions with
matching name and number of arguments. Next, the user

1http://github.com/ricardojlrufino/eclipse-cdt-standalone-astparser

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

190

FUNCTION int main()

SUM

FOR(int j=1;j++;j<R-1)

FOR(int i=1;i++;i<C-1)

CONSTANT

FOR(int x=0;x++;x<G)

SUM

FOR(int j=1;j++;j<R-1)

FOR(int i=1;i++;i<C-1)

CONSTANT

FOR(int j=0;j++;j<R)

FOR(int i=0;i++;i<C)

CONSTANT

FOR(int j=1;j++;j<R-1)

FOR(int i=1;i++;i<C-1)

CONSTANT

FOR(int j= 0;j++;j<R)

FOR(int i=0;i++;i<C)

CONSTANT

FUNCTION int main()

SUM

FOR rows

FOR columns

CONSTANT

FOR generations

SUM

FOR rows

FOR columns

CONSTANT

FOR rows

FOR columns

CONSTANT

FOR rows

FOR columns

CONSTANT

FOR rows

FOR columns

CONSTANT

Figure 3: Function replacement and tree simplifica-
tion of Game of Life function main

selects one of these functions, after which the function call
gets replaced with the corresponding tree.

The tree of Game of Life’s function main contains function
calls of rand, print, and life. After the function life has
been selected, a new tree is created containing code from
both functions. In subsequent steps, the other functions are
replaced; the resulting tree is shown left in Figure 3.
Tree Simplification Each time a function call gets replaced,
the width and depth of the function’s loop structure tree
increases. To reduce its complexity, the tree is simplified
after each replacement. A loop structure tree is simplified by
traversing the tree in a depth-first order and replacing certain
patterns by simpler, equivalent patterns. For instance, sequen-
tial occurrences of empty loop structure trees are replaced
by a single empty loop structure tree and nested structures
with only one child by this single child. Function replacement
and tree simplification are continued until all function calls
have been replaced.

The Game of Life example does not require any tree sim-
plification; the final loop structure tree of function main is
the one shown left in Figure 3.
Loop Bound Analysis At this point, we have a loop struc-
ture tree with all nested loops with the loop bounds as they
can be found in the source code. For data-intensive systems,
these bounds are typically variables which depend on the
system’s configuration or input. We use developer knowledge,
similar to the annotations used for WCET analysis [16], to
identify these variables.

The loop bound analysis step strongly depends on the
application domain. For instance, for an image processing
application, one may find a nested loop structure in which
the outer loop iterates over all lines of an image and the
inner loop over all pixels of the line. This kind of domain
knowledge is to be provided by the developer. The result of
the last step is a loop structure tree in which all loop bound
variables have been replaced by their functional equivalents.
We will call this a function’s performance profile. It is input
for the model calibration described in Section 4.

For the Game of Life, it is simple to replace the loop
bounds by their functional equivalents: 𝑅 and 𝐶 equal the

population dimensions, and 𝐺 the number of generations.
These loop bounds are seen as the essential parameters to
express the performance of the function main. After replacing
the actual loop bounds by their interpretation, we obtain the
loop structure tree shown right in Figure 3.

We assume that all (innermost) loop bodies take constant
time. This means that we can combine subsequent loops with
(nearly) identical loop bounds. This simplification leads to
the end result, which contains two sequential nested loops;
an initialization loop and a main loop. The resulting loop
structure tree has identified three parameters that influence
the performance of function main: the number of rows and
columns of a population, and the number of generations.

4 MODEL CALIBRATION

In Section 3, we have described how performance profiles are
derived from code. These profiles are used to create analytic
performance models. We aim for an approach that can be
applied by software developers in industry. The proposed
approach involves five steps: (1) Code instrumentation, (2)
Data collection, (3) Model fitting, (4) Performance prediction,
and (5) Model validation. Like in Section 3, we use the Game
of Life as a running example.
Code Instrumentation A common way to enable perfor-
mance measurements is to instrument the code with mea-
surement functionality. For instance, one can instrument the
start and end of functions with instructions to measure their
execution times.

For the Game of Life, we are interested in the execution
time of function main. Only this function needs to be instru-
mented; its code is instrumented by measuring the time at
entry and exit. The difference between these times provides
a measurement of the function’s execution time.
Data Collection The second step involves collecting perfor-
mance data from the instrumented code. The performance
data should cover the parameters identified by the code anal-
ysis described in Section 3. Data can either be collected
using systematic measurements or by mining available (per-
formance) log files.

For the Game of Life, measurements have been done by
systematically varying the number of rows (𝑅), columns (𝐶),
and generations (𝐺). We have performed 8,000 experiments
by varying each parameter from 5 to 100 with steps of 5. Based
on the code analysis, one would expect that the execution
time of main depends on the product 𝑃 = 𝑅 · 𝐶 ·𝐺 and the
population size 𝑆 = 𝑅 ·𝐶. Scatter plots of the execution time
𝑇 plotted against 𝑅, 𝐶, 𝐺, 𝑆, and 𝑃 are shown in Figure 4.
Model Fitting The model fitting step has two inputs: the
identified performance profiles and the collected measurement
data. A performance profile describes the nested loops of a
function and as such describes how parameters influence the
performance of this function. We use regression for model
fitting; we let the regression be guided by the performance
profiles to avoid finding relations that cannot be explained
by a system’s internals.

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

191

Figure 4: Game of Life execution times

Figure 5: Residual plots

Regression is a statistical method to analyze the relation
between variables [18]. The most common form is (multiple)
linear regression, which is well suited for the relations as
expressed by the performance profiles. It fits a linear function
relating a function’s input parameters and its performance,
as well as an evaluation of the significance of the fitted
function. As such, regression also provides an evaluation of
the performance profiles. Finding an appropriate performance
function typically involves several regression steps, which are
guided by the performance profiles and the evaluation of the
earlier steps.

The scatter plots in Figure 4 suggest a linear relation
between 𝑃 = 𝑅 · 𝐶 · 𝐺 and 𝑇 . This is investigated further
using linear regression [18]: the fitted model indicates that 𝑇
can be estimated as 0.1107+3.47·10−5 ·𝑃 . Regression’s 𝑡-tests
indicate that the it is unlikely that the actual intercept and
slope values deviate significantly from the fitted values 0.1107
and 3.47 · 10−5. Another quality attribute is the coefficient of
determination (𝑅2), which equals the amount of execution
time variation explained by variable 𝑃 . For this fit, 𝑅2 equals
0.978, leaving about 2 percent of unaccounted variation.

Residual analysis can be used to further assess the validity
of a fitted function [18]. Residuals are the differences between
observed values and estimated values. Scatter plots of the
residuals of the fitted function are shown in Figure 5. The
residual plots do not show a relation of 𝑅, 𝐶, 𝐺, 𝑆, and 𝑃
with 𝑇 . This suggests that all execution time variability is
captured by 𝑃 .

However, the left plot in Figure 6 shows that small Game
of Life instances typically have execution times that are much
smaller than the fitted intercept of 0.1107. This suggests that
the intercept should be zero, despite its significance according
to the 𝑡-tests.

A second regression analysis was therefore performed with-
out an intercept: 𝑇 can be estimated as 3.51 · 10−5 · 𝑃 . The
removal of the intercept had little influence on the slope and

Figure 6: First and second regression model

the coefficient of determination. This means minor differences
between the first and second fit for large instances, but a
significant difference for small instances. The right plot in
Figure 6 shows that the second fit is much better for small
instances. Hence, we will use the second fit.
Performance Prediction A fitted performance model is
used to predict the performance of future product family
members by applying the fitted function to the (input and
configuration) parameters of the new family member.

For the Game of Life, performance prediction can be done
by varying parameters 𝑅, 𝐶, and 𝐺. We have considered
instances with at most 100 rows, columns, and generations.
Suppose we want to predict the execution time of an instance
with 200 rows, columns, and generations. The fitted model
predicts an execution time of 3.51 · 10−5 · 2003 = 280.84.
Model Validation The last step is a validation and consol-
idation step. The first four steps are typically applied during
the early stage of development when prototypes of the new
product family member are not yet available. As soon as
prototypes are available, they can be used to validate the
fitted performance model. This involves comparing measure-
ments and predictions. Differences are to be explained and
used to update and consolidate the performance model. The
consolidated model can be used to predict the performance
of a new future product family member by applying the steps
described in this paper.

For the Game of Life, no new product is to be developed. To
validate the earlier prediction, we did 20 measurements with
200 rows, columns, and generations. This gave an average
execution time of 270.27. The difference with the prediction
is less than 4 percent. Hence the fitted model accurately
predicts the execution time of this larger instance.

5 CASE STUDY

The method described in Sections 3 and 4 has been applied to
an industrial case involving a family of wide-format printers.
These printers produce images of widths and heights of several
meters. These images are printed in bands called swaths: a
carriage containing print heads moves over the medium while
their nozzles jet ink onto it.

The focus of the case is the printers’ embedded image
processing, which is called the data path. The data path takes
a rasterized bitmap and applies image processing functions
to calculate the firing sequences of the printer’s nozzles. Each
of these functions is applied for the subsequent swaths of the
input bitmap. The data path functionality includes common

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

192

image processing steps such as copying, resampling and mask-
ing, but it also includes application-specific steps. An example
is called nozzle failure compensation (NFC). Nozzles may be
temporarily unavailable due to various disturbances. To guar-
antee high image quality, the drops of the unavailable nozzles
are jetted by available nozzles. NFC is the computation of
the replacement nozzles.

The data path was originally developed for one wide-format
printer. Later, it has been adapted to serve a family of print-
ers. In early phases of development of a new wide-format
printer, we want to quickly and accurately predict the execu-
tion time of its data path, i.e. without developing physical
prototypes. For instance, we would like to predict the data
path performance of printers with different dimensions and
ones with different numbers of nozzles.
Static Code Analysis The data path is part of the printer’s
embedded software, which comprises circa 6,500 files with a
total of circa 2,000,000 lines of code describing circa 90,000
functions. For all functions, loop structure trees were created.
The function calls in the data path functions’ loop structure
trees were iteratively replaced by the loop structure trees of
the called functions. The time needed to replace all function
calls strongly depends on the function’s call tree width and
depth. For a simple image processing function, function call
replacement takes less than a minute. For a more complex
function, like NFC, this operation requires more time. In
total, the static code analysis took a few hours.

The loop bounds of the final structure trees were analyzed
to obtain input for the calibration of a performance model.
For most of the data path’s image processing steps, the
analysis revealed a nested loop that iterates over the height
and width of a swath. Besides these swath dimensions, NFC’s
performance profile also includes the number of defect nozzles.
Model Calibration To create a data path performance
model, the image processing functions were instrumented.
Function entry and exit times were measured on a test setup,
and the differences were logged as execution times. Static
code analysis revealed three parameters that influence the
execution time of the performance of the embedded data
path: the width of the input bitmap, the number of nozzles
in the printer’s print head, and the number of nozzles that
require compensation. This was confirmed using experiments.

Regression was applied to the collected data using the
identified performance profiles as guidelines. For most data
path functions, regression confirmed the expected linear de-
pendency between the swath size and the function’s execution
time and negligible execution times for small swaths. How-
ever, model calibration also revealed that a masking function
required a significant initialization time, whereas software de-
velopers had expected this to be negligible. The performance
of the masking step was analyzed in more detail by inspecting
the code. This showed that the masking step includes the
preparation of the swath data structures. The scatter plots
in Figure 7 show the execution times of this preparation
step. It shows that the preparation of the data structures is
independent of the number of nozzles, the number of nozzle
defects, the swath width, and the swath size. After separating

Figure 7: Swath data structure initialization times

preparation and masking, the masking does not require a
large initialization time anymore.

For NFC, the expected performance model is also different
from most image processing steps. Regression confirmed that
NFC’s execution times are determined by the number of
defect nozzles and the swath dimensions.

This means that all parameters that were expected to
influence the image processing times also appeared in the
performance models. However, not all loops in a function’s call
hierarchy have a significant influence: some fitted performance
functions were simpler than the found performance profiles.
Performance Analysis The fitted models were used to
predict the performance of different printer configurations
without actually constructing them. It is possible to assess
the influence of printer carriage dimensions, bitmap widths,
and numbers of defect nozzles on the data path performance.
If future wide-format printers allow wider images or have
more nozzles than existing ones, then the models can be used
to predict the corresponding data path execution times. The
performance models can also be used to vary the sequence
of image processing steps. The latter is relevant if future
printers require different image processing.
Benefits The case has shown benefits besides the perfor-
mance prediction. One benefit is the identification of unex-
pected performance behavior. An example is the masking
step that involved a large initialization time. Similarly, the
model can be used to identify performance bottlenecks. The
models identify the most expensive steps; this allows data
path designers to focus their attention on optimizing the
functions that contribute most to the execution time.

The possibility to adapt the sequence of image processing
steps also provides a way to optimize data path performance.
A typical data path may contain resampling steps, which
change the image resolution. To optimize performance, the
image processing should be applied to as few data as possible.
As the models allow the analysis of different sequences, the
optimal sequence can be selected without implementing and
testing all of them.
Reflection We have explained the application of code analy-
sis and regression to predict the performance of configurations
of a printer’s data path. The time needed for the code analy-
sis step strongly depends on the size of a function’s call tree.
The value of code analysis is limited for functions with a
small call tree; these can be analyzed by examining the code.

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

193

However, we observed that it is not possible to manually
create call trees of the more complex data path functions like
NFC. In other words, an important value of code analysis
step is keeping overview of functions being called.

The data path that we analyzed is an application that does
not share its computational resources with other functionality.
This means that the execution times can directly be predicted
using the performance models. The models can, however, also
be used for applications that share computational resources.
This requires scaling a function’s execution speed with the
amount of resources assigned to it. A convenient way to
achieve this is the blueprint of Hendriks et al. [13].

The performance prediction (implicitly) assumes that new
product family members will run on the same hardware as
existing family members. A new family member may also
be equipped with different hardware. To obtain accurate
performance predictions, the differences between the plat-
forms should be considered. This is described by Hendriks
et al. [14]; they use an on-line performance benchmark to
predict an application’s execution times on one or more cores
of an unknown processor from the application’s execution
times on a known processor.

6 CONCLUSION

We have described a software performance engineering method
for families of data-intensive (embedded) systems. The method
involves two steps: (1) a static code analysis step that creates
function performance profiles by parsing the code and adding
developer knowledge, and (2) a model calibration step that
combines the performance profiles and system measurements
to create predictive performance models. The method has
been applied to the image processing of a family of wide-
format printers. It allows the prediction of the performance of
future printers with different dimensions. Moreover, analysis
using the method revealed information about the execution
times of existing printers that was not known before. Because
the method is implemented using simple means, it is usable
for software developers in industry.

In the future, we plan to improve the applicability of our
approach by combining it with benchmarking [14], multi-
processor estimation [14] and the system-level performance
modeling blueprint of Hendriks et al. [13]. This combination
allows the performance prediction of a data-intensive software
application on different computational platforms, which it
shares with other applications.

ACKNOWLEDGMENTS

The research is carried out as part of the Octo+ program
under the responsibility of ESI, part of TNO, with Océ
Technologies B.V. as the carrying industrial partner. The
Octo+ research is supported by the Netherlands Organisation
for Applied Scientific Research TNO.

REFERENCES
[1] S. Balsamo, A. di Marco, P. Inverardi, and M. Simeoni. 2004.

Model-based performance prediction in software development: A
survey. IEEE Trans. on Softw. Eng. 30 (2004), 295–310.

[2] G. Bontempi and W. Kruijtzer. 2002. A Data Analysis Method
for Software Performance Prediction. In Conference on Design,
Automation and Test in Europe (DATE’02). 971–976.

[3] F. Brosig, N. Huber, and S. Kounev. 2011. Automated Extrac-
tion of Architecture-Level Performance Models of Distributed
Component-Based Systems. In 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011).
183–192.

[4] J. L. Cánovas Izquierdo and J. Garćıa Molina. 2014. Extracting
models from source code in software modernization. Softw. &
Syst. Model. 13 (2014), 713–734.

[5] G. Casale, P. Cremonesi, and R. Turrin. 2008. Robust Workload
Estimation in Queueing Network Performance Models. In 16th
Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008). 183–187.

[6] M. Courtois and M. Woodside. 2000. Using Regression Splines for
Software Performance Analysis. In 2nd International Workshop
on Software and Performance (WOSP’00). 105–114.

[7] E. Eskenazi, A. Fioukov, and D. Hammer. 2004. Performance
Prediction for Component Compositions. In 7th International
Symposium on Component-Based Software Engineering (CBSE
2004). LNCS, Vol. 3054. 280–293.

[8] D. Ferrari, G. Serazzi, and A. Zeigner. 1983. Measurement and
Tuning of Computer Systems. Prentice Hall, Upper Saddle River,
NJ.

[9] K. Forsberg and H. Mooz. 1991. The relationship of system
engineering to the project cycle. 1 (1991), 57–65.

[10] M. Gardner. 1970. Mathematical Games – The fantastic combina-
tions of John Conway’s new solitaire game ”life”. Sci. Am. 223
(1970), 120–123.

[11] J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo. 2003.
A Tool for Automatic Flow Analysis of C-programs for WCET
Calculation. In 8th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2003). 106–
112.

[12] C. Healy, M. Sjödin, V. Rustagi, and D. Whalley. 1998. Bounding
Loop Iterations for Timing Analysis. In 4th IEEE Real-Time
Technology and Applications Symposium (RTAS’98).

[13] M. Hendriks, T. Basten, J. Verriet, M. Brassé, and L. Somers. 2014.
A blueprint for system-level performance modeling of software-
intensive embedded systems. Int. J. Softw. Tools for Technol.
Transf. 18 (2014), 21–40.

[14] M. Hendriks, J. Verriet, T. Basten, M. Brassé, R. Dankers, R.
Laan, A. Lint, H. Moneva, L. Somers, and M. Willekens. 2015. Per-
formance Engineering for Industrial Embedded Data-Processing
Systems. In 1st International Workshop on Processes, Methods,
and Tools for Engineering Embedded Systems (PROMOTE2015).
LNCS, Vol. 9459. 399–414.

[15] L. Huang, J. Jia, B. Yu, B. Chun, P. Maniatis, and M. Naik. 2010.
Predicting Execution Time of Computer Programs Using Sparse
Polynomial Regression. Adv. Neural Inf. Process. Syst. 23 (2010),
883–891.

[16] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and A. Kadlec.
2011. Beyond loop bounds: comparing annotation languages for
worst-case execution time analysis. Softw. & Syst. Model. 10
(2011), 411–437.

[17] K. Krogmann, M. Kuperberg, and R. Reussner. 2010. Using
Genetic Search for Reverse Engineering of Parametric Behavior
Models for Performance Prediction. IEEE Trans. Softw. Eng. 36
(2010), 865–877.

[18] D. C. Montgomery, E. A. Peck, and G. G. Vining. 2001. Intro-
duction to linear regression analysis (third ed.). John Wiley &
Sons, Inc., New York.

[19] A. J. C. van Gemund. 2003. Symbolic performance modeling of
parallel systems. IEEE Trans. Parallel and Distrib. Syst. 14
(2003), 154–165.

[20] E. Visser. 2005. A survey of strategies in rule-based program
transformation systems. J. Symbol. Comput. 40 (2005), 831–873.

[21] J. C. Westland. 2002. The cost of errors in software development:
evidence from industry. J. Syst. and Softw. 62 (2002), 1–9.

[22] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F.
Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.
2008. The worst-case execution-time problem – overview of meth-
ods and survey of tools. ACM Trans. Embed. Comput. Syst. 7
(2008), Article 36.

WOSP-C Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

194

	Abstract
	1 Introduction
	2 Related work
	3 Static Code Analysis
	4 Model Calibration
	5 Case Study
	6 Conclusion
	Acknowledgments
	References

